

# 1M (128K x 8) Static RAM

#### **Features**

- High speed: 55 ns and 70 nsWide voltage range: 2.7V-3.6V
- · Low active power and standby power
- Easy memory expansion with CE<sub>1</sub>, CE<sub>2</sub> and OE features
- · TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power
- Package is available in a standard 450-mil-wide 32-lead SOIC, 32-lead TSOP-I, 32-lead reverse TSOP-1, and 32-lead STSOP-1 package

### Functional Description[1]

The CY62128V is composed of high-performance CMOS static RAMs organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable  $(\overline{CE}_1)$ , an active HIGH Chip Enable  $(\overline{CE}_2)$ , an active LOW Output

Enable  $(\overline{OE})$  and three-state drivers. These devices have an automatic power-down feature, reducing the power consumption by over 99% when deselected.

Writing to the device is accomplished by taking Chip Enable one ( $\overline{\text{CE}}_1$ ) and Write Enable ( $\overline{\text{WE}}$ ) inputs LOW and the Chip Enable two ( $\overline{\text{CE}}_2$ ) input HIGH. Data on the eight I/O pins (I/O<sub>0</sub> through I/O<sub>7</sub>) is then written into the location specified on the address pins (A<sub>0</sub> through A<sub>16</sub>).

Reading from the device is accomplished by taking Chip Enable one  $(\overline{CE_1})$  and Output Enable  $(\overline{OE})$  LOW while forcing Write Enable (WE) and Chip Enable two  $(CE_2)$  HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O<sub>0</sub> through I/O<sub>7</sub>) are placed in a high-impedance state when the device is deselected ( $\overline{CE}_1$  HIGH or  $\overline{CE}_2$  LOW), the outputs are disabled ( $\overline{OE}_1$ HIGH), or during a write operation ( $\overline{CE}_1$  LOW,  $\overline{CE}_2$  HIGH, and  $\overline{WE}$  LOW).



#### Note

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.



## **Pin Configurations**









## **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature .....-65°C to +150°C

. . . –

Ambient Temperature with Power Applied......–55°C to +125°C

Supply Voltage to Ground Potential

(Pin 28 to Pin 14) ......-0.5V to +4.6V

DC Voltage Applied to Outputs

| DC Input Voltage <sup>[2]</sup>                        | $-0.5$ V to V <sub>CC</sub> + 0.5V |
|--------------------------------------------------------|------------------------------------|
| Output Current into Outputs (LOW)                      | 20 mA                              |
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | > 2001V                            |
| Latch-up Current                                       | > 200 mA                           |

## **Operating Range**

| Range      | Ambient Temperature | V <sub>CC</sub> |
|------------|---------------------|-----------------|
| Commercial | 0°C to +70°C        | 2.7V to 3.6V    |
| Industrial | -40°C to +85°C      | 2.7V to 3.6V    |

### **Product Portfolio**

|            |      |                           |      | Speed |                            | Power Diss | ipation (Co         | mmercial)                    |
|------------|------|---------------------------|------|-------|----------------------------|------------|---------------------|------------------------------|
|            | V,   | V <sub>CC</sub> Range (V) |      | (ns)  |                            |            | Star                | ndby I <sub>SB2</sub> , (μA) |
| Product    | Min. | Typ. <sup>[3]</sup>       | Max. |       | <b>Typ.</b> <sup>[3]</sup> | Maximum    | Typ. <sup>[3]</sup> | Maximum                      |
| CY62128VLL | 2.7  | 3.0                       | 3.6  | 70    | 20                         | 40         | 0.4                 | 100                          |
|            |      |                           |      | 55    |                            |            |                     |                              |

#### **Electrical Characteristics** Over the Operating Range

|                 |                     |                                                  | CY   |                            |                          |      |
|-----------------|---------------------|--------------------------------------------------|------|----------------------------|--------------------------|------|
| Parameter       | Description         | Test Conditions                                  | Min. | <b>Typ.</b> <sup>[3]</sup> | Max.                     | Unit |
| V <sub>OH</sub> | Output HIGH Voltage | $V_{CC}$ = Min., $I_{OH}$ = -1.0 mA              | 2.4  |                            |                          | V    |
| $V_{OL}$        | Output LOW Voltage  | V <sub>CC</sub> = Min., I <sub>OL</sub> = 2.1 mA |      |                            | 0.4                      | V    |
| V <sub>IH</sub> | Input HIGH Voltage  |                                                  | 2    |                            | V <sub>CC</sub><br>+0.5V | V    |
| $V_{IL}$        | Input LOW Voltage   |                                                  | -0.5 |                            | 0.8                      | V    |

- 2.  $V_{IL}$  (min.) = -2.0V for pulse durations of less than 20 ns.
- 3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC</sub> Typ., T<sub>A</sub> = 25°C.



## **Electrical Characteristics** Over the Operating Range (continued)

|                  |                                    |                                                                                      |              | CY                  | 62128V-55 | 5/70 |          |
|------------------|------------------------------------|--------------------------------------------------------------------------------------|--------------|---------------------|-----------|------|----------|
| Parameter        | Description                        | Test Condition                                                                       | Min.         | Typ. <sup>[3]</sup> | Max.      | Unit |          |
| I <sub>IX</sub>  | Input Leakage Current              | $GND \le V_I \le V_{CC}$                                                             |              | -1                  |           | 1    | μΑ       |
| I <sub>OZ</sub>  | Output Leakage Current             | $GND \le V_O \le V_{CC}$ , Output Disa                                               | bled         | <b>–</b> 1          |           | 1    | μΑ       |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating Supply   |                                                                                      | Com'l, 70 ns |                     | 20        | 40   | mA       |
| Current          | $f_{MAX} = 1/t_{RC}$               | Ind'I, 55 ns                                                                         |              | 23                  | 50        |      |          |
|                  |                                    |                                                                                      | Ind'I, 70 ns |                     | 20        | 40   |          |
| I <sub>SB1</sub> | Automatic CE                       | omatic CE Max. V <sub>CC</sub> , CE <sub>1</sub> ≥ V <sub>IH</sub> , CE <sub>2</sub> | Com'l, 70 ns |                     | 15        | 300  | μΑ       |
|                  | Power-down Current—<br>TTL Inputs  | $\langle V_{IH}, V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, f = f$           | Com'l, 55 ns |                     | 17        | 350  |          |
| TTE Inputs       | † <sub>MAX</sub>                   | Ind'I, 70ns                                                                          |              | 15                  | 300       |      |          |
| I <sub>SB2</sub> | Automatic CE                       |                                                                                      | Com'l        |                     | 0.4       | 15   | μΑ       |
|                  | Power-down Current—<br>CMOS Inputs | $CE_2 < V_{CC} - 0.3V$ , $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$ , $f = 0$   | Ind'I        |                     |           | 30   | <u> </u> |

## Capacitance<sup>[4]</sup>

| Parameter        | Description        | Max.                                    | Unit |    |
|------------------|--------------------|-----------------------------------------|------|----|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6    | pF |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 3.0V$                         | 8    | pF |

## **AC Test Loads and Waveforms**



| Parameters      | 3.3V | Unit  |
|-----------------|------|-------|
| R1              | 1213 | Ohms  |
| R2              | 1378 | Ohms  |
| R <sub>TH</sub> | 645  | Ohms  |
| V <sub>TH</sub> | 1.75 | Volts |

## **Data Retention Characteristics** (Over the Operating Range)

| Parameter                       | Description                        |        | Conditions <sup>[5]</sup>                                                                                                                                             | Min.            | <b>Typ</b> . <sup>[3]</sup> | Max. | Unit |
|---------------------------------|------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|------|------|
| $V_{DR}$                        | V <sub>CC</sub> for Data Retention |        |                                                                                                                                                                       | 1.6             |                             |      | V    |
| I <sub>CCDR</sub>               | Data Retention Current             | Com'l  | $V_{CC}$ = 2V , $\overline{CE}_1 \ge V_{CC} - 0.3V$ or $CE_2 < V_{CC} - 0.3V$ , $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$ ; no input may exceed $V_{CC} + 0.3V$ |                 | 0.4                         | 10   | μΑ   |
|                                 |                                    | Ind'l  |                                                                                                                                                                       |                 |                             | 20   |      |
| t <sub>CDR</sub> <sup>[4]</sup> | Chip Deselect to Data Rete<br>Time | ention |                                                                                                                                                                       | 0               |                             |      | ns   |
| t <sub>R</sub>                  | Operation Recovery Time            |        |                                                                                                                                                                       | t <sub>RC</sub> |                             |      | ns   |

- Tested initially and after any design or process changes that may affect these parameters.
   No input may exceed V<sub>CC</sub> + 0.3V.



#### **Data Retention Waveform**



## Switching Characteristics Over the Operating Range<sup>[6]</sup>

|                                |                                                                         | CY62128V-55 CY62 |      | CY621 | 128V-70 |      |
|--------------------------------|-------------------------------------------------------------------------|------------------|------|-------|---------|------|
| Parameter                      | Description                                                             | Min.             | Max. | Min.  | Max.    | Unit |
| Read Cycle                     |                                                                         | 1                | 1    |       | 1       |      |
| t <sub>RC</sub>                | Read Cycle Time                                                         | 55               |      | 70    |         | ns   |
| t <sub>AA</sub>                | Address to Data Valid                                                   |                  | 55   |       | 70      | ns   |
| t <sub>OHA</sub>               | Data Hold from Address Change                                           | 5                |      | 10    |         | ns   |
| t <sub>ACE</sub>               | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to Data Valid              |                  | 55   |       | 70      | ns   |
| t <sub>DOE</sub>               | OE LOW to Data Valid                                                    |                  | 20   |       | 35      | ns   |
| t <sub>LZOE</sub>              | OE LOW to Low-Z <sup>[7]</sup>                                          | 10               |      | 10    |         | ns   |
| t <sub>HZOE</sub>              | OE HIGH to High-Z <sup>[7, 8]</sup>                                     |                  | 20   |       | 25      | ns   |
| t <sub>LZCE</sub>              | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to Low-Z <sup>[7]</sup>    | 10               |      | 10    |         | ns   |
| t <sub>HZCE</sub>              | CE <sub>1</sub> HIGH or CE <sub>2</sub> LOW to High-Z <sup>[7, 8]</sup> |                  | 20   |       | 25      | ns   |
| t <sub>PU</sub>                | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to Power-up                | 0                |      | 0     |         | ns   |
| t <sub>PD</sub>                | CE <sub>1</sub> HIGH or CE <sub>2</sub> LOW to Power-down               |                  | 55   |       | 70      | ns   |
| Write Cycle <sup>[9, 10]</sup> | ·                                                                       |                  |      |       |         |      |
| t <sub>WC</sub>                | Write Cycle Time                                                        | 55               |      | 70    |         | ns   |
| t <sub>SCE</sub>               | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to Write End               | 45               |      | 60    |         | ns   |
| t <sub>AW</sub>                | Address Set-up to Write End                                             | 45               |      | 60    |         | ns   |
| t <sub>HA</sub>                | Address Hold from Write End                                             | 0                |      | 0     |         | ns   |
| t <sub>SA</sub>                | Address Set-up to Write Start                                           | 0                |      | 0     |         | ns   |
| t <sub>PWE</sub>               | WE Pulse Width                                                          | 45               |      | 55    |         | ns   |
| t <sub>SD</sub>                | Data Set-up to Write End                                                | 25               |      | 30    |         | ns   |
| t <sub>HD</sub>                | Data Hold from Write End                                                | 0                |      | 0     |         | ns   |
| t <sub>HZWE</sub>              | WE LOW to High-Z <sup>[7, 8]</sup>                                      |                  | 20   |       | 25      | ns   |
| t <sub>LZWE</sub>              | WE HIGH to Low-Z <sup>[7]</sup>                                         | 5                |      | 5     |         | ns   |

Test conditions assume signal transition time of 5 ns or less timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified

Document #: 38-05061 Rev. \*B

The internal write time of the memory is defined by the overlap of CE<sub>1</sub> LOW, CE<sub>2</sub> HIGH, and WE signals must be LOW and CE<sub>2</sub> HIGH to initiate a lower through the referenced to the rising edge of the signal that terminates the write. write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

10. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t<sub>HZWE</sub> and t<sub>SD</sub>.



## **Switching Waveforms**

#### **Read Cycle No. 1**[11, 12]



## Read Cycle No. 2 (OE Controlled)[12, 13]



## Write Cycle No. 1 ( $\overline{\text{CE}}_1$ or $\text{CE}_2$ Controlled)[13,14]



- 11. Device is continuously selected.  $\overline{OE}$ ,  $\overline{CE}_1 = V_{IL}$ ,  $CE_2 = V_{IH}$ .
- 12. WE is HIGH for read cycle.
   13. Address valid prior to or coincident with CE<sub>1</sub> transition LOW and CE<sub>2</sub> transition HIGH.



## Switching Waveforms (continued)

## Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14]



#### **Truth Table**

| CE <sub>1</sub> | CE <sub>2</sub> | OE | WE | I/O <sub>0</sub> –I/O <sub>7</sub> | Mode                       | Power                      |
|-----------------|-----------------|----|----|------------------------------------|----------------------------|----------------------------|
| Н               | Х               | Χ  | Χ  | High-Z                             | Power-down                 | Standby (I <sub>SB</sub> ) |
| Х               | L               | Χ  | Χ  | High-Z                             | Power-down                 | Standby (I <sub>SB</sub> ) |
| L               | Н               | L  | Н  | Data Out                           | Read                       | Active (I <sub>CC</sub> )  |
| L               | Н               | Χ  | L  | Data In                            | Write                      | Active (I <sub>CC</sub> )  |
| L               | Н               | Н  | Н  | High-Z                             | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |

### **Ordering Information**

| Speed<br>(ns) | Ordering Code      | Package<br>Name | Package Type                | Operating<br>Range |
|---------------|--------------------|-----------------|-----------------------------|--------------------|
| 55            | CY62128VLL-55SC    | S34             | 32-lead 450-Mil SOIC        | Commercial         |
|               | CY62128VLL-55ZAI   | ZA32            | 32-lead STSOP Type 1        | Industrial         |
|               | CY62128VLL-55ZI    | Z32             | 32-lead TSOP Type 1         |                    |
| 70            | 70 CY62128VLL-70SC |                 | 32-lead 450-Mil SOIC        | Commercial         |
|               | CY62128VLL-70ZC    | Z32             | 32-lead TSOP Type 1         |                    |
|               | CY62128VLL-70ZAC   | ZA32            | 32-lead STSOP Type 1        |                    |
|               | CY62128VLL-70ZRC   | ZR32            | 32-lead Reverse TSOP Type 1 |                    |
|               | CY62128VLL-70SI    | S34             | 32-lead 450-Mil SOIC        | Industrial         |
|               | CY62128VLL-70ZI    | Z32             | 32-lead TSOP Type 1         |                    |
|               | CY62128VLL-70ZAI   | ZA32            | 32-lead STSOP Type 1        |                    |
|               | CY62128VLL-70ZRI   | ZR32            | 32-lead Reverse TSOP Type 1 |                    |

- 14. Data I/O is high impedance if OE = V<sub>IH</sub>.
   15. If CE<sub>1</sub> goes HIGH or CE<sub>2</sub> goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.
   16. During this period, the I/Os are in output state and input signals should not be applied.



## **Package Diagrams**

### 32-Lead (450 MIL) Molded SOIC S34



### 32-lead Thin Small Outline Package Type I (8x20 mm) Z32





## Package Diagrams (continued)

### 32-lead Shrunk Thin Small Outline Package (8x13.4 mm) ZA32





## 32-lead Reverse Thin Small Outline Package ZR32



All product and company names mentioned in this document are the trademarks of their respective holders.



| Document Title: CY62128V (128K x 8) Static RAM Document Number: 38-05061 |                                   |          |     |                                                                                            |  |  |  |
|--------------------------------------------------------------------------|-----------------------------------|----------|-----|--------------------------------------------------------------------------------------------|--|--|--|
| REV.                                                                     | EV. ECN NO. Issue Date Change Des |          |     | Description of Change                                                                      |  |  |  |
| **                                                                       | 107252                            | 09/10/01 | SZV | Changed spec. number from 38-00547 to 38-05061                                             |  |  |  |
| *A                                                                       | 111446                            | 03/01/02 | MGN | Removed obsolete parts. Changed to standardized format.                                    |  |  |  |
| *B                                                                       | 116510                            | 09/05/02 | GBI | Added footnote 1. Clarified Control Pin (CE <sub>1</sub> and CE <sub>2</sub> ) description |  |  |  |