DALLAS JUINKI

DS3170DK DS3/E3 Single-Chip Transceiver Design Kit

www.maxim-ic.com

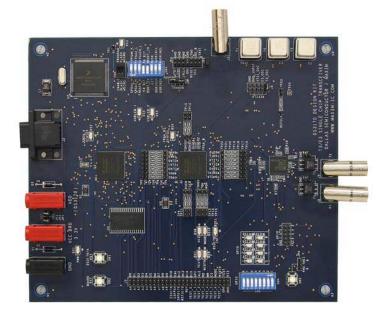
GENERAL DESCRIPTION

The DS3170DK is a fully integrated design kit for the DS3170 DS3/E3 single-chip transceiver (SCT). This design kit contains all the necessary circuitry to evaluate the DS3170 in all modes of operation. The design kit also includes an on-board microprocessor to run real-time code for further part evaluation.

DESIGN KIT CONTENTS

DS3170DK Board Download:

ChipView Software DS3170DK.DEF Definition File DS3170DK Data Sheet

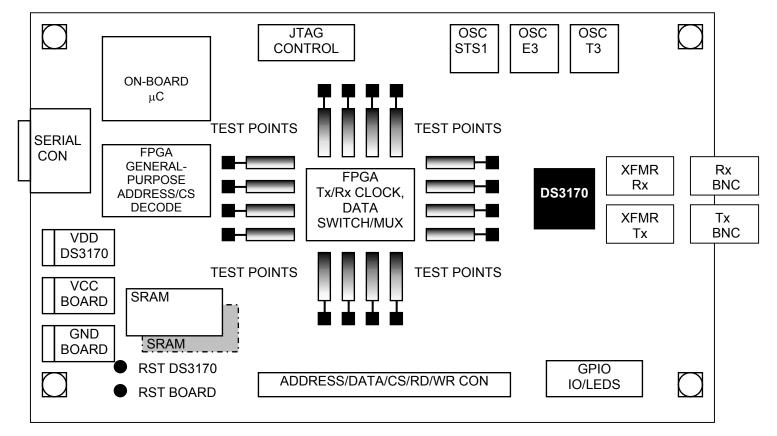

ORDERING INFORMATION

PART	DESCRIPTION
DS3170DK	Design Kit for the DS3170 DS3/E3
Doomobit	Single-Chip Transceiver

Windows is a registered trademark of Microsoft Corp.

FEATURES

- Expedites New Designs by Eliminating First-Pass Prototyping
- Demonstrates Key Functions of the DS3170 DS3/E3 Single-Chip Transceiver (SCT)
- Includes DS3170 Single-Chip Transceiver (SCT), Transformers, 75Ω BNC, and Termination Passives
- Interfaces with Any PC with an RS-232 Serial Interface
- High Level Windows®-Based Software Provides Visual Access to All Registers
- Software Controlled (Register) Mapped Configuration Switches Facilitate Real-Time Clock and Signal Routing
- Precision Test Points for All Clocks and Signals
- On-Board DS3 and E3 Crystal Oscillators for Stable Clock Generation
- Easy-to-Read Silkscreen Labels Identify the Signals Associated with All Connectors, Jumpers, and LEDS


COMPONENT LIST

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER
$\begin{array}{c} C1, C4, C5, C10,\\ C14, C15, C18,\\ C19, C21, C24,\\ C25-C32, C36-\\ C38, C39-C44,\\ C47-C49, C50,\\ C52-C56,\\ C59-C61, C66,\\ C68, C70, C73,\\ C74 \end{array}$	44	0.1μF 20%, 16V X7R ceramic capacitors (0603)	AVX	0603YC104MAT
C2, C3, C16, C17, C20, C22, C23, C33, C34, C51, C57, C69, C75	13	1μF 10%, 16V ceramic capacitors (1206)	Panasonic	ECJ-3YB1C105K
C6, C62, C65	3	0.001µF 10%, 50V ceramic capacitors (0603)	Panasonic	ECJ-1VB1H102K
C7, C8, C9, C11, C35, C58, C76	7	68μF 20%, 16V tantalum capacitors (D case)	Panasonic	ECS-T1CD686R
C12, C13	2	10pF 5%, 50V ceramic capacitors (tall case)	Phycomp	1206CG100J9B200
C45, C46	2	10,000pF 10%, 16V ceramic capacitors (0603)	Panasonic	ECJ-1VB1C103K
C63, C64, C67	3	0.01µF 10%, 50V X7R ceramic capacitors (0603)	AVX	06035C103KAT
C71, C72	2	56,000pF 10%, 16V ceramic capacitors (0603)	Panasonic	ECJ-1VB1C563K
D1, D2	2	1A 50V general-purpose silicon diodes	General Semiconductor	1N4001
DS1, DS2, DS6–DS10	7	LED, green, SMD	Panasonic	LN1351C
DS3, DS4, DS5, DS11–DS19	12	LED, red, SMD	Panasonic	LN1251C
J1, PWR_CONNBAN1	2	Banana plug sockets (horizontal, black)	Mouser Electronics	164-6218
J2	1	DB9 right-angle connector (long case)	AMP	747459-1
J3	1	50-pin, dual-row, vertical terminal strip	Samtec	TSW-125-07-T-D
J4	1	100-mils 4-position jumper	Samtec	NA
J5	1	50Ω BNC connector (5-pin right-angle header)	Trompeter	CBJR220
J6, J7	2	Terminal strip, 10-pin, dual row, vertical	Samtec	NA
J8, J9	2	75Ω BNC connectors (5-pin right- angle)	Trompeter	UCBJR220
JP1, JP2, JP3, JP5, JP7, JP8	6	2-pin headers, 0.100" centerline (vertical)	Samtec	TSW-102-07-T-S
JP4	1	14-pin connector (dual row, vertical)	Samtec	NA
JP6	1	100-mils 3-position jumper	Samtec	NA
L1	1	1.0μH 20% 2-pin surface-mount inductor	Coiltronics	UP1B-1R0
PWR_CONNBAN2	1	Banana plug socket (horizontal, red)	Mouser Electronics	164-6219

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER
R1–R4, R12, R42, R43, R54–R56, R59, R63, R68, R69, R70, R73, R74, R83, R93, R107	20	150Ω 1%, 1/16W resistors (0603)	Panasonic	ERJ-3EKF1500V
R5–R8, R10, R15, R51, R57, R62, R71, R81, R85, R92, R94, R95, R100, R101, R103–R106, R109	22	33Ω 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ330V
R9, R11, R16, R22, R30, R32, R38, R46, R60, R61, R64, R65, R72, R77–R80, R89, R90, R91, R96	22	330Ω 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ331V
R13	1	1.0MΩ 5%, 1/16W resistor (0603)	Panasonic	ERJ-3GEYJ105V
R14, R17–R21, R23–R29, R31, R33–R37, R39, R40, R41, R44, R45, R47, R48, R49, R52, R53, R58, R67, R75, R76, R82, R86, R87, R98, R99, R102, R108, R110	41	10kΩ 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ103V
R50	1	1.0kΩ 5%, 1/16W resistor (0603)	Panasonic	ERJ-3GEYJ102V
R66, R88, R97	3	0Ω 1%, 1/16W resistors (0603)	AVX	CJ10-000F
R84	1	51.1Ω 1%, 1/16W resistor (0603)	Panasonic	ERJ-3EKF51R1V
SW1, SW2, SW5	3	4-pin single-pole switch MOM	Panasonic	EVQPAE04M
SW3, SW4	2	8-position switch, 16-pin DIP, low profile	AMP	435668-7
SW6	1	Slide switch (DPDT) 6-pin through-hole	Тусо	SSA22
T1, T2	2	1:2 XFMR T3/E3/STS-1 (industrial)	Pulse	T3012
TP1–TP24	24	Test points, compensated, $3pF$, 953 Ω , 3 plated holes	NA	KIT1
U1, U5	2	8-pin power-μMAX (1.8V or Adj)	Maxim	MAX1792EUA18
U2	1	M-CORE 32-bit microcontroller	Motorola	MMC2107
U3, U6	2	Spartan-IIE 200K gate, 1.8V FPGA, 256 PIN BGA	Xilinx	XC2S200E-6FT256C
U4, U11	2	128K x 8 SRAM	Cypress	CY62128V
U7	1	DS3/E3 SCT 100-pin CSBGA (11mm x 11mm)	Dallas Semiconductor	DS3170
U8	1	3.3V RS-232 20-pin SO	Maxim	MAX3233EEWP
U9, U14, U16– U20, U23	8	High-speed buffer	Fairchild	NC7SZ86

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER
U10, U12	2	2Mb flash-based configuration memory	Xilinx	XCF02SV020C
U13	1	Quad 2-input NAND gate 14-pin SO	Toshiba	TC74HC00AFN
U15, U21, U24	3	Hex inverter, SO	Toshiba	TC74HC04AFN
U22	1	SOT switch debouncer	Maxim	MAX6816
X1	1	8.0MHz low-profile crystal	Dove Electronic	EC1-8.000M
Y1	1	3.3V 51.840MHz oscillator, crystal clock	SaRonix	NTH089AA3-51.840
Y2	1	3.3V 34.368MHz oscillator, crystal clock	SaRonix	NTH089AA3-34.368
Y3	1	3.3V 44.736MHz oscillator, crystal clock	SaRonix	NTH089AA3-44.736

BOARD FLOORPLAN

BASIC OPERATION

This design kit relies upon several supporting files, which are available for downloading on our website at <u>www.maxim-ic.com/telecom</u>. See the DS3170DK QuickView page for files.

The support files are used with an evaluation program called ChipView with is available for download at <u>www.maxim-ic.com/telecom</u>.

HARDWARE CONFIGURATION

Quick Start (Hardware Settings)

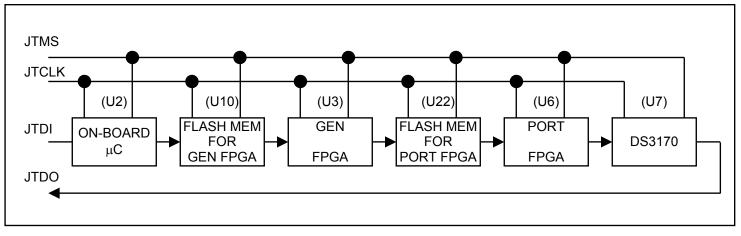
- For single power-supply operation, short jumpers JP1-JP3. This connects VDD of the DS3170 to the board VCC.
- Ensure that *PROGRAM FLASH MICRO* is selected (SW6). DS3 should not be on.
- Connect reference clock. See <u>Table 1</u>.
- DIP switches (SW3) can be in either the ON or OFF position depending on the desired configuration. See <u>Table 6.</u>
- Connect serial cable from DS3170DK (J2) to PC.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V.

Reference Clock Configuration

The reference clock for the DS3170 (SCT) can be configured a number of ways depending on the application's need. This is done by shorting the REFCLK signal on J6 to the signal inputs, which are also connected to J6.

Table 1: Reference Clock Configuration

REFERENCE CLOCK	DESCRIPTION
GND	Short pins J6.1 and J6.2 together. Open all other pins on J6.
BNC Input	Short pins J6.3 and J6.4 together. Open all other pins on J6.
STS1 OSC	Short pins J6.5 and J6.6 together. Open all other pins on J6.
E3 OSC	Short pins J6.7 and J6.8 together. Open all other pins on J6.
T3 OSC	Short pins J6.9 and J6.10 together. Open all other pins on J6.


JTAG Configuration

The JTAG chain is controlled by the following connectors: J4, JP4, and JP5. Depending on the function, such as programming the internal microcontroller flash or performing boundary scan operations, the three connectors can be configured to accomplish the desired task. For information on programming the internal flash of the microcontroller, refer to the microcontroller user manual and board schematic.

For most purposes, having the complete JTAG chain is sufficient. <u>Figure 1</u> shows the complete chain as well as what order the devices will appear during boundary scan. To set up this configuration, perform the following:

- Connect JTDI to JP4.1
- Connect JTDO to JP4.3
- Connect JTMS to JP4.10
- Connect JCLK to JP4.5
- Connect J4.1 to J4.2
- Connect J4.3 to J4.4
- Connect JP5.1 to JP5.2

Figure 1. JTAG Chain

Address/Data BUS Connector

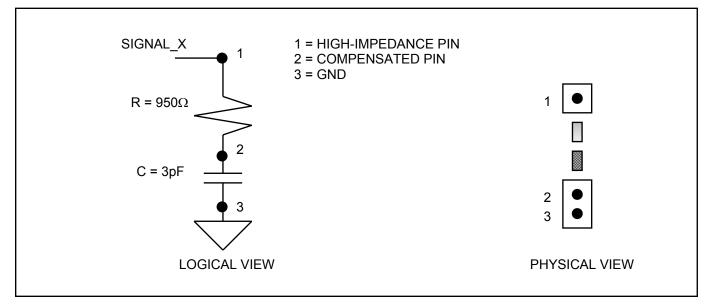

The DS3170DK has a connector (J3) to monitor all local bus activity for the design kit. All the signals can be captured with a high-impedance probe and displayed on an oscilloscope or logic analyzer. **Note:** If FPGA_ENABLE (SW3.3) is logic 0, the on-board microcontroller will no longer drive any data onto the local bus. Therefore, the user can now connect the local bus of the DS3170 into another system without making any modifications to the hardware. See <u>Table 2</u> for specific pin information for connector J3.

Table 2. Address/Data Connector

PIN NUM	PIN NAME	DESCRIPTION	PIN NUM	PIN NAME	DESCRIPTION
1	A0	Local Address Bit 0	2	D0	Local Data Bit 0
3	A1	Local Address Bit 1	4	D1	Local Data Bit 1
5	A2	Local Address Bit 2	6	D2	Local Data Bit 2
7	A3	Local Address Bit 3	8	D3	Local Data Bit 3
9	A4	Local Address Bit 4	10	D4	Local Data Bit 4
11	A5	Local Address Bit 5	12	D5	Local Data Bit 5
13	A6	Local Address Bit 6	14	D6	Local Data Bit 6
15	A7	Local Address Bit 7	16	D7	Local Data Bit 7
17	A8	Local Address Bit 8	18	D8	Local Data Bit 8
19	A9	Local Address Bit 9	20	D9	Local Data Bit 9
21	CS3170	Chip Select DS3170	22	D10	Local Data Bit 10
23	CSFPGA	Chip Select Port FPGA	24	D11	Local Data Bit 11
25	INT3170	INT PIN DS3170	26	D12	Local Data Bit 12
27	RST3170	RST PIN DS3170	28	D13	Local Data Bit 13
29	RDY	Ready Handshake DS3170	30	D14	Local Data Bit 14
31	TEST0	Generic I/O Bit 0	32	D15	Local Data Bit 15
33	TEST1	Generic I/O Bit 1	34	SPI	DS3170 Serial/Parallel Bus Mode
35	TEST2	Generic I/O Bit 2	36	ALE	Address Latch Enable
37	TEST3	Generic I/O Bit 3	38	RD_DS	Read (Intel)/Data Strobe (MOT)
39	TEST4	Generic I/O Bit 4	40	WR_W/R	Write (Intel)/Write_READ (MOT)
41	TEST5	Generic I/O Bit 5	42	CS_OUT	Programmable CS_OUT Pin
43	TEST6	Generic I/O Bit 6	44	MODE	Mot/Intel Mode
45	TEST7	Generic I/O Bit 7	46	WIDTH	Data Bus Width
47	GND	GND	48	TEST	Test Enable (Active Low)
49	GND	GND	50	HIZ	High Impedance (Active Low)

High Impedance and Compensated Test Points

The test points for all the clock and data lines are unique for this board such that each test point listed in <u>Table 3</u> have a relative high-impedance pin and a compensated pin. The compensated pin is part of a (20:1) voltage divider that when used with the standard 50Ω load of an oscilloscope provides a very clean signal. If you are making critical timing and or slew rate measurements, the compensated test points are very useful. Figure 2 shows the relationship between the high-impedance and compensated test point pins.

Figure 2. Test Point Logical and Physical View

Table 3. Test Points

REF DES	SIGNAL NAME	REF DES	SIGNAL NAME
TP5	TCLKI	TP7	TNEG
TP6	TCLKO	TP8	RNEG
TP4	RCLKO	TP2	TPOS
TP20	TLCLK	TP3	RPOS
TP19	RLCLK	TP11	TSER
TP10	TOHSOF	TP9	RSER
TP12	ROHSOF	TP13	TOHEN
TP16	TOHCLK	TP14	TOH
TP17	ROHCLK	TP15	ROH
TP19	TSOFO	TP23	REFCLK
TP22	RSOFO	TP21	TSOFI

General Purpose Input/Output for DS3170

The DS3170 SCT has an 8-bit port that can be bit configured as either general-purpose I/O or specific alarms, a TEMI input, or PMU input. Refer to the DS3170 data sheet for specific questions about the operation of the DS3170 GPIO port.

Each GPIO pin has two types of inputs and an LED for easy identification of the pin's state. The first input type for the GPIO port is an 8-bit switch (SW4). Each pin on SW4 corresponds to the bit in the GPIO. When the switch is in the "On" position, the pin for the switch is grounded and provides logic 0 to the port. When the switch is in the "Off" position, the pin for the switch floats to VDD and provides logic 1 to the port.

The second input type for the GPIO port is a straight 10-pin header (J7). This can be simply a monitoring pin for the GPIO port or used as input stimulus. **Note:** If you plan to drive a bit to a value other than GND, the GPIO bit in SW4 must be in the "Off" position. See the DS3170DK schematic for questions on the connection of the GPIO port.

Table 4 provides a description of pin out of SW4 and J7.

PIN NU	MBER	PIN NAME
SW4.1	J7.1	GPIO Bit 1
SW4.2	J7.2	GPIO Bit 2
SW4.3	J7.3	GPIO Bit 3
SW4.4	J7.4	GPIO Bit 4
SW4.5	J7.5	GPIO Bit 5
SW4.6	J7.6	GPIO Bit 6
SW4.7	J7.7	GPIO Bit 7
SW4.8	J7.8	GPIO Bit 8

Table 4. GPIO Header and Switch Pinout

TEMI and PMU Inputs

GPIO Bit 6 and GPIO Bit 8 can be configured to be the TEMI and PMU inputs respectively. A pushbutton (SW5) and 3-position jumper (JP6) are available to provide a glitch-free input to either of these inputs. **Note:** When using the pushbutton (SW5) and 3-position jumper (JP6) as an input to the GPIO pins, you must have the appropriate switch in SW4 in the "Off" position.

Table 5.	TEMI a	nd PMU	Configuration
----------	--------	--------	---------------

SIGNAL NAME	SETUP PROCEDURE
ТЕМІ	Set SW4.6 to the "Off" position
	Short (Jumper) JP6.3 and JP2
PMU	Set SW4.8 to the "Off" position
FIVIO	Short (Jumper) JP6.1 and JP2

User Input Switch (SW3)

SW3 is an 8-pin DIP switch that controls the function of the on-board microcontroller and the two on-board FPGAs, and offers a number of generic inputs for user programs.

Table 6. User input Switch Pinout												
PIN	NAME											
		-					_			-		_

PIN	NAME	FUNCTION
1	FPGA INPUT 1	Generic Input-Only Pin to the General-Purpose FPGA. Value of pin is copied to general- purpose register XXXXXXXX. Can be used for user programs. This pin has no effect if FPGA ENABLE is logic 0.
2	FPGA INPUT 2	Generic Input-Only Pin to the General-Purpose FPGA. Value of pin is copied to general- purpose register XXXXXXXX. Can be used for user programs. This pin has no effect if FPGA ENABLE is logic 0.
3	FPGA ENABLE	Input-Only Pin to the General-Purpose FPGA (U3). When this pin is logic 1 (SW3.3 is OFF), the FPGA is enabled and will transfer data from the DS3170 and FPGA as directed from the on-board microcontroller. When this pin is logic 0 (SW3.3 is ON), the FPGA is disabled. All inputs and outputs to the DS3170 and port FPGA are tri-stated. Note: This pin does not cause a hardware enable for the PORT FGPA.
4	DATA BUS SELECT	Input-Only Pin to the General-Purpose FPGA (U3). When this pin is logic 1 (SW3.4 is OFF), the DS3170 and the port FPGA are set up such that they use the 16-bit bus from the on-board microcontroller. When this pin is logic 0 (SW3.4 is ON), the DS3170 and the port FPGA are set up such that they use the 8-bit bus from the on-board microcontroller. This pin has no effect if FPGA ENABLE is logic 0.
5	BOOT SEL	Input-Only Pin to the On-Board Microcontroller. When this pin is logic 1 (SW3.5 is OFF), the on-board microcontroller loads the firmware from an external source rather than the internal flash bank. When this pin is logic 0 (SW3.5 is ON), the microcontroller loads the firmware from the internal flash bank. If you choose to load code from an external source, refer to the user manual for the on-board microcontroller (U2) to ensure that all the timing and data are correct to run this program. This option should only be used by the advanced user.
6	КІТ	Input-Only Pin to the On-Board Microcontroller. Not implemented with the firmware shipped from Dallas Semiconductor. This pin can be used by a user program.
7	USER INPUT 1	Input/Output Pin to the General-Purpose FPGA (U3). This pin has an LED (DS4) to track the value of this signal. This pin has no effect if FPGA ENABLE is logic 0. Note: If you choose to use this as an output, USER INPUT 1 (SW3.7) must be in the off position.
8	USER INPUT 2	Input/Output Pin to the General-Purpose FPGA (U3). This pin has an LED (DS5) to track the value of this signal. This pin has no effect if FPGA ENABLE is logic 0. Note: If you choose to use this as an output, USER INPUT 1 (SW3.8) must be in the off position.

SOFTWARE CONFIGURATION

Quick Start (Software—ChipView)

- Perform steps in the Quick Start (Hardware Settings).
- Load ChipView software.
- Select COM port.
- Select Register View.
- From the Programs menu, launch the host application named ChipView.EXE. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.
- Load the DS3170DK.DEF file.
- Make sure that all the register settings are correct for the proper function desired for the DS3170DK.
- Refer to the DS3170 data sheet for all questions pertaining to device functionality.

MEMORY MAP

The on-board microcontroller is configured to start the user address space at 0x81000000. All offsets given in <u>Table 7</u> are relative to the beginning of the user address space. All device registers can be easily modified using ChipView.EXE host-based user-interface software.

 Table 7. Relative Address Map

REF DES	DEVICE	OFFSET
U3	General-purpose FPGA	0x0000
U6	FPGA Tx/Rx clock, data switch/mux	0x1000
U7	DS3170 DS3/E3 single- chip transceiver	0x2000

Table 8. General-Purpose Memory Map

OFFSET	REGISTER NAME	TYPE	DESCRIPTION
0x00	BRDID	Read Only	Board ID
0x02	DSIDH	Read Only	Dallas Extended ID Upper Nibble
0x03	DSIDM	Read Only	Dallas Extended ID Middle Nibble
0x04	DSIDL	Read Only	Dallas Extended ID Lower Nibble
0x05	BRDREV	Read Only	Board Rev
0x06	ASMREV	Read Only	Assembly Rev
0x07	FPGAREV	Read Only	FPGA Firmware Rev
0x08	CTRL1	Control	Control Reg #1

ID REGISTERS

BID: BOARD ID (Offset=0X0000) BID is read only with a value of 0xD. XBIDH: HIGH NIBBLE EXTENDED BOARD ID (Offset=0X0002) XBIDH is read only with a value of 0x00. XBIDM: MIDDLE NIBBLE EXTENDED BOARD ID (Offset=0X0003) XBIDM is read only with a value of 0x07. XBIDL: LOW NIBBLE EXTENDED BOARD ID (Offset=0X0004) XBIDL is read only with a value of 0x00. BREV: BOARD FAB REVISION (Offset=0X0005) BREV is read only and displays the current fab revision. AREV: BOARD ASSEMBLY REVISION (Offset=0X0006) AREV is read only and displays the current assembly revision. PREV: PLD REVISION (Offset=0X0007) PREV is read only and displays the current PLD firmware revision.

CONTROL REGISTERS

Register Name: **CTRL1** Register Description: **Control Register 1** Register Offset: **0x0008**

Bit #	7	6	5	4	3	2	1	0
Name	SPI_CPO	_ SPI_CPHA	SPI_SWAP	SPI	HIZ	WIDTH	MOT	MUX
Default	0	0	0	0	1	0	0	0
Bit 7: SPI_0	CPOL:	This bit controls DS3170. Bit 7 is for pin operatior	only active wh					
Bit 6: SPI_0	CPHA:	This bit controls DS3170. Bit 6 is for pin operation	only active wh					
Bit 5: SPI_S	SWAP:	This bit controls the DS3170. Bit sheet for pin op	5 is only active					
Bit 4: SPI:	Bit 4: SPI:This bit controls the SPI Bus Mode bit.0 = parallel bus mode1 = SPI bus mode							
Bit 3: HIZ:	HIZ: This bit controls the high-impedance test-enable bit (active digial outputs and bidirectional outputs to a high-impedance also when the JTRST is pulled low. For nomal operation, k					edance state	when pulled	
Bit 2: WIDT	ſH:	This bit controls the databus width pin for parallel bus mode. 0 = 8-bit parallel mode 1 = 16-bit parallel mode						
Bit 1: MOT:This bit controls the MODE pin for the DS3170. 0 = RD/WR strobe mode (Intel) 1 = DS strobe mode (Motorola)								
Bit 0: MUX	:	This bit determin (constantly high 0 = nonmux mor 1 = mux mode).	pin on the	e DS3170 is ir	n mux mode o	or nonmux m	ode

Register Name: CTRL2 Register Description: Control Register 2–Line IO Register Offset: 0x0009

Bit #	7	6	5	4	3	2	1	0
Name	RNEG3	RNEG2	RNEG1	RNEG0	RPOS3	RPOS2	RPOS1	RPOS0
Default	0	0	0	0	1	0	0	0

Bits 7 to 4: RNEGx: These bits control the source of the RNEG signal.

Bits 3 to 0: RPOSx: These bits control the source of the RPOS signal.

RPOSx	DESCRIPTION
0x00	HI-Z
0x01	TPOS
0x02	T3 OSC
0x03	E3 OSC
0x04	STS1 OSC
0x05	BNC_INPUT
0x06	Logic 0
0x07	Logic 1
0x08–0xFF	HI-Z

RNEGx	DESCRIPTION
0X00	HI-Z
0X01	TNEG
0X02	T3 OSC
0X03	E3 OSC
0X04	STS1 OSC
0X05	BNC_INPUT
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

Register Name: CTRL3 Register Description: Control Register 3–Line RCLK Register Offset: 0x000A

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	RLCLK3	RLCLK2	RLCLK1	RLCLK0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: These bits are unused.

Bits 3 to 0: RLCLKx: These bits control the source of the RLCLK signal.

RLCLKx	DESCRIPTION
0X00	HI-Z
0X01	TLCLK
0X02	T3 OSC
0X03	E3 OSC
0X04	STS1 OSC
0X05	BNC_INPUT
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

Register Name: CTRL4 Register Description: Control Register 4 Overhead Interface Register Offset: 0x000B

Bit #	7	6	5	4	3	2	1	0
Name	TOHEN3	TOHEN2	TOHEN1	TOHEN0	TOH3	TOH2	TOH1	TOH0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: TOHENX: These bits control the source of the TOHEN signal.

Bits 3 to 0: TOHx: These bits control the source of the TOH signal.

TOHENx	DESCRIPTION
0X00	HI-Z
0X01	TOHSOF
0X02	ROHSOF
0X03	Not used
0X04	Not used
0X05	Not used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

TOHx	DESCRIPTION
0X00	HI-Z
0X01	ROH
0X02	Not used
0X03	Not used
0X04	Not used
0X05	Not used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

Register Name: CTRL5 Register Description: Control Register 5 Serial Data Overhead Interface Register Offset: 0x000C

Bit #	7	6	5	4	3	2	1	0
Name	_	—	_	—	TSER3	TSER2	TSER1	TSER0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: These bits are unused.

Bits 3 to 0: TSERx: These bits control the source of the TSER signal.

TSERx	DESCRIPTION
0X00	HI-Z
0X01	RSER
0X02	Not Used
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

Register Name: CTRL6 Register Description: Control Register 6 Serial Data Overhead Interface Register Offset: 0x000D

Bit #	7	6	5	4	3	2	1	0
Name	TSOFI3	TSOFI2	TSOFI1	TSOFI0	TCLKI3	TCLKI2	TCLKI1	TCLKI0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: TSOFIx: These bits control the source of the TSOFI signal.

Bits 3 to 0: TCLKIx: These bits control the source of the TCLKI signal.

TSOFIx	DESCRIPTION
0X00	HI-Z
0X01	TSOFO
0X02	RSOFO
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

TCLKIx	DESCRIPTION
0X00	HI-Z
0X01	TCLKO
0X02	RCLKO
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08–0XFF	HI-Z

DS3170 INFORMATION

For more information about the DS3170, refer to the DS3170 data sheet available on our website at <u>www.maxim-ic.com/DS3170</u>. Software downloads are also available for this design kit.

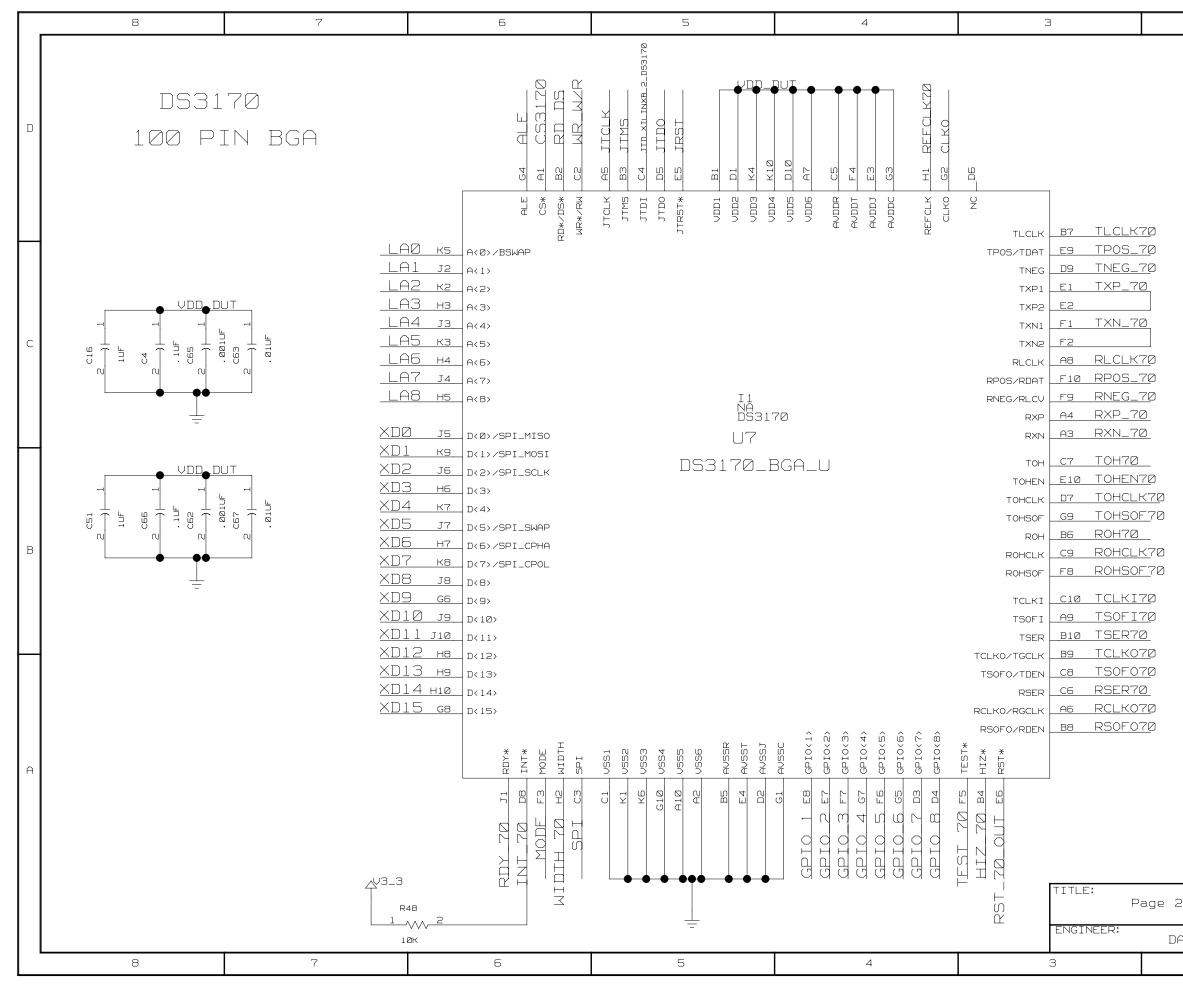
DS3170DK INFORMATION

For more information about the DS3170DK including software downloads, consult the DS3170DK data sheet available on our website at <u>www.maxim-ic.com/DS3170DK</u>.

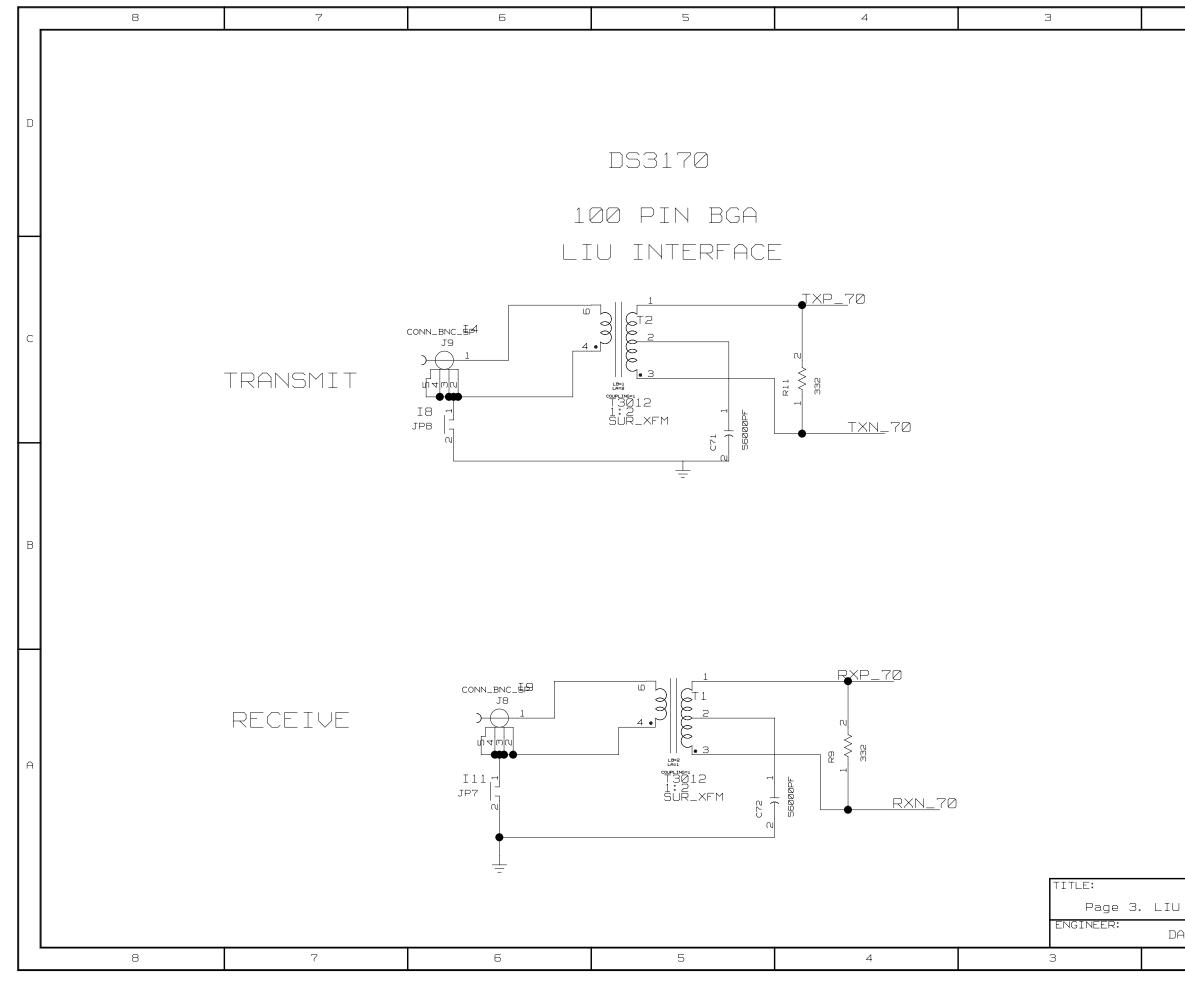
TECHNICAL SUPPORT

For additional technical support, e-mail your questions to telecom.support@dalsemi.com.

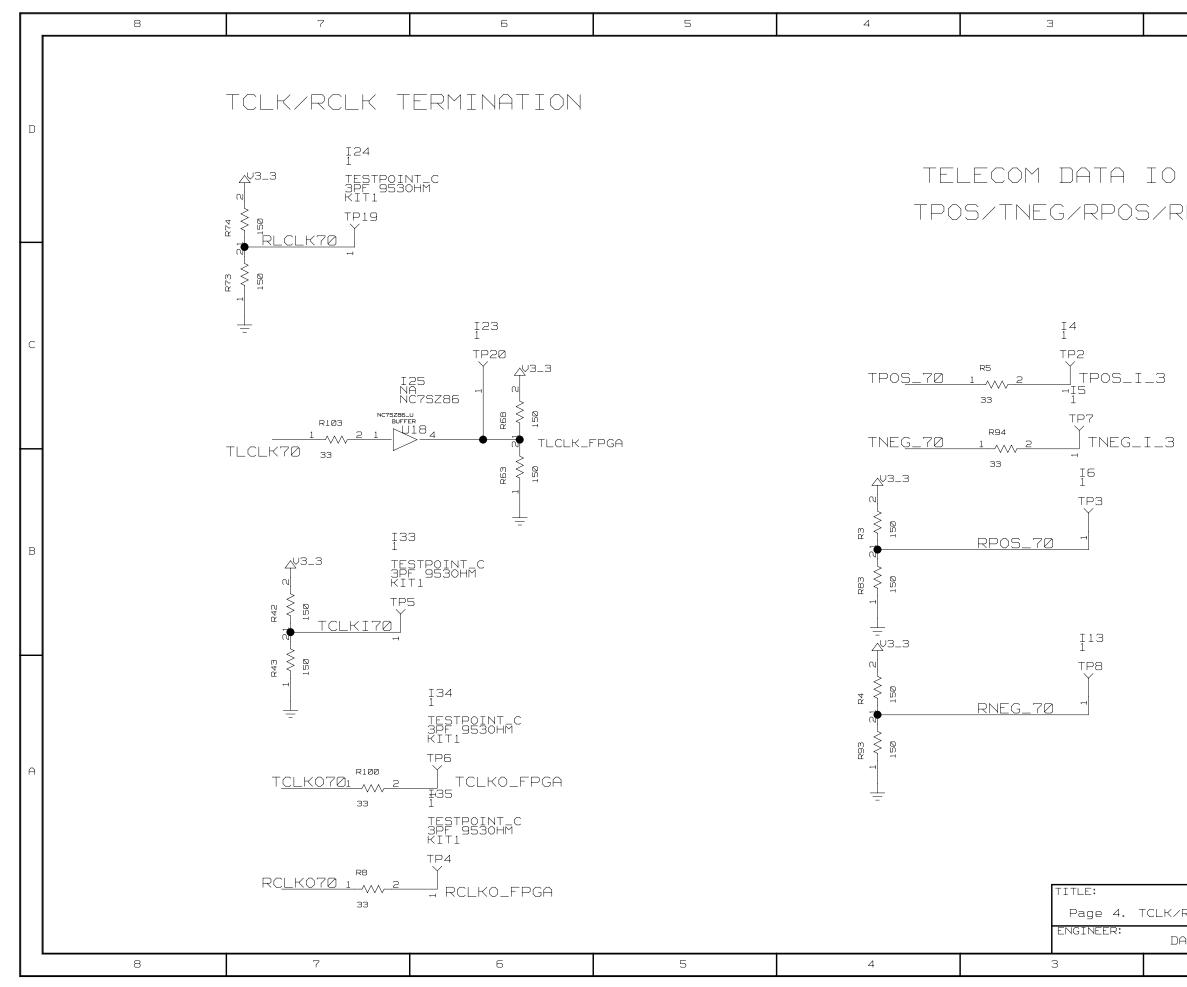
SCHEMATICS

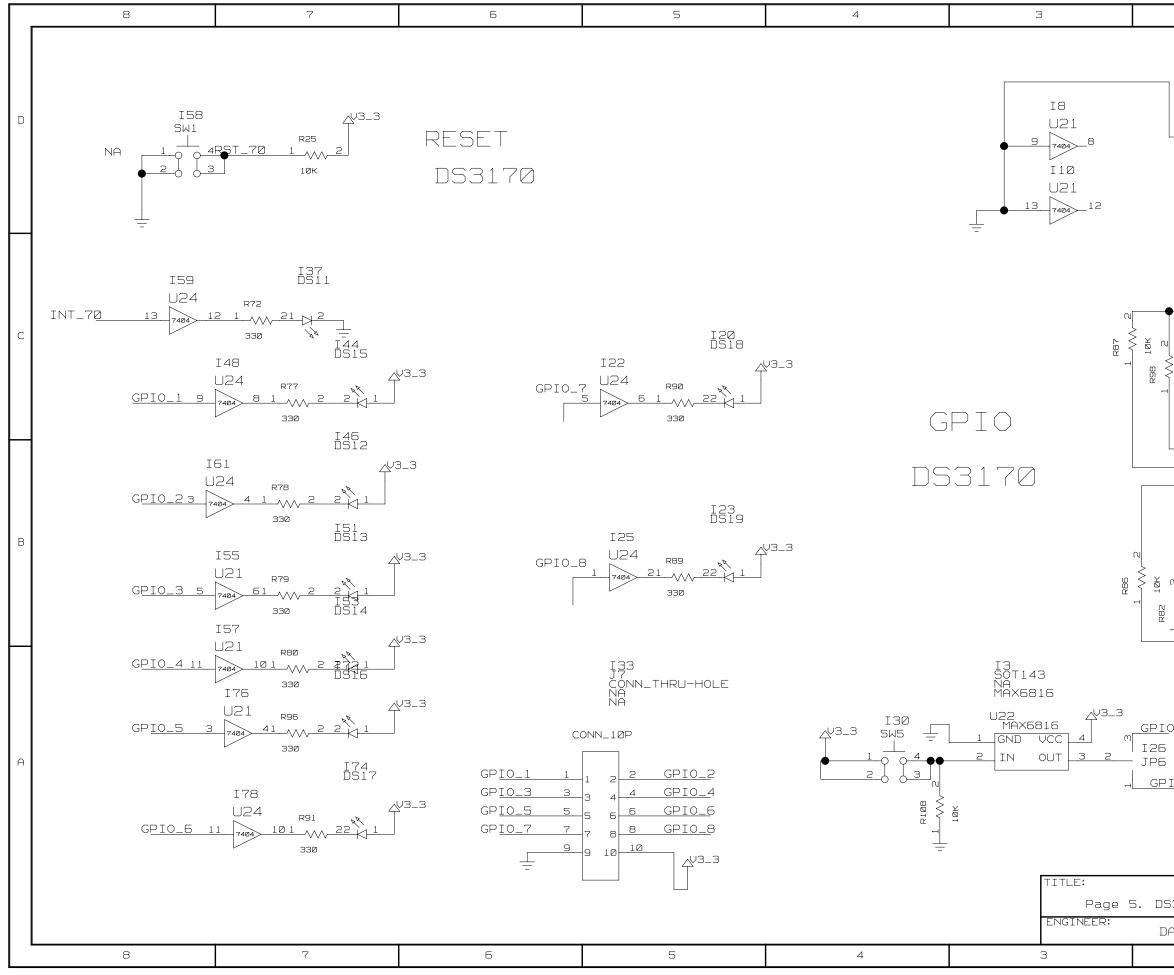

The DS3170DK schematics are featured in the following 23 pages.

17 of 40

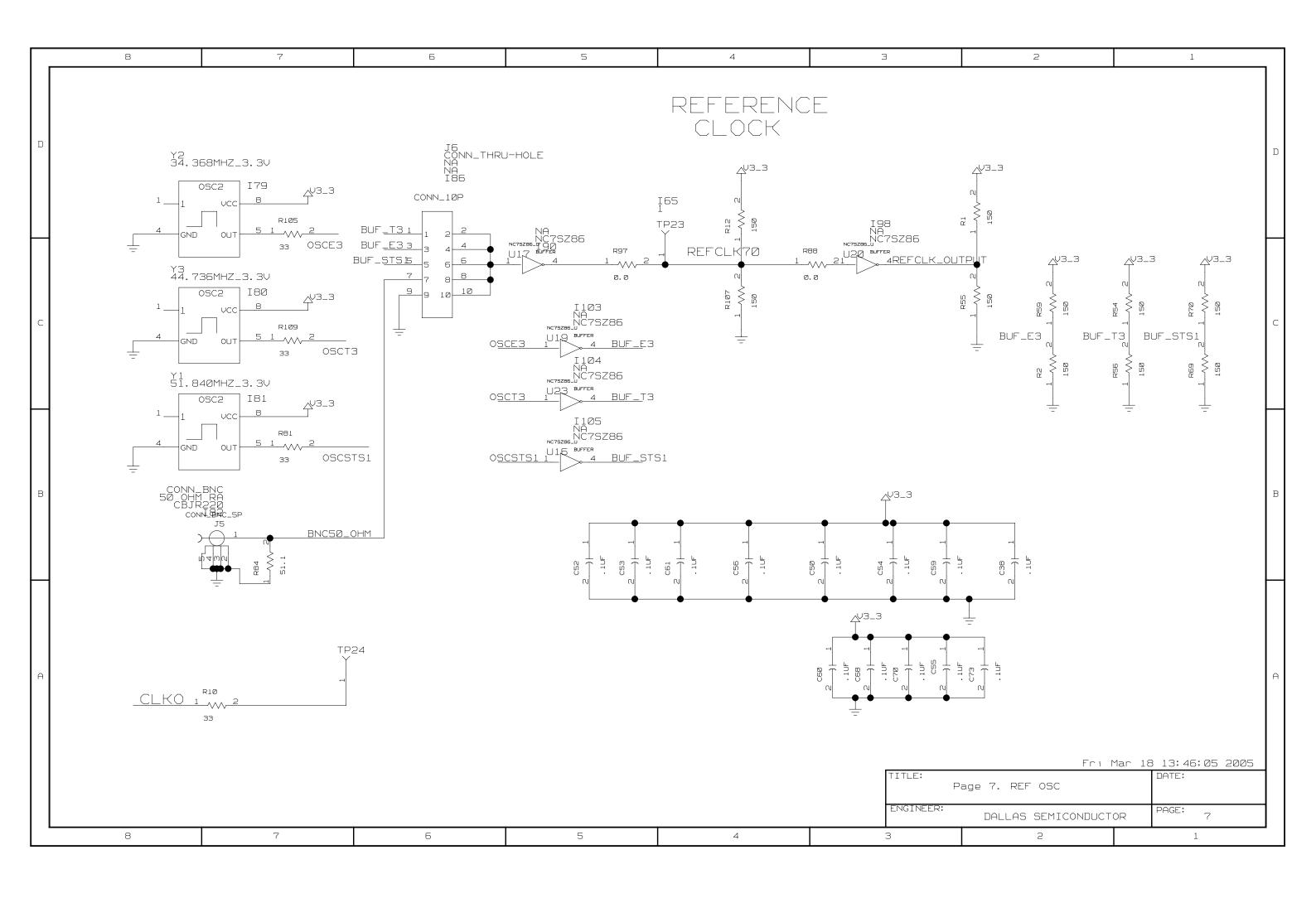

Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2005 Maxim Integrated Products • Printed USA

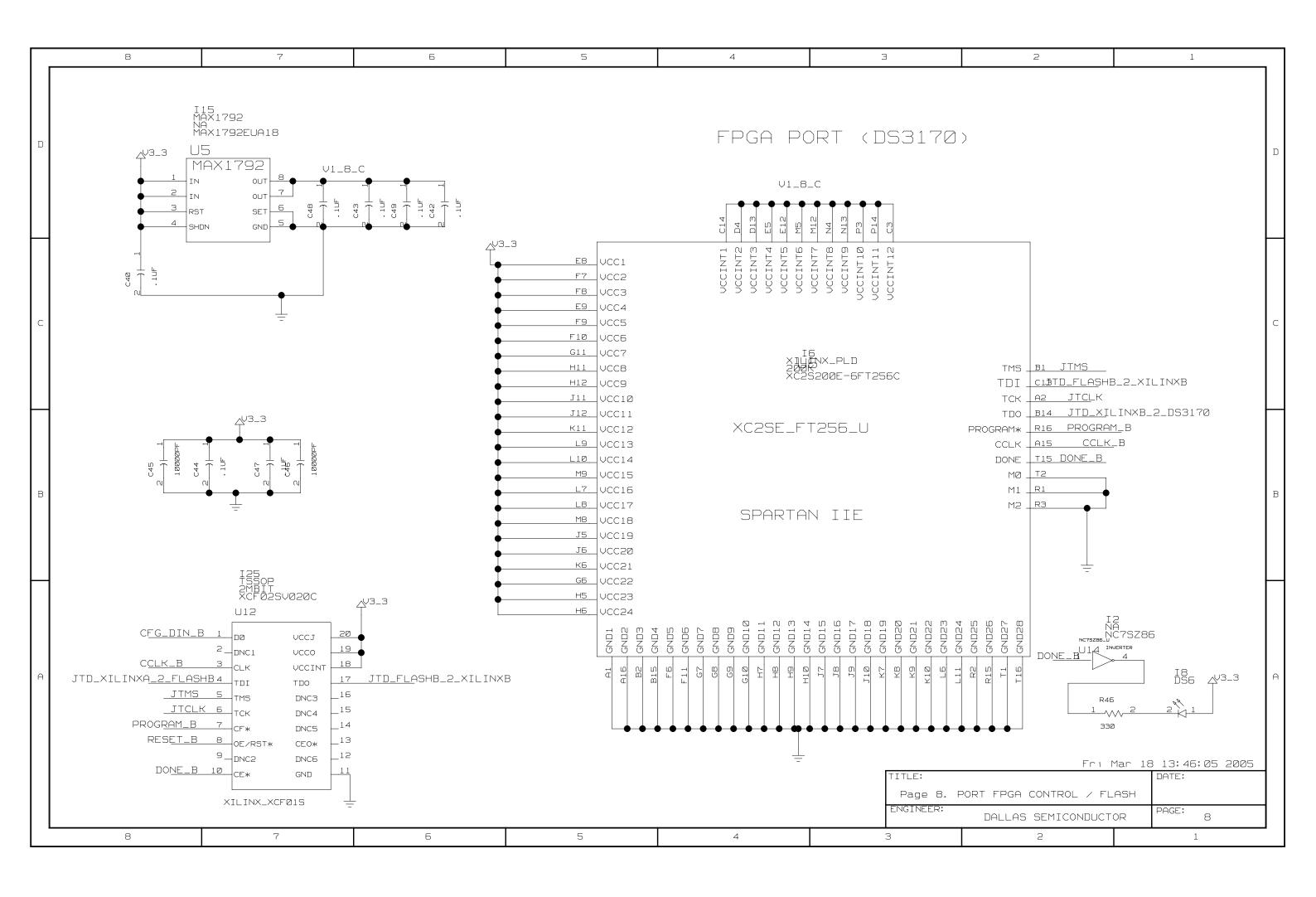
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.


	8	7	б	5	4	З	2	1
ם			DS31		SIGN K			ם
				CREATED				
$\left \cdot \right $				IS SEMIC INE 26,	CONDUCTC 2004			-
С	Pac	je 1. COVER	PAGE		Page 1	1. MICROCOM	NTROLLER BL	.OCK1 c
	Pac	ge 2. DS3170) BGA		Page 1	2. MICROCOM	NTROLLER BL	.0CK2
	Pac	ge 3. LIU IN	NTERFACE		Page 1	3. SERIAL/	JTAG CONN	
	Pac	ge 4. TCLK/F	RCLK/TELECO	M DATA	Page 1	4. MISC USE	ER INPUTS	
	Pac	ge 5. DS3170) RESET / GI	\supset IO	Page 1	5. GP FPGA	CONTROL /	FLASH
В	Pac	ge 6. MISC 1	FELECOM SIG	VALS	Page 1	6. GP FPGA	BLOCK1	В
	Pac	je 7. REF 09	6C		Page 1	7. GP FPGA	BLOCK2	
$\left - \right $	Pac	je 8. PORT F	PGA CONTROL	_ / FLASH	Page 1	8. ADDRESS/	/DATA HEADE	RS
	Pac	ge 9. PORT F	PGA BLOCK1		Page 1	9. MICROCON	NTROLOR SRA	M
A	Pac	ge 10. PORT	FPGA BLOCK	2	Page 2	Ø. POWER CO	NNC	A
					Page 2	1. NOTES		
						TITLE: Pa	Fri age 1. COVER PAGE	Mar 18 13:45:59 2005 DATE:
						ENGINEER:	DALLAS SEMICONDUC	TOR PAGE: 1
	8	7	Б	5	4	З	2	1


2 1	Π
	ם
	С
	В
	A
Fri Mar 18 13:46:03 2005 DATE: DATE: ALLAS SEMICONDUCTOR PAGE: 2	
2 1	

2		1		
				D
				С
				в
Free	Mar 19	13.45	84 2005	A
Fri N J INTERFACE ALLAS SEMICONDUCTI		DATE: PAGE:	04 2005 3	
2		1		1
	1			

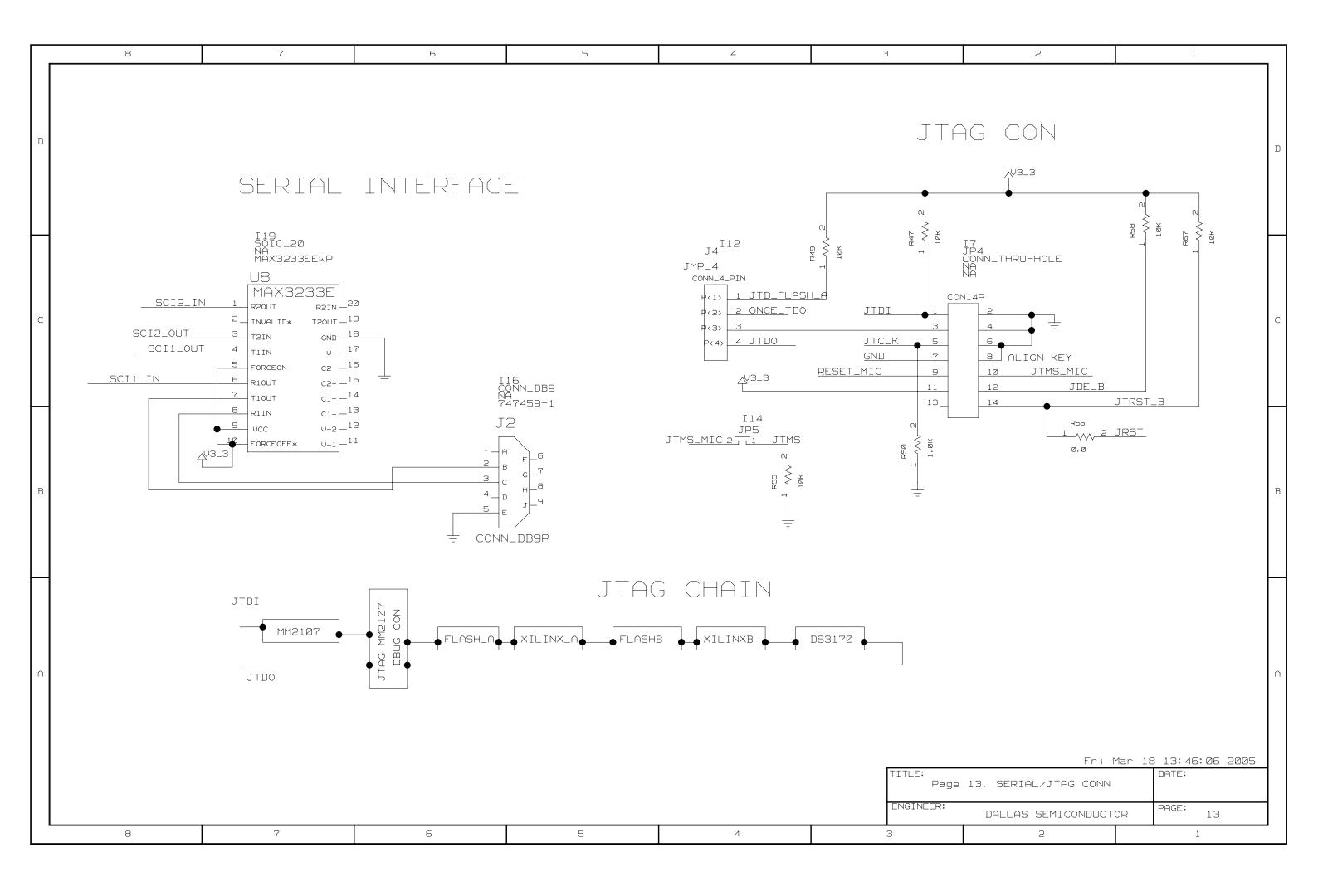

2	1	
RNEG	Ι	D
		()
	F	m
Fri N	Mar 18 13:46:04 2005	(T
RCLK/TELECOM DATA		
2	1	

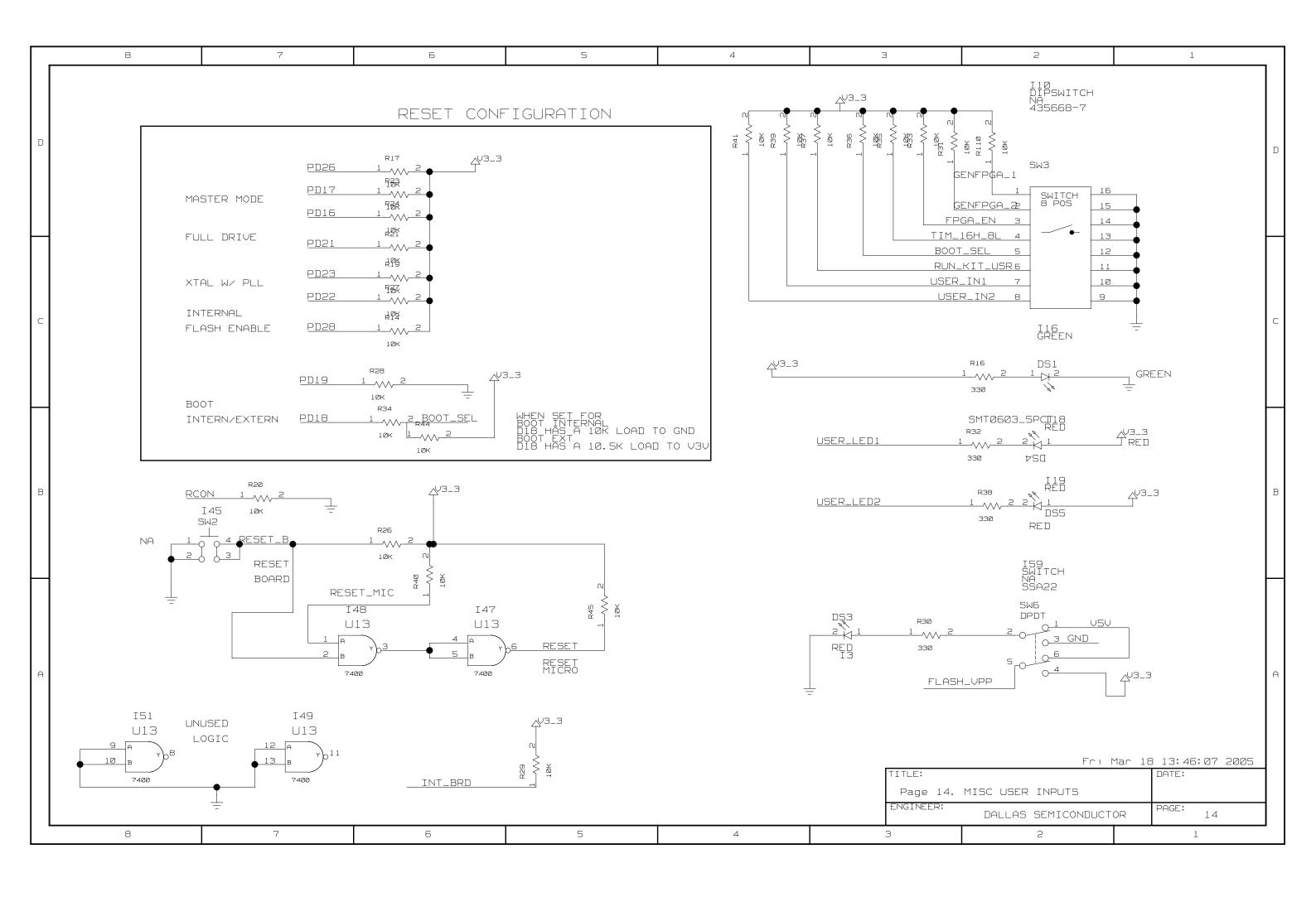


2	1	
I83 U21 1 7494 2		D
GPIO_1 GPIO_2 GPIO_3	NA 435668-7 SW4 <u>1</u> SWITCH <u>16</u> <u>15</u> 8 POS <u>15</u>	C
GPIO_3 GPIO_4 GPIO_5 GPIO_5 GPIO_6 GPIO_7 GPIO_8 GPIO_8 VJ3-	4 5 6 7 8 9 -	В
9_6 <u>I</u> 0_8 Fri N		D
63170 RESET / GPIC		
2	1	

DS3170		<u> </u>
MISC TELECOM TERM I ¹⁰⁸ I ¹⁰⁸		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{bmatrix} B \\ B \\ B \\ B \\ B \\ B \\ C \\ C \\ C \\ C \\$		
$A \qquad I \\ I$	TITLE: Pag ENGINEER:	Page
8 7 6 5 4	3	

		D
		С
		В
		A
6. MISC TELECOM SIGNA Dallas semiconducto	DR PAGE: 6	
2	1	

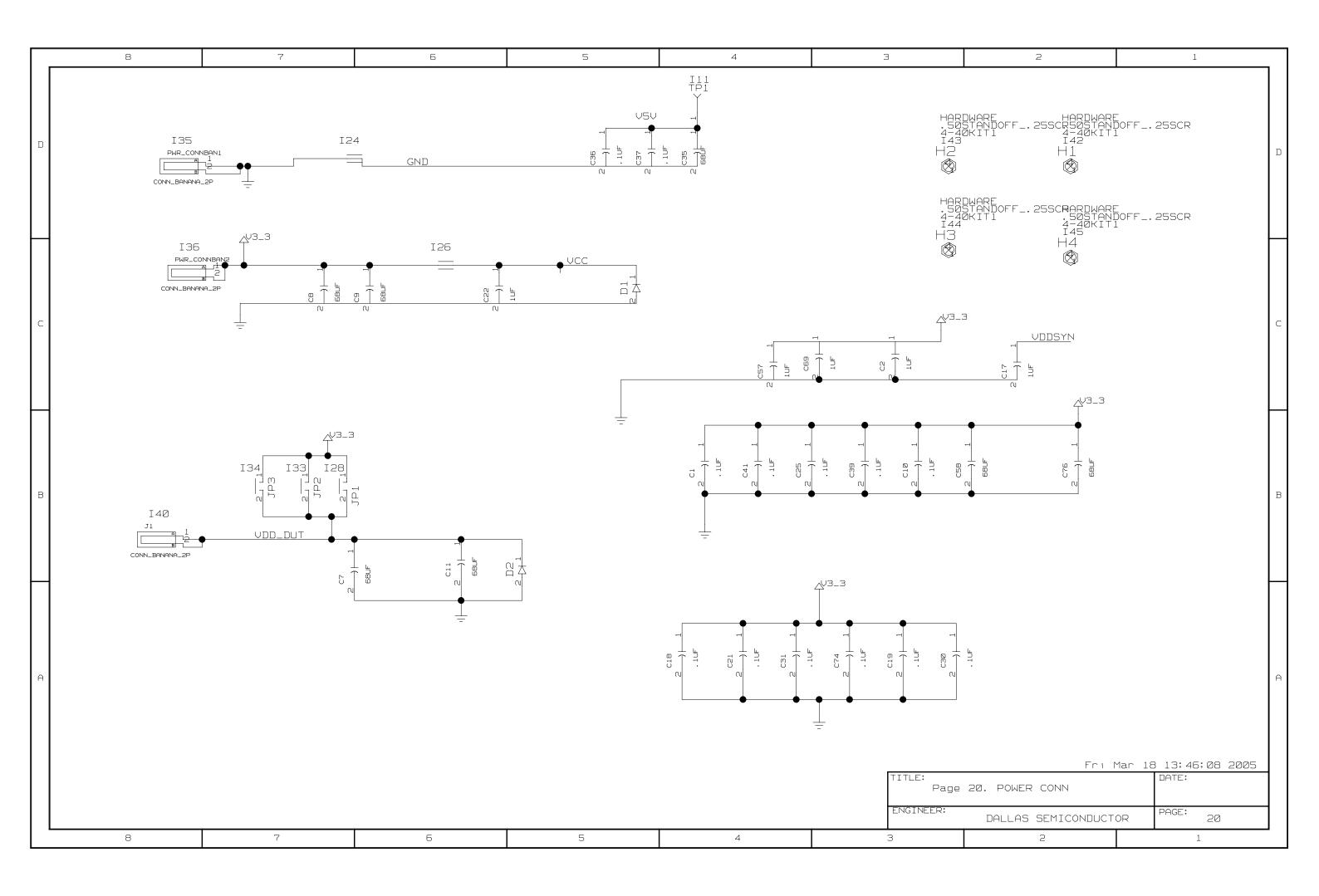



Γ	8 7	б	5	4	З	2	1	
ם		BB RCLKO FPGA _A14 _A13 _A13 RNEG 70 _B13 _C12 _B12 _B12 _A12 TNEG T 3	DI2 E11 E11 XD7 C11 XD6 B11 XD5 A11 XD4 A11 XD4 E10 XD3 D10 XD2 C10 XD1 B10 XD0	Ē	FPC	A PORT (DS)	3170)	ם
С	TCLKO_F <u>PGA a7</u> 100. E7_100.	_1_8N_DLL	115P_Y 115P_Y 101_ 101_ 101_1 101_1 101_1 101_1 101_1 101_1 101_1 101_1	IO1_1E_10F IO1_1E_10F IO1_1 IO1_ IO1_ IO1_ IO1_2Z_E	I02_1_30N_YY_IRDY _H16 I02_2_30P_YY _G16 I02_3_29N _H14 I02_4_29P _H15 I02_5_28ND3 _G15 I02_6_28P_VREF _F16 _R I02_7_27N _H13 I02_8_27P _G14 _R	<u>CS3</u>		С
в	B6 I00 LA3 C6 I00 A5 I00 LA5 B5 I00 LA6 D6 I00 LA8 E6 I00 LA9 D5 I00 C5 I00 LA7 B4 I00 LA4 C4 I00	_8_5P _9_5N _10_4P _11_4N _12_3P	SPARTA	N IIE		MODE		в
A		IO3_1_41N_YY_INIT 46°66° IO3_2_41P_YYD7 IO3_3_48N IO3_448P IO3_5_39N IO3_5_39P IO3_5_39P IO3_7_38N_UREF		102_24_1 102_24_1 102_24_1 102_24_1 102_24_1 102_24_1 102_24_1 102_24_1	I02_19_21N 012 I02_20_21P F12 I02_21_20N E13 I02_22_20P D14 23_19N_YY_DIN_DO B16 C 19P_YY_DOUT_BUSY C15 TITLE:	CYB5 CYB6 CYB7 FG_DIN_B RESET_B	Mar 18 13:46:05 2005 DATE:	A
	8 7	6	ਛ 5	Y J U J J J J J J J J J J J J J J J J J		9. PORT FPGA BLOCK1 Dallas semiconduct 2		

8	7	б	5	4	З	2	1
ם		Р4 К 4 6 ТОНСІ К. Т. Э Х5	R5 T5 P6 R6 M6 M7 N7 P7	TT BUE STS1 MT NB PB RB TSOFO I 3			D
	RLCLK70	ТВ GCK1	6-59Р-ҮҮ - ҮҮ-UREF 8-58Р-ҮҮ 05-9-57N 5-10-57Р 5-11-56N 5-12-56Р 5-13-55N 5-13-55N 5-13-55N 5-13-55N 5-13-55N				_
С	TLCLK_FPGA	R11_I04_7_49P I04_8	С2SEIFT256_U ХС2SEIFT256_U ХС2SEIFT256_U ХС2S200E-6FT2560	2 0 0 0 1 0 1 106_2_72F 0 106_3_72f 0 106_4_71F 106_5_71N_VREF 106_6_70P_Y 106_7_70N_Y 106_8_69F 106_9_69f	D _J2 J3 J1 L1 TOH V _L2	<u>IEN_0_3</u>	С
в		N10 I04_9_48N M10 I04_10_48P P11 I04_11_47N Y R12 I04_12_47P Z T12 I04_13_46N M T13 I04_14_46P M N11 I04_15_45N_YY M M12 I04_16_45P_YYVREF V P12 I04_17_44N_YY V N12 I04_18_44P_YY R R13 I04_19_43N D D14 I04_19_43N D	Ub Spartan IIE		Y _K5 _L3 N _M2 D _M1 N <u>N1 TOH</u> D _L4 T _L5 Y _M3 Y _M4 D _N2	<u>1_0_3</u>	В
A	<u>RSOFO_I_3</u>	C2 107_2 C2 107_2 C1 107_3 C1 107_3 C1 107_5 C1 107_5 E3 107_6 E3 107_6 E2 107_8 E2 107_8	F4 107 F3 107 F2 107 F1 107 F5 107 65 107 63 107 63 107 63 107 63 107 61 107		Y <u>P1 RC</u> Y _P2	PORT FPGA BLOCK2	A Mar 18 13:46:06 2005 DATE:
8	7	د ۳ ب ۳ ب	5	4	ENGINEER: 3	DALLAS SEMICONDUCT	FOR PAGE: 10

Γ	8	7	б	5	4	3	2	1	
ם	I 1 14 NM	4 4PIN_TQFP C2107					<u>05C_</u> MCU		D
с	<u>ICOC23</u>	200 200 200 200 200 200 200 200	CSEØ TC2	60 62 67			T I4 VSSSSYN	7	с
в		50 - ICOC20 56 - ICOC13 57 - ICOC12 58 - ICOC11 61 - ICOC10 51 63 TEST 66 TXD2 69 TXD1 70 RXD1	CZIUT TC1 NTROL CS3* CS1* CS0* RESET* CLKOUT RSTOUT* SCK DE*	78 81 83 <u>CS2_</u> BOARD 85 86 <u>CSØ_</u> RAM <u>118 RESETR19</u> <u>128</u>	M_ <u>2 CLKOUT</u>			<u>-</u>	в
A			INIFKUP1 (1 INTB MOSI 90 TC0 MISO 91 MISO JITCLK 125 EXTRL JITCLK 138 TCLK JITRST B 142 TRST JITMS_MIC 138 TMS		 				A
	8	7	6			TITLE: Page 11. ENGINEER: 3	Fri MICROCONTROLLER BLOCH DALLAS SEMICONDUCT 2		

	8	7	б	5	4	З	2	1
D								D
С		PD31 1 PD30 PD29	IS U2 S6 WC210 MC210 MC210 MC210 MC210 NA	144PIN_TQFP	4 4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7			C
В		PD28 PD27 PD26 PD25 PD24 PD23 PD22 PD21 PD20 PD19 PD18	3 D28 4 D27 5 D26 7 D25 10 D24 12 D23 15 D22 16 D21 17 D20 20 D19 21 D18	MMC2107 PORT	A18 122 A18 A17 131 A17 A16 132 A16 A15 134 A15 A14 136 A14 A13 137 A13 A12 139 A12 A11 6 A11 A10 11 A10 A9 13 A9 A8 14 A8			В
A		PD16	$\begin{array}{c} 22 \\ 25 \\ 27 \\ 016 \\ 27 \\ 015 \\ 30 \\ 014 \\ 31 \\ 013 \\ 34 \\ 012 \\ 35 \\ 011 \\ 012 \\ 35 \\ 011 \\ 012 \\ 01$	46 D2 48 D1 51 D0 114 USSA 73 USSF 126 USSSYN 127 USS8 127 USS8 127 USS6 54	A7 A6 24 A6 26 A5 26 A5 28 A4 A3 29 A3 A2 A7 24 A6 26 A5 28 A4 A3 29 A3 A7 24 A6 26 A5 28 A4 A3 47 A2 49 A1 A0 50 A0 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A1 A0 A0 A0 A1 A0 A0 A0 A1 A0 A0 A0 A0 A1 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0			A
	8	7	б	5	4	TITLE: Page 12. ENGINEER: 3	Fri MICROCONTROLLER BLOCK DALLAS SEMICONDUCT 2	



	8	7	6	5	4	3	2	1	\neg
ם			INTERUPT Xn15	LOCAL SWAPPED EII XDI3 EII XDI3 EIX XDI4 EIX XDI3 EIX XDI4 EIX XDI3 EIX XDI4 EIX XDI4 E					D
			ССК2 ССК2 ССК2 ССК2 1 - 3 - 1 - 2 1 - 3 - 1 - 1 1 - 4 - 1 - 1 1 - 1 - 1 - 1 1 - 1 - 1 - 1 1 - 2 1 - 1 - 1 1 - 2 1 2 1 - 2 1	ΥΥ-UREF -15N_ΥΥ -15N_ΥΥ -16_14P -10_14P -11_13P -11_13P -13_12P -13_12P -14_12N -14_12N -16_115 -1	00-0110 00-0765 1120-00 1120-00 11221-00 11221-00 100-01 1121-00 112-00 100 110-00 100 100-000 10000000000				
С	ADDRESS BUS FROM MICRO	^{10K} 2 A7 I00 ^{R18} <u>A0 E7</u> I00	_2 0 0 _3_7P _4_7N_VREF _5_6P X _6_6N _7 BA XC. _8_5P Z		D 101 101 101 101 101 101 101 101	I02_1_30N_YY_IRDY H16 I02_2_30P_YY G16 I02_3_29N H14 I02_4_29P H15 I02_5_28ND3 G15 I02_6_28P_VREF F16 I I02_7_27N H13 I I02_8_27P G14 F I02_9_26N F15 I I02_10_26P E16 I	<u>NT_70</u> R <u>D_DS_</u> A	I DK	С
В		A7 A5 I 00 A8 B5 I 00 A9 D6 I 00 A10 E6 I 00 A11 D5 I 00 A12 C5 I 00 A13 B4 I 00 A14 C4 I 00	_10_4P _11_4N _12_3P _13_3N _14_2P_YY _15_2N_YY_VREF _16_1P_YY _17_1N_YY _18_0P_YY _19_0N_YY	SPARTA) bank3			_0E _WR_W/R RW 252_BOARD 00T_SEL ALE MODE WIDTH_70 TEST_70 HIZ_70		В
A			UT _{PIS} IO3_I_4IN_Y^IN PI6 IO3_2_4IP_YYD7 NI5 IO3_2_4IP_YYD7 NI5 IO3_440P N14 IO3_5_39N M14 IO3_5_39N M15_ IO3_5_38N_UREF	MIE I03_8 M13 103_9 L14 103_12 L15 103_12 L15 103_12 L15 103_13 L16 103_12 L13 103_13 K14 103_13 K15 103_13 K15 103_15 K16 103_15 L12 103_15 L12 103_15	LIC2_24_: UZE 01: UZE 02: UZE 02: U	I02_22_20P <u>D14 F</u> 23_19N_YY_DIN_DO <u>B16 C</u> 19P_YY_DOUT_BUSY <u>C15 F</u>	<u>ST_70</u> ;FG_DIN_A ;ESET_B	1ar 18 13;46:07 2005	A
		1	L ADDRESS BUS From Micro	DATA BUS From Micro	LSB	ENGINEER:	15. GP FPGA BLOCK1 DALLAS SEMICONDUCTO	DATE:	-
	8	7	6	5	4	З	2	1	

Γ	8	7	6	5	4	З	2	1
D					MB GENEPGA I N7 GENEPGA_2 R7 M7 N8 N8 P8 R8 R8			ם
С		LA0 LA1 LA2	T8_GCK1 U T9_GCK0 T R9_I04_1_52P_DLL 0 P9_I04_2_51N N9_I04_3_51P T10_I04_4_50N	105_3_68N 105_5_59N_Y 105_5_59N_Y 105_6_59P_Y 105_6_59P_Y 105_6_59P_Y 105_6_59P_Y 105_9_57N 105_10_57P W 105_11_56P 105_12_56P	105- 105- 105- 105- 105- 105- 105- 105-	I07_1 _D3 06_1_TRDY _J4 I06_2_72P _J2 I06_3_72N _J3 I06_4_71P _J1 _71N_VREF _K1		С
	LATCHE ADDRES FROM M	LA3 LA4 SS LA5	R10 IO4_5_50P_VREF P10 IO4_6_49N R11 IO4_7_49P T11 IO4_8 N10 IO4_9_48N M10 IO4_10_48P P11 IO4_11_47N Y R12 IO4_12_47P Y II2 IO4_13_46N H	XC2SEIFT256 XILINX_PL XC2S200E-	IO5. D IO5. 6FT256C IO5_ IO5_ IO	_6_70P_YY <u>K2 FPGA_</u> _7_70N_YY _K3 I06_8_69P _L1 I06_9_69N _L2 10_68P_YY <u>K4 RDY_70</u> 11_68N_YY _K5 06_12_67P _L3 06_13_67N _M2	EN	
В			112 104_13_40N T13 104_14_46P N11 104_15_45N_YY M11 104_16_45P_YYVRE P12 104_17_44N_YY N12 104_18_44P_YY R13 104_19_43N P13 104_20_43P	SPARTAN	IOE_17 106_17 106_ 106_ 106_ 106_ 106_ 106_ 106_ 106_	06_14_66P _M1 06_15_66N _N1 06_16_65P _L4 _65N_VREF _L5 18_64P_YY _M3 19_64N_YY _M4CS3 06_20_63P _N2 06_21_63N _N3	<u>. </u>	В
A		<u> CLKOUT</u>	107_2_L 107_3_L 107_3_L 107_5_L 107_5_L		I07_17_76N_YY I07_18_75P_UREF 107_19_75N I07_28_74P I07_21_74N 107_22_73P_YY 107_23_73N_YY_IRD)	22_62P_YY <u>P1 CS0</u> 23_62N_YY <u>P2 CS_0</u>	<u>UT</u>	A
	8	7	6	CYB5 CYB5 CYB5	4 4	TITLE: Page ENGINEER: 3	Fri 17. GP FPGA BLOCK2 DALLAS SEMICONDUCT 2	Mar 18 13:46:08 2005 DATE: OR PAGE: 17 1

	8	7	6	5	4	З	2	1
ם		I18 J3 ØL_THROL NA	JGH HOLE -07-T-D					Г
С		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DØ D1 D2 D3 D4 D5 D6 D7 D8	I8 <u>CS3170 —</u> —	<u> </u>	MISC 11 U15	HEADERS	C
в	RST RDY CYB CYB CYB CYB	170 21 21 22 X 23 23 24 24 X T_70 25 25 26 26 X _70_0UT 27 27 28 28 X _70 29 29 30 30 X _70 29 29 30 30 X _70 31 31 32 32 X _70 33 34 34 S _70 35 35 36 AL 33 34 S4 S 2 35 35 36 AL 3 37 38 RD 44	D10	V ^{3_3} IS DS I I I I J S 8	10 10 10 10 10 10 10 10 10 10	I3 U15 5 U15 12 U15 2 8 7404 I2 U15 2 8 7404 9 TEST_70 I4 U15		E
A	CYB CYB GND GND	5 43 43 44 7 45 45 46 44 7 45 45 46 48 47 47 48 TE	<u>MODE</u> <u>DTH_</u> 70 ST_70		$ \begin{array}{c} 1 \\ 1 \\ 330 \\ 116 \\ 4 \\ 4 \\ 7404 \\ 3 \\ 117 \\ 117 \\ 2 \\ 7404 \\ 1 \\ 117 \\ 117 \\ 115 \\ 2 \\ 7404 \\ 1 \\ 117 \\ 117 \\ 115 \\ 2 \\ 7404 \\ 1 \\ 117 $	12 7404 13 HIZ_70	Fri 18. ADDRESS/DATA HEA DALLAS SEMICONDUCT	
	8	7	б	5	4	3	2	1

	8	7	6	5	4	З	2	1
ם								D
С		161C	CSA RAM		I3 Soic NA CY62128	ABAR CS DF DF CSD_RAM CSD_RAM CSD_RAM CSD_RAM		c
		A17 5 A16 2 A15		130	<u>A17 2</u> <u>A16 31</u> <u>A15 3</u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, <u>21 PD23</u> ; <u>20 PD22</u> ; <u>19 PD21</u>	
В		A14 3 A13 A13 28 A12 A12 4 A11 A11 25 A10 A10 23 A9 A9 26 A8	IOS 19 PD IO4 18 PD IO3 17 PD IO2 15 PD IO1 14 PD IO2 13 PD	129 128 127 126 125	A14 28 A13 4 A12 25 A11 23 A10 26 A9 27	A12 A12 A11 A10 A10 A10 A10 A10 A10 A10	<u>18 PD20</u> <u>17 PD19</u>	В
			A4 9 A4 A5 10 A3 A6 11 A2 A7 12 A1 A8 27 A0			A1 5 A2 6 A3 7 A4 8 A5 9 A5 10 A6 10 A8 12		
A								A
				1		ENGINEER:	19. MICROCONTROLOR S	Mar 18 13:46:08 2005 RAM DATE: PAGE: 19
	8	7	б	5	4	З	2	1

	8	7	6	5	4	З	2	1
ם		SIGN NOTES 1/20/05		/ LAYOUT	COMPLETE	ID AND AR(CHIEVED	
C								c
в								В
A								A
	8	7	6	5	4	TITLE: Pa ENGINEER: 3	Fri ge 21. NOTES DALLAS SEMICONDUCT 2	Mar 18 13:46:09 2005 DATE: TOR PAGE: 21 1

	8		7			6		5		4		З
			•				-					!
					CL 14							
	*** Signal Cro	ss-Reference f	for the entire design ***	JT	CLK	8A8<> 11A6<> 13C3< 8C2< 15B1<	> 15A8<> 2D5<		RUN_KIT_US RW	SR 11A7<> 14C3<> 12D6<> 16B2<>		
	AØ	12A4<> 16C7		JT	DI	11C6<> 13C3<>			RXN_7Ø	2C2< 3A4<		
	A1 A2		7<> 19A3<> 19A7<> 7<> 19A3<> 19A7<>		00 D FLASHA 2 XII	2D5<> 13C4< LINXA 15A6<> 15C1<			RXP_70 SCI1_IN	2C2< 3A4< 11B8<> 13C8>		
D	A3		7<> 19A3<> 19A7<>			LINXB 8A6<> 8C2<			SCI1_OUT	1188<> 13C8<		
	A4		7<> 19A3<> 19A6<>		D_FLASH_A	15A8<> 13C4<			SCI2_IN	1188<> 13C8>		
	A5 A6		7<> 19A3<> 19A6<> 7<> 19A3<> 19A6<>			LASHB 8A8<> 15B1> S3170 8B2> 2D5<			SCI2_OUT SCK	11B8<> 13C8< 11B5<> 17D5<>		
	A7	1284<> 1687	7<> 19A3<> 19A6<>	JT		8A8<> 8C2<> 13B4<>	15A8<> 15C1<>		SPI	17D5<> 18B6<> 2A6<		
	A8 A9		7<> 19A3<> 19A6<> 7<> 19B4<> 19B7<>		MS_MIC	2D5< 11A6<> 13B4<> 13C2			SS TA	11B5<> 17D5<> 12D6<> 16C2<>		
	A1Ø		7<> 19B4<> 19B7<>		RST_B	11A6<> 13B4<> 13C2			TCLKI70	487<> 9D4<> 2B2<		
	A11		7<> 1984<> 1987<>	LA		907<> 1707<> 1808<			TCLK07Ø	2B2> 4A7<		
	A12 A13		7<> 19B4<> 19B7<> 7<> 19B4<> 19B7<>	LA		9C7<> 17C7<> 18C8< 9C7<> 17C7<> 18C8<			TCLKO_FPGA TEA	A 4A6<> 9C7<> 12D6<> 16B2<>		
	A14	1284<> 1687	7<> 19B4<> 19B7<>	LA		987<> 17C7<> 18C8<	> 207<		TEST	1188<>		
	A15 A16		7<> 19B4<> 19B7<> 7<> 19B4<> 19B7<>			9B7<> 17C7<> 18C8< 9B7<> 17C7<> 18C8<			TEST_70 TIM_16H_8L	16B2<> 18A6<> 2A3< 18B 11C7<> 14C3<>	2<	
	A17		7<> 19B4<> 19B7<>	LA		9B7<> 17C7<> 18C8<			TLCLK7Ø	2C2> 4C7<		
	A18	12B4<> 16A6		LA		987<> 1787<> 18C8<			TLCLK_FPG			
	A19 A20	12C4<> 16A8 12C4<> 16A8				9B7<> 17B7<> 18C8< 9B7<> 17B7<> 18B8<			TNEG_7Ø TNEG_I_3	2C2> 4B4< 4B3<> 9D6<>		
	A21	12C4<> 16A6		MI		11A6<> 17D5<>			тон7ø	6C7<> 2B2<		
С	A22 ALE	12C4<> 16A6	5<>	MO MO		9B2<> 16B2<> 18A6< 11A6<> 17D5<>	> 2A6< 18B3<		TOHCLK7Ø TOHCLK_I_3	2B2> 6B7< 3 6B6<> 10D6<>		
Ĭ	HLL BNC5Ø_OHM	902<> 1682< 787<>	<pre>// TOPO(// SPO(</pre>	OE		12D6<> 16B2<> 19C3	<> 19C6<>		TOHELR_I_	5 666<> 1006<>		
	BOOT_SEL	14C3<> 16B2			ICE_TDO	11C6<> 13C4<			TOHEN_0_3			
	BUF_E3 BUF_STS1		> 9A5<> 7C2< > 10D4<> 7C1<		CE3 CSTS1	7C6<> 7C7< 7B6<> 7B6<			TOHSOF7Ø TOHSOF_I_3	2B2> 6B7< 3 6B6<> 9B2<>		
	BUF_T3		> 10A4<> 7C2<		СТЗ	7C5<> 7C7<			тон_о_з	1082<> 6C6<		
	CCLK_A	15A8<> 15B1	1 <		C_MCU	11A6<> 11C2<			TPOS_70	2C2> 4C4<		
	CCLK_B CFG_DIN_A	8A8<> 8B1< 15A8<> 16A2	2<>	PD PD		12A7<> 16A5<> 19B2 12B7<> 16A5<> 19B2			TPOS_I_3 TSER70	4C3<> 9A7<> 6A7<> 2B2<		
	CFG_DIN_B	8A8<> 9A2<>		PD		12B7<> 16A5<> 19B2			TSER_0_3	10A6<> 6A6<		
	CLKO CLKOUT	2D4> 7A8< 17A7<> 11B4	4<	PD PD		1287<> 1665<> 1982 1287<> 1665<> 1982			TSOFI7Ø TSOFI_0_3	6C7<> 2B2< 10B8<> 6C6<		
	CSØ	17A2<> 18C4		PD		1287<> 1665<> 1982			TSOF07Ø	2A2> 6A7<		
	CSØ_RAM	1185<> 1903		PD		12B7<> 16A5<> 19B2			TSOFO_I_3			
	CS2_BOARD CS3	11B5<> 16B2 9C2<> 17B2<		PD PD		1287<> 1665<> 1982 1287<> 1665<> 1983			TXN_70 TXP_70	2C3> 3C4< 2C3> 3C4<		
	CS3170	18B8<> 2D6<	< 18C5<	PD		12B7<> 16A5<> 19B5	<>		USER_IN1	11A7<> 14C3<>		
	CS_OUT CYBØ	17A2<> 18B6 9B2<> 17A4<		PD. PD		1287<> 16A4<> 1985 1287<> 16A4<> 1985			USER_IN2 USER_LED1	11A7<> 14C3<> 11A7<> 14B3<		
В	CYB1	9B2<> 17A4<		PD		12B7<> 16A4<> 19B5			USER_LED2			
	CYB2	9B2<> 17A4<		PD		12C7<> 16A4<> 19B5			V1_8_A	1506<> 1504<		
	CYB3 CYB4	9B2<> 17A4< 9B2<> 17A4<		PD PD		12C7<> 16A4<> 19B5 12C7<> 16A4<> 19B5			V1_8_C V5V	8D7<> 8D4< 14A2<> 20D5<>		
	CYB5	9A2<> 17A5<		PR	OGRAM_A	15A8<> 15B1<			VDDSYN	12C5<> 20C2<		
	CYB6 CYB7	9A2<> 17A5< 9A2<> 17A5<			OGRAM_B LK07Ø	8A8<> 8B1< 2A2> 4A7<			VDD_DUT VSSSSYN	20B7<> 2B2< 2B8< 2C8< 11C2<	2D5<	
	DONE_A	15A2<> 17A5<			LKO_FPGA	4A6<> 9D6<			WIDTH_70	1682<>> 1886<>> 286< 188	⊇<	
	DONE_B	8A2<> 8A8<>			ON	12D6<> 14B8<			WR_W/R	9C2<> 16B2<> 18B6<> 2D		
	EBØ EB1	11C7<> 16C2 11C7<> 16C2			1Y_70 _DS	2A6<> 17B3<> 18B8< 9B2<> 16C2<> 18B6<			XDØ XD1	2C7<> 9D5<> 16D4<> 18C 2B7<> 9D5<> 16D4<> 18C		
	EB2	11C7<> 16C2	2<>	RE	FCLK7Ø	7C4<> 2D4<			XD2	2B7<> 9D5<> 16D4<> 18C	5<>	
	EB3 FLASH_VPP	11C7<> 16C2 14A3<> 12D5			FCLK_OUTPUT SET	7C3<> 9A4<> 11B5<> 14A5<>			XD3 XD4	287<> 9D5<> 16D4<> 18C 287<> 9D5<> 16D4<> 18C		
	F LASH_UPP FPGA_EN	14H3<> 12D5 14D3<> 17C3			SET_B	1185<> 1445<> 8A8<> 9A2<> 9B2<>	14B7<> 15A8<>		XD4 XD5	287<> 905<> 1604<> 180 287<> 905<> 1605<> 180		
	GENFPGA_1	14D3<> 17D4				16A2<>			XD6	2B7<> 9D5<> 16D5<> 18C	5<>	
	GENFPGA_2 GPI0_1	14D3<> 17D4 2A4<> 5A6<>	4<>		SET_MIC SET_OUT	13C3<> 14A7< 11B5<> 16A6<>			XD7 XD8	287<> 9D5<> 16D5<> 18C 287<> 16D5<> 18C6<>	5<>	
	GPIO_2		> 5C2<> 5B8<		CLK70	4C7<> 2C2< 10C8<			XD9	287<> 16D5<> 1886<>		
A	GPIO_3		> 582<> 588<		EG_70	4A3<> 9D6<> 2C2<			XD10	287<> 16D5<> 1886<>		
	GPIO_4 GPIO_5		> 5B2<> 5A8< > 5B2<> 5A8<		H7Ø HCLK7Ø	2B2> 6C5< 2B2> 6C5<			XD11 XD12	287<> 16D5<> 18B6<> 287<> 16D5<> 18B6<>		
	GPIO_6	2A4<> 5A2<>	> 5A5<> 5B2<> 5A8<	RO	HCLK_I_3	6C4<> 10D5<>			XD13	2A7<> 16D5<> 18B6<>		
	GPIO_7 GPIO_8		> 5B2<> 5C6< > 5A5<> 5B2<> 5B6<		HSOF7Ø HSOF_I_3	2B2> 6C5< 6C4<> 9C2<>			XD14 XD15	2A7<> 16D5<> 18B6<> 2A7<> 16D6<> 18B6<>		
	HIZ_70		5<> 2A3< 18B2<		H_I_3	6C4<> 10B2<>			XTAL	11A6<> 11C2<		
	ICOC23	1108<> 1602			05_70	4B3<> 9B7<> 2C2<						
	INTERUPT INT_70	11A7<> 16D6 2A6<> 16C2<	5<> <> 18B8<> 5C8<		ER7Ø ER_I_3	2A2> 6B5< 6B4<> 10A6<>						
	INT_BRD	9A7<> 16C2<	<> 14A6<	RS	OF07Ø	2A2> 6B5<						
	JDE_B JRST	11B5<> 13C2 2D5< 13B1<			0F0_I_3 T_70	6B4<> 10B8<> 5D8<> 16A2<>						TITLE:
		200, 1001(T_70_OUT	1682<> 1888<> 283<						
												ENGINEER:
				i				_	- I	~	-i	
	8		7			Б	Ę	כ		4		З

2	1	
		D
		С
		В
		A
	DATE: PAGE:	
2	1	

\square	8	7	6 5		4	З	2	1
D	**** Part Cross-Reference for the entire designed C1 CAP1 2084 C2 CAP1 20C3 C3 CAP1 15C8 C4 CAP1 2C8 C5 CAP1 2B2 C6 CAP1 2B1 C7 CAP1 2087 C8 CAP1 2026	D1 DIODE D2 DIODE D51 LED D52 LED D53 LED D54 LED D55 LED D56 LED D57 LED D58 LED	2082 2005 2085 1402 15A1 14A3 14B2 14B2 6A1 18B4 18B5	R32 RES1 R33 RES1 R34 RES1 R35 RES1 R36 RES1 R37 RES1 R38 RES1 R39 RES1 R40 RES1 R41 RES1 R42 RES1	14B2 14D3 14B5 14D3 14D3 14D3 14D4 14D4 14D4 14D4 14D4	SW2 PUSH SW3 SW174 SW4 SW174 SW5 PUSH SW6 SW174 T1 TRANS T2 TRANS TP1 TEST	7C7 14D2 MUTTON 5D8 MUTTON 14B8 H-BPOS 14D2 H-BPDS 5C1 MUTTON 5A4 H-DPDT_SLIDE_6P 14A2 FORMER_PULSE 3A5 FORMER_PULSE 3C5 MOINT1 20D4	
	C10 CAP1 20B3 C11 CAP1 20B6 C12 CAP 11C4 C13 CAP 11C3 C14 CAP1 11A4 C15 CAP1 11A5 C16 CAP1 2C8 C17 CAP1 20C2 C18 CAP1 20A4 C19 CAP1 20A4 C19 CAP1 15D6 C21 CAP1 20A4 C22 CAP1 20C6	DS10 LED DS11 LED DS12 LED DS13 LED DS14 LED DS15 LED DS16 LED DS17 LED DS18 LED DS19 LED H1 4_40_HDWR_ H2 4_40_HDWR	_U 20D3	R43 RES1 R44 RES1 R45 RES1 R46 RES1 R47 RES1 R48 RES1 R50 RES1 R51 RES1 R52 RES1 R53 RES1 R54 RES1 R55 RES1	4A7 14B6 14A5 8A2 13C3 2A7 13C3 13B3 6A6 16C1 13B4 7C1 7C2	TP3 TESTI TP4 TESTI TP5 TESTI TP6 TESTI TP7 TESTI TP8 TESTI TP9 TESTI TP10 TESTI TP11 TESTI TP12 TESTI TP13 TESTI TP14 TESTI	OINT1 6C7 OINT1 6C7	
С	C23 CAP1 15D7 C24 CAP1 11A5 C25 CAP1 2084 C26 CAP1 15A6 C27 CAP1 15A6 C28 CAP1 15A6 C29 CAP1 15A6 C30 CAP1 20A3 C31 CAP1 20A4 C32 CAP1 15A6 C33 CAP1 15D6 C34 CAP1 15D6 C35 CAP 20D4		_U 20C2 NA_2P 20B8 13B6 18D7 N 13C4 5P 7B7 7D6 5A5 5P 3A6	R56 RES1 R57 RES1 R58 RES1 R59 RES1 R61 RES1 R63 RES1 R64 RES1 R65 RES1	7C1 6C6 13C1 7C2 18B4 18B4 6C6 4B6 18B4 18B4 18B4 13B2 13C1 4C6	TP20 TEST TP21 TEST TP22 TEST TP23 TEST TP24 TEST U1 MAX1 U2 MMC2	OINT1 685 OINT1 6C4	
в	C36 CAP1 20D5 C37 CAP1 20D5 C38 CAP1 7B2 C39 CAP1 20B3 C40 CAP1 8C8 C41 CAP1 20B4 C42 CAP1 8D6 C43 CAP1 8B8 C45 CAP1 8B7 C46 CAP1 8B7 C48 CAP1 8D7 C49 CAP1 8D6 C50 CAP1 7B3	JP4 CON14P JP5 JMP JP6 JMP3 JP7 JMP JP8 JMP L1 COIL_2P PWR_CONNBAN1 CON PWR_CONNBAN2 CON R1 RES1 R2 RES1 R3 RES1 R4 RES1 R5 RES1 R5 RES1	2087 13C3 13B4 5A2 3A5 3C5 12C5 NN_BANANA_2P 20D8 NN_BANANA_2P 20D8 NN_BANANA_2P 20C8 7D2 7C2 4B4 4A4 4C3 6B4	R69 RES1 R70 RES1 R71 RES1 R72 RES1 R73 RES1 R76 RES1 R77 RES1 R76 RES1 R77 RES1 R78 RES1 R79 RES1 R80 RES1 R81 RES1 R82 RES1 R83 RES1	7C1 7C1 6C6 5C7 4C7 4C7 5B2 5B2 5C7 5B7 5B7 5B7 5B7 5B7 5B7 5B7 5B7 5B7	U5 MAX1 U6 XC25 U7 D531 U8 MAX3 U9 NC75 U10 X1L1 U11 CY62 U12 X1L1 U13 74_Ø U14 NC75 U15 74_Ø U16 NC75 U17 NC75	86_U 785 86_U 7C5 86_U 4C7	E
A	C51 CAP1 288 C52 CAP1 785 C53 CAP1 783 C55 CAP1 783 C55 CAP1 783 C55 CAP1 784 C57 CAP1 2064 C58 CAP1 2083 C59 CAP1 783 C60 CAP1 783 C61 CAP1 783 C62 CAP1 783 C63 CAP1 783 C64 CAP1 288 C65 CAP1 288 C65 CAP1 281 C65 CAP1 288 C65 CAP1 288 C66 CAP1 288 C66 CAP1 287 C66 CAP1 287 C67 CAP1 287	R8 RES1 R9 RES1 R10 RES1 R11 RES1 R12 RES1 R13 RES1 R14 RES1 R15 RES1 R16 RES1 R17 RES1 R18 RES1 R19 RES1 R21 RES1 R22 RES1 R23 RES1	686 4A7 3A4 7A7 3C4 7C4 11C2 14C6 11B5 14C2 14D6 16C7 14C6 14C6 14B7 14C6 15A1 14D6 15A1 14D6	R84 RES1 R85 RES1 R86 RES1 R87 RES1 R88 RES1 R90 RES1 R91 RES1 R92 RES1 R93 RES1 R94 RES1 R95 RES1 R96 RES1 R97 RES1 R98 RES1 R98 RES1 R99 RES1 R99 RES1 R99 RES1 R99 RES1 R99 RES1 R100 RES1 R101 RES1	7B7 6C5 5B3 5C3 7C4 5B5 5C5 5C5 5C5 6B6 4A4 4C3 6C5 5C2 5C2 5C2 5C2	U20 NC75 U21 74_0 U22 MAX5	16 5A3 86_U 7C5	f
	C68 CAP1 7A3 C69 CAP1 20C4 C70 CAP1 7A3 C71 CAP1 3B5 C72 CAP1 3A5 C73 CAP1 7A2 C74 CAP1 20A3 C75 CAP1 2B2	R25 RES1 R26 RES1 R27 RES1 R28 RES1 R29 RES1 R30 RES1	14D6 5D7 14B6 14C6 14C6 14C5 14A3 14D3 14D3	R101 RES1 R102 RES1 R103 RES1 R104 RES1 R105 RES1 R106 RES1 R107 RES1 R108 RES1	6A6 5C2 4C7 6C4 7D7 6B4 7C4 5A4	TITLE: ENGINEER 3	2	DATE: PAGE: 1