

MIPI CSI-2/DSI D-PHY ReDriver

Features

- MIPI D-PHY 1.2 Specification Compliant
- Supports 4 lanes at 2.5Gbps in D-PHY
- Supports ULPS and LP power states and sub-mW in shutdown state
- Supports MIPI DSI Bi-directional LP mode
- Programmable and pin adjustable on Receiver Equalization and transmitter edge rate
- Programmable Output swing and Pre-emphasis levels
- Industrial temperature range: -40 °C to 85 °C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/
- Packaging (Pb-free & Green):
 - ^o 28-contact, TQFN (ZH), 5.5 x 3.5 mm

Description

The PI2MEQX2505 is a low power, high performance 2.5Gbps four lanes data and clock MIPI D-PHY ReDriver[™] designed specifically for MIPI D-PHY 1.2 protocol.

The device provides programmable equalization, output swing and pre-emphasis to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference. PI2MEQX2505 supports MIPI D-PHY 1.2 standard with 100Ω differential CML data I/O between CSI-2 Source and CSI-2 Sink, over cable, or to extend the signals across other distant data pathways on the user's platform. It also supports pin adjustable on receiver equalization and edge rate on transmitter rise and fall time.

PI2MEQX2505 is optimized for mobile applications, and contains activity detection circuitry on the D-PHY Link interface that can transit into a lower power mode when in ULPS and LP states.

Typical MIPI Re-Driver in NB Application

Applications

- Notebook PC •
- Clamshell
- Tablets
- Camera

Notes:

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

Block Diagram

Pin Configuration

ZH28 (TQFN)

Pin Description

Pin#	Pin Name	Туре	Description
1	DA0P	100Ω Differen-	CSI-2/DSI Lane 0 Differential positive Input. Supports DSI LP Backchan- nel. If unused, this pin should be tied to GND.
2	DA0N	tial Input	CSI-2/DSI Lane 0 Differential negative Input. Supports DSI LP Backchan- nel. If unused, this pin should be tied to GND.
3	DA1P	100Ω Differen-	CSI-2/DSI Lane 1 Differential positive Input. If unused, this pin should be tied to GND.
4	DA1N	tial Input	CSI-2/DSI Lane 1 Differential negative input. If unused, this pin should be tied to GND.
5	DACP	100Ω Differen-	CSI-2/DSI Differential Clock positive Input
6	DACN	tial Input	CSI-2/DSI Differential Clock negative Input

Pin Description Cont.

Pin#	Pin Name	Tyj	pe	Description	
7	DA2P	100Ω Differen-		CSI-2/DSI Lane 2 Differential positive Input. If unused, this pin should be tied to GND.	
8	DA2N	tial Input		CSI-2/DSI Lane 2 Differential negative Input. If unused, this pin should be tied to GND.	
9	DA3P	100Ω Differen-		CSI-2/DSI Lane 3 Differential positive Input. If unused, this pin should be tied to GND.	
10	DA3N	tial Input		CSI-2/DSI Lane 3 Differential negative Input. If unused, this pin should be tied to GND.	
11	VCC	Power		1.8V (±10%) Supply.	
12	VREG_OUT	Power		1.2V Regulator Output. Requires a 0.1 μ F capacitor to GND.	
		Ŧ	Pullup/	RX Equalization Select. Pin state sampled on rising edge of RSTN. This pin also functions as I2C SCL pin.	
13	EQ/SCL		Pull-	$EQ/SCL = V_{IL}$: Equalization = 3dB	
		(3-level)	(100K)	$EQ/SCL = V_{IM}$: Equalization = 6dB	
				$EQ/SCL = V_{IH}$: Equalization = 9dB	
		I/O	I/O	Pullup/ Pull-	Edge Rate Control for DB[4:0]P/N High speed transmitter rise and fall time. Pin state sampled on rising edge of RSTN. This pin also functions as I2C SDA pin.
14	ERC/SDA	(3-level)	down	$ERC/SDA = V_{IL}$: Edge rate = 200ps	
			(100K)	$ERC/SDA = V_{IM}$: Edge rate = 150ps	
				ERC/SDA = V _{IH} : Edge rate = 250ps	
15	DB3N	100Ω Differen-		CSI-2/DSI Lane 3 Differential negative Output. If unused, this pin should be left unconnected.	
16	DB3P	tial Output		CSI-2/DSI Lane 3 Differential positive Output. If unused, this pin should be left unconnected.	
17	DB2N	100Ω Differen-		CSI-2/DSI Lane 2 Differential negative Output. If unused, this pin should be left unconnected.	
18	DB2P	tial Output		CSI-2/DSI Lane 2 Differential positive Output. If unused, this pin should be left unconnected.	
19	DBCN	100Ω Differen-		CSI-2/DSI Differential Clock negative Output	
20	DBCP	tial		CSI-2/DSI Differential Clock positive Output	
21	DB1N	100Ω Differen-		CSI-2/DSI Lane 1 Differential negative Output. If unused, this pin should be left unconnected.	
22	DB1P	tial Output		CSI-2/DSI Lane 1 Differential positive Output. If unused, this pin should be left unconnected.	

Pin Description Cont.

Pin#	Pin Name	Туре		Description
23	DB0N	100Ω Differen-		CSI-2/DSI Lane 0 Differential negative Output. Supports DSI LP Back channel. If unused, this pin should be left unconnected.
24	DB0P	tial Output		CSI-2/DSI Lane 0 Differential positive Output. Supports DSI LP Back channel. If unused, this pin should be left unconnected.
25	VDD	Power		This pin must be connected to the VREG_OUT pin through at least a 10-mil trace and a 0.1 μF capacitor to ground.
26	PRE_CFG1	I (3-level)	Pullup/ Pull- down (100K)	Controls DPHY TX HS pre-emphasis level and the LP TX rise and fall times. Pin state is sampled on the rising edge of RSTN. PRE_CFG1 = V_{IL} : Pre-emphasis level = 0 dB PRE_CFG1 = V_{IM} : Pre-emphasis level = 1 dB PRE_CFG1 = V_{IH} : Pre-emphasis level = 3 dB
27	VSADJ_CFG0	I (3-level)	Pullup/ Pull- down (100K)	Controls output voltage swing for DB HS transmitters and the LP TX rise and fall times. Pin state is sampled on the rising edge of RSTN. VSADJ_CFG0 = V_{IL} : Swing = 225 mV VSADJ_CFG0 = V_{IM} : Swing = 250 mV VSADJ_CFG0 = V_{IH} : Swing = 275 mV
28	RSTN	Ι		Reset, active low. When low, all internal CSR are reset to default and PI2MEQX2505 is placed in low power state.
Center Pad	GND	GND		Ground.

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)	
Storage Temperature65°C to +150°C	Note:
Supply Voltage to Ground Potential0.3V to +2.175V	Stresses greater than those listed under MAXIMUM
Voltage Range	RATINGS may cause permanent damage to the device.
D-PHY I are I/O Differential Voltage $-0.3V$ to $+1.4V$	This is a stress rating only and functional operation of
D THT Earle 1/0 Differential voltage	the device at these or any other conditions above those
All Other Terreirele	indicated in the operational sections of this specification
All Other Terminals	is not implied. Exposure to absolute maximum rating
Max Junction Temperature 105°C	conditions for extended periods may affect reliability.

ESD Rating

Symbol	Parameter	Conditions	Value	Units
V _(ESD)		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	V
	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	1000	V

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{CC}	Supply voltage		1.62	1.8	1.98	V
T _A	Operating free-air temperature		-40		85	°C

Electrical Characteristics, Power Supply

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
PACTIVE1	Power under normal operation for 4 data lanes + clock.	D-PHY Lanes at 2.5 Gbps; V _{CC} supply stable, V _{CC} = 1.8 V		135	200	mW
PACTIVE2	Power under normal operation for 2 data lanes + clock.	D-PHY Lanes 2.5 Gbps; V_{CC} supply stable, V_{CC} = 1.8 V		80	120	mW
P_LP11	LP11 Power	All D-PHY lanes in LP11; V _{CC} supply stable; V _{CC} = 1.8 V		2	5	mW
P_STB	Standby mode power	RSTN held in asserted state (low); V _{CC} supply stable; V _{CC} = 1.8 V		0.02	0.2	mW
P_ULPS	ULPS mode power	IC stay in ULPS mode; V_{CC} supply stable; V_{CC} = 1.8 V		2	5	mW

Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Standard IO (RSTN, ERC, EQ, CFG[1:0])		·			
V _{IL}	Low-level control signal input voltage		0		0.14xV _{CC}	V
V _{IM}	Mid-level control signal input voltage		0.45xV _{CC}	V _{CC} /2	0.55xV _{CC}	V
V _{IH}	High-level control signal input voltage		0.86xV _{CC}		VCC	V
VF	Floating Voltage	V _{IN} = High Impedance		$V_{CC}/2$		V
V _{OL}	Low level output voltage (open- drain). ERC (SDA) only	At I _{OL} max.			0.2xV _{CC}	V
I _{OL}	Low Level Output Current				3	mA
I _{IH}	High level input current				±36	μΑ
I _{IL}	Low level input current				±36	μΑ
R _{PU}	Internal pull-up resistance			100		kΩ
R _{PD}	Internal pull-down resistance			100		kΩ
R _(RSTN)	RSTN control input pullup resistor			300		kΩ
SCL, SDA						
V _{IL}	Low-level I2C signal input volt- age				0.3xV _{CC}	V
V _{IH}	High-level I2C signal input voltage		0.7xV _{CC}			V
MIPI D-PHY	HS Receiver Interface (DA0P/N,	DA1P/N, DA2P/N, DA3P/N, I	DACP/N)			
V _(CM-RX_DC)	Differential Input Common- mode voltage HS Receive mode	$V_{(CM-RX)} = (V_{A x P} + V_{A x})/2$	70		330	mV
1 3 7 1	HS Receiver input differential	$ V_{ID} = V_{A x P} - V_{A x N} $ <1.5 Gbps	70			mV
V _{ID}	voltage	$ V_{ID} = V_{A x P} - V_{A x N} $ >1.5 Gbps	40			mV
V _{IH(HS)}	Single-ended input high voltage				460	mV
V _{IL(HS)}	Single-ended input low voltage		-40			mV
R _(DIFF-HS)	Differential input impedance		75	100	125	Ω
V _(RXEQ0)	$\begin{array}{l} {\rm Rx \ EQ \ gain \ when \ EQ/SCL \ pin} \\ \leq {\rm V_{IL}} \end{array}$			3		dB
V _(RXEQ1)	$Rx EQ gain when EQ/SCL pin = V_{IM}$	At 1250 MHz		6		dB
V _(RXEQ2)	$\begin{array}{l} {\rm Rx \ EQ \ gain \ when \ EQ/SCL \ pin} \\ \geq {\rm V_{IH}} \end{array}$	At 1250 MHz		9		dB

Electrical Characteristics Cont.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
MIPI D-PHY	LP Receiver Interface (DA0P/N,	DA1P/N, DA2P/N, DA3P/N, D	ACP/N, DE	80P/N)		
V _(LPIH)	LP Logic 1 Input Voltage		880			mV
V _(LPIL)	LP Logic 0 Input voltage				550	mV
V _(HYST)	LP Input Hysteresis		25			mV
MIPI D-PHY	HS Transmitter Interface (DB0)	P/N, DB1P/N, DB2P/N, DB3P/N	N, DBCP/N))		
V _(CMTX)	HS Transmit static common- mode voltage, VSADJ_CFG0 = VIL	$V_{(CMTX)} = (V_{(BP)} + V_{(BN)}) /2$	150	200	250	mV
ΔV _(CMTX) (1,0)	VCMTX mismatch when output is differential-1 or dif- ferential-0	$ \Delta V_{(CMTX) (1,0)} = (V_{(CMTX)}) $ (1) - V_{(CMTX) (0)} /2			5	mV
Vod(vd0)	HS Transmit differential volt- age, VSADJ_CFG0 = VIL	$ V_{OD} = V_{(DP)} - V_{(DN)} $	140	200	270	mV
$ \Delta V_{OD} $	V _{OD} mismatch when output is differential-1 or differential-0	$\begin{split} \Delta V_{\rm OD} &= \left \Delta V_{\rm O(D1)} \right - \\ \left \Delta V_{\rm O(D0)} \right \end{split}$			14	mV
V _{OH(HS)}	HS Output high voltage for non-transition bit	$CFG0 \ge V_{IH} HS Pre = 3 dB$			430	mV
V _(PRE1)	Pre-emphasis Level for HSTX_ PRE_CFG1 = VIM	$\label{eq:PRE} \begin{split} \text{PRE} &= 20 \text{ x LOG } \left(\text{V}_{\text{OD}(\text{TBx})} / \right. \\ \text{V}_{\text{OD}(\text{VDX})} \text{), See Figure 1.} \end{split}$		1		dB
V _(PRE2)	Pre-emphasis level for HSTX_ PRE_CFG1 = VIH	$\label{eq:PRE} \begin{array}{l} \mbox{PRE} = 20 \ x \ LOG \ (V_{OD(TBx)} \ / \\ V_{OD(VDX)}), \ \mbox{See Figure 1.} \end{array}$		3		dB
R _{pd(HS)}	Pull down resistor when RSTN = 0 V			300		kΩ
LP Mode Swit	tch Interface					
R _{ON_LP}	I _{ON} = -8 mA, DA0P/N, DA1P/N, DA2P/N, DA3P/N, DCP/N = 1.2 V	V _{CC} = 1.8 V		30	60	Ω
$\Delta R_{ON_{LP}}$	I _{ON} = -8 mA, DA0P/N, DA1P/N, DA2P/N, DA3P/N, DCP/N = 1.2 V	V _{CC} = 1.8 V		0.1	0.5	Ω
C _{ON}		V _{CC} = 1.8 V		7		pF
-3db BW		$V_{CC} = 1.8 \text{ V}; \text{ DC bias} = 0 \text{ V}$		800		MHz

Figure 1. DPHY HS TX Pre-emphasis

Timing Req	Timing Requirements					
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I2C (ERC (S	DA), EQ (SCL))	·		·		
t _{HD;STA}	Hold Time (repeated) START condition. After this period, the first clock pulse is generated		4			μs
t _{LOW}	Low period of SCL clock		4.7			μs
t _{HIGH}	High period of SCL clock		4			μs
t _{SU;STA}	Setup time for a repeated START condition		4.7			μs
t _{HD;DAT}	Data hold time		5			μs
t _{SU;DAT}	Data setup time		4			μs
t _{SU;STO}	Setup time for STOP condition		4			μs
t _{BUF}	Bus free time between a STOP and START condition		4.7			μs
RSTN						
t _{D1}	$\rm V_{CC}$ stable before de-assertion of RSTN		100			μs
t _{SU2}	Setup of VSADJ_CFG0, PRE_ CFG1, EQ and ERC pin before de-assertion of RSTN		0			μs
t _{h2}	Hold of VSADJ_CFG0, PRE_ CFG1, EQ and ERC pin after de-assertion of RSTN		250			μs
t _{VCC_RAMP}	V _{CC} supply ramp requirements		0.2		100	ms
Delay Time f	or HS Mode					
t _{HSPD}	Propagation delay from DA to DB. In HS mode			1		ns

Switching Characteristics

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
I2C (ERC (SD	OA), EQ (SCL))		•			
F _(SCL)	I2C Clock Frequency				100	kHz
t _{F_I2C}	Fall time of both SDA and SCL signals	Load of 350 pF with 2-K			300	ns
t _{R_I2C}	Rise Time of both SDA and SCL signals	Measure at 30% - 70%			1000	ns
D-PHY Link						
F _(BR)	Bit Rate				2.5	Gbps
F(HSCLK)	HS Clock Input range		100		1250	MHz
MIPI D-PHY	HS Receiver Interface (DACP/N	, DA0P/N, DA1P/N, DA2P/N,	DA3P/N)	1	1	
AV(CMDX_HE)	Common-mode Interface be-				100	mV
Δv (CMRX_HF)	yond 450 MHz	>1.5 GHz			50	mV
$\Delta V_{(CMRX_LF)}$	Common-mode interference 50 MHz – 450 MHz		-50		50	mV
MIPI D-PHY	HS Transmitter Interface (DBC	P/N, DB0P/N, DB1P/N, DB2P/	N, DB3P/N)			
$\Delta V_{(CMTX_HF)}$	Common-level variations above 450 MHz				15	mVrms
$\Delta V_{(CMTX_LF)}$	Common-level variation be- tween 50 MHz – 450 MHz				25	mVpeak
		Datarate ≤ 1 Gbps			0.3	UI
	20% 80% rice time and fall	Datarate > 1 Gbps and ≤ 1.5 Gbps			0.35	UI
t _R and t _F	time	Datarate > 1.5 Gbps			0.4	UI
		Datarate ≤ 1.5 Gbps	100			ps
		Datarate > 1.5 Gbps	50			ps
D-PHY LP Re	eceiver Interface (DACP/N, DA0I	P/N, DA1P/N, DA2P/N, DA3P/	N, DB0P/N)			
e _{SPIKE}	Input Pulse rejection				300	V ps
t _{MIN(RX)}	Minimum pulse width response		20			ns
V(INT)	Peak interference amplitude				200	mV
F(INT)	Interference Frequency		450			MHz
MIPI D-PHY	LP Transmitter Interface (DBC)	P/N, DB0P/N, DB1P/N, DB2P/	N, DB3P/N))	1	
t _{REOT}	30% - 85% rise time and fall time	Measured at end of HS transmission.			35	ns

Note:

1. All typical values are at V_{CC} = 1.8V, and T_A = 25°C.

Detailed Description

Overview

The PI2MEQX2505 is a one to four lane and clock MIPI D-PHY ReDriver[™] that regenerates the D-PHY signaling. The device complies with MIPI D-PHY 1.2 standard and can be used in either a MIPI CSI-2 or MIPI DSI application at datarates of up to 2.5 Gbps in D-PHY.

The device compensates for PCB, connector, and cable related frequency loss and switching related loss to provide the optimum electrical performance from a CSI2/DSI source to sink. The PI2MEQX2505 D-PHY inputs feature configurable equalizers.

The PI2MEQX2505 output swing and edge rate can be adjusted by changing the state of the VSADJ_CFG0 pin and ERC pin respectively. The PI2MEQX2505 is optimized for mobile applications, and contains activity detection circuitry on the D-PHY Link interface that can transition into a lower power mode when in ULPS and LP states.

The device is characterized for an extended operational temperature range from -40°C to 85°C.

Functional Block Diagram

Feature Description

HS Receive Equalization

The PI2MEQX2505 supports three levels of receive equalization to compensate for ISI loss in the channel. These three levels are 3 dB, 6 dB, and 9 dB at 1250Mhz. The equalization level used by the PI2MEQX2505 is determined by the state of the EQ/SCL pin at the rising edge of RSTN. If necessary, the receiver equalization level can also be set through writing to the RXEQ register via the local I2C interface.

Table 1. EQ/SCL Pin Function

EQ/SCL Pin	HS Rx Equalization			
$\leq V_{IL}$	3 dB			
V _{IM}	6 dB			
$\geq V_{IH}$	9 dB			

HS TX Edge Rate Control

Table 2. HS TX Edge Rate Control

ERC/SDA Pin	HS Rise/Fall Times
$\leq V_{IL}$	200 ps typical
V _{IM}	150 ps typical
$\geq V_{IH}$	250 ps typical

I2C Slave Address

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (W/R)
1	1	0	1	1	0	0	0/1

Register Map

Address	Register	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	Device ID	Read		Device ID (PI2MEQX2505): (reset value: 00000101b)						
01h	Version ID	Read		Version ID (Version 0): (reset value: 0000000b)						
02h	EQ	Read/Write	Reserved (reset value: 0000b) EQ <3>			EQ <2>	EQ <1>	EQ <0>		
03h	ERC	Read/Write	Reserved (reset value: 00000b)			ERC <2>	ERC <1>	ERC <0>		
04h	Reserved	Read	Reserved (reset value: 00001000b)							
05h	Output Pre- emphasis & Swing	Read/Write	Reserved (reset value: 0110b)		PREEMP LEVEL <1>	PREEMP LEVEL <0>	VSADJ <1>	VSADJ <0>		

Register Setting for EQ/ERC/PRE_CFG1/VSADJ_CFG0

EQ<3:0> (Register 02h<3:0>)	EQ Gain at 500MHz	EQ Gain at 1250MHz
0000	0dB	0dB
0010	2dB	3dB
0110	4dB	6dB
1011	6dB	9dB
Others	Reserved	Reserved

ERC<2:0> (Register 03h<2:0>)	Edge Rate Control	
001	250ps	
011	200ps	
111	150ps	
Others	Reserved	

PREEMP LEVEL<1:0> (Register 05h<3:2>)	Pre-emphasis Level
00	0dB
01	1dB
11	3dB
Others	Reserved

VSADJ<1:0> Register 05h<1:0>	Output Voltage Swing
00	200mV
01	225mV
10	250mV
11	275mV

Bus Transaction

Writing to the Registers

Data is transmitted to the PI2MEQX2505 by sending the device address and setting the least significant bit to a logic 0. The register subaddress byte is sent after the address and determines which register will receive the data following the sub-address byte.

Reading the Register

In order to read data from the PI2MEQX2505, the bus master must first send the PI2MEQX2505 address with the least significant bit set to a logic 0. The sub-address byte is sent after the address and determines which register will be accessed. After a restart, the device address is sent again, but this time the lease significant bit is set to a logic 1. Data from the register defined by the sub-address byte will then be sent by the PI2MEQX2505. Data is clocked into the register on the falling edge of the acknowledge clock pulse.

Figure 3. Read from Register

Part Marking

28-TQFN (ZH)

Z: Die Rev YY: Date Code (Year) WW: Date Code (Workweek) 1st X: Assembly Code 2nd X: Fab Code Bar above 2nd "X" means Cu wire

Packaging Mechanical

28-TQFN (ZH)

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Number	Package Code	Package Description
PI2MEQX2505ZHEX	ZH	28-contact, Very Thin Quad Flat No-Lead (TQFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS 1 TO ANY INFORMATION CONTAINED IN THIS DOCUMENT. INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-NESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein 2. and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. 3. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-condi-5 tions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inac-7 curacies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes 8. assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2022 Diodes Incorporated

www.diodes.com