

RoHS

FEATURES

- PSI Pressure Ranges
- PCB Mountable
- High Level Analog Output
- Barbed Pressure Ports

APPLICATIONS

- Blocked Filter Detection
- Altitude and Airspeed
 Measurements
- Medical Instruments
- Fire Suppression System
- Panel Meter
- Air Movement/Environmental Controls
- Pneumatic Controls

MS4525

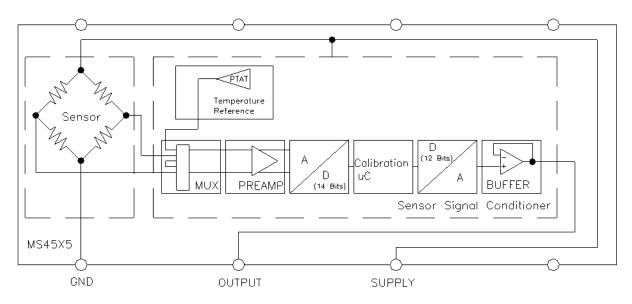
SPECIFICATIONS

- PCB Mounted Pressure Transducers
- Amplified Ratiometric Analog Output
- Differential, Gage, Absolute, Compound, & Vacuum
- Temperature Compensated
- 3.3 or 5.0 V_{DC} Supply Voltage

The MS4525 is a small, ceramic based, PCB mounted pressure transducer from TE Connectivity. The transducer is built using our proprietary UltraStable™ process and the latest CMOS sensor conditioning circuitry to create a low cost, high performance transducer designed to meet the strictest requirements from OEM customers.

The MS4525 is fully calibrated and temperature compensated with a total error band (TEB) of less than 1.0% over the compensated range. The sensor operates from single supply of either 3.3 or $5.0V_{DC}$ and requires a single external component for proper operation.

The rugged ceramic transducer is available in side port, top port, and manifold mount and can measure absolute, gage, differential, or compound pressure from 1 to 150psi. The 1/8" barbed pressure ports mate securely with 3/32" ID tubing.



STANDARD RANGES (PSI)

Pressure	Absolute	Gage	Differential	Compound	Vacuum	Option Availability
1		DS, SS, TP, MM	DS, SS, TP			-F
2		DS, SS, TP, MM	DS, SS, TP			-F
5		DS, SS, TP, MM	DS, SS, TP			-F
15	SS, TP	DS, SS, TP, MM	DS, MM	SS, TP	SS, TP, DS	-F
30	SS, TP	DS, SS, TP, MM	DS, MM	SS, TP		-F
50	SS, TP	DS, SS, TP, MM	DS, MM	SS, TP		-F
100	SS, TP	DS, SS, TP, MM	DS, MM	SS, TP		-F
150	SS, TP	DS, SS, TP, MM	DS, MM	SS, TP		-F

See Package Configurations: DS= Dual Side Port, SS= Single Side Port, TP= Top Port, MM= Manifold Mount Pin Style "L" is only available SS and MM port types. Pin Style "C" is only available SS, TP and MM port types.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Conditions	Min	Max	Unit	Notes
Supply Voltage	T _A = 25 °C	2.7	5.5	V	
Output Current	$T_A = 25^{\circ}C$		3	mA	
Load Resistance (RL)	$T_A = 25^{\circ}C$	10		kΩ	
Storage Temperature		-40	+125	°C	
Humidity	$T_A = 25^{\circ}C$		95	%RH	Non Condensing
Overpressure	T _A = 25 °C, both Ports	Not to E	Exceed 300	psi	
Burst Pressure	T _A = 25 °C, Port 1			psi	See Table 1
ESD	Contact Discharge	-2	+2	kV	
MSL		Moisture Sen	sitivity Level 1		
Colder Terrenerature		05000			

Solder Temperature

250°C, 5 sec max.

TABLE 1- BURST PRESSURE BY RANGE AND PACKAGE STYLE

Range	DS	TP, SS, MM	Unit
001	20	20	psi
002	20	20	psi
005	15	20	psi
015	45	90	psi
030	90	200	psi
050	150	300	psi
100	300	300	psi
150	300	300	psi

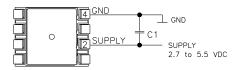
ENVIRONMENTAL SPECIFICATIONS

Parameter	Conditions
Mechanical Shock	Mil Spec 202F, Method 213B, Condition C, 3 Drops
Mechanical Vibration	Mil Spec 202F, Method 214A, Condition 1E, 1Hr Each Axis
Thermal Shock	100 Cycles over Storage Temperature, 30 minute dwell
Life	1 Million FS Cycles
MTTF	>10Yrs, 70 °C, 1.188 Million Pressure Cycles, 120%FS Pressure

PERFORMANCE SPECIFICATIONS

Supply Voltage¹: 5.0V or 3.3 V_{DC}

Ambient Temperature: 25°C (unless otherwise specified)

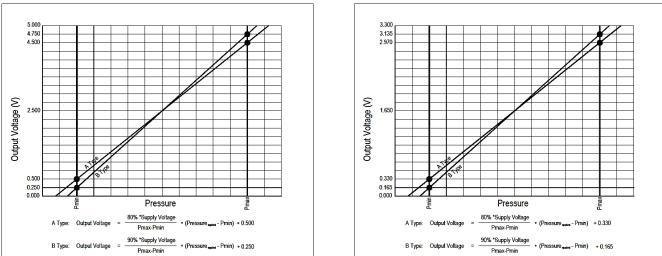

PARAMETERS	MIN	ТҮР	МАХ	UNITS	NOTES
Output	0.500		4.500	V	1,2,3
	0.250		4.750		
Accuracy	-0.25		0.25	%Span	2
Total Error Band (TEB)	-1.0		1.0	%Span	3,5
Supply Current		3		mA	5
Long Term Stability (Offset & Span)		±0.5		%Span	
Compensated Temperature	-10		+85	°C	4
Operating Temperature	-25		+105	°C	
Response Time		1		mS	5
Weight	1.43		2.02	grams	
Start time to data ready			5	ms	
Media	Non-Corrosive	e Dry Gases Cor	npatible with Cera	mic, Silicon, Boros	silicate Glass,

Non-Corrosive Dry Gases Compatible with Ceramic, Silicon, Borosilicate Glass, RTV, Gold, Aluminum and Epoxy. See "Wetted Material by Port Designation" chart below.

Notes

- 1. Proper operation requires an external capacitor placed as shown in Connection Diagram. Output is ratiometric to supply voltage variations of less than 10%.
- 2. The maximum deviation from a best fit straight line (BFSL) fitted to the output measured over the pressure range at 25°C. Includes all errors due to pressure non linearity, hysteresis, and non repeatability.
- Total error band includes all accuracy errors, thermal errors over the compensated temperature range, and span and offset calibration tolerances. For ideal sensor output with respect to input pressure, reference Pressure Transfer Function charts below. TEB values are valid only at the calibrated supply voltage.
- 4. For errors beyond the compensated temperature range, see Extended Temperature Multiplier chart below.
- 5. This product can be configured for custom OEM requirements, contact factory for lower power consumption or higher accuracy.
- 6. Long term stability over a year period with constant voltage and temperature
- 7. Pressure connection: barbed ports are designed for use with tubing 3/32" ID, 60-70A durometer (PVC).
- 8. For details on environmental conditions and pressure type descriptions, reference to relative tables.

CONNECTION DIAGRAM

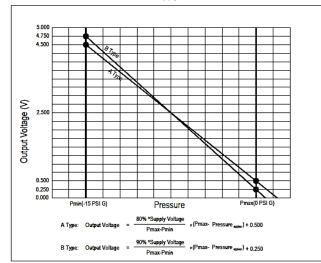

Notes:

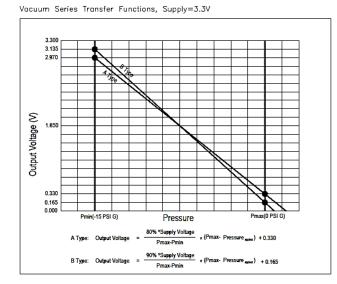
1. Place 100nF capacitor between Supply and GND to within 2 cm of sensor.

PRESSURE AND TEMPERATURE TRANSFER FUNCTION

Pressure Transfer Functions, Supply=3.3V

Sensor Output at Significant Percentages, (Vs=5.00)

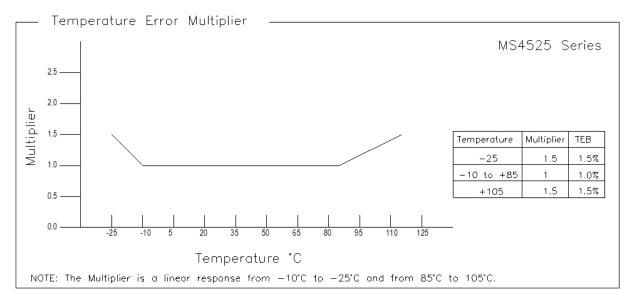

OUTPUT (%Vs)	Output Type A (psi)	Output Type B (psi)	Voltage (V)
0	P _{MIN} -(P _{MAX} -P _{MIN})*10/80	P _{MIN} -(P _{MAX} -P _{MIN})*5/90	0.000
5		P _{MIN}	0.250
10	P _{MIN}		0.500
50			2.500
90	P _{MAX}		4.500
95		P _{MAX}	4.750
100	P _{MAX} +(P _{MAX} -P _{MIN})*10/80	P _{MAX} +(P _{MAX} -P _{MIN})*5/90	5.000


Sensor Output at Significant Percentages, (Vs=3.30)

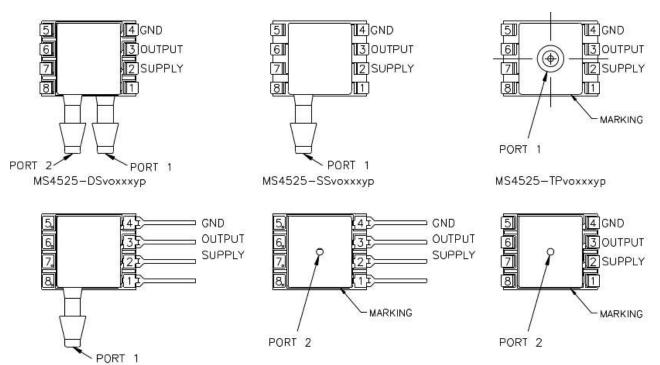
e (V)
00
65
30
50
70
15
00
E

Vacuum Series Transfer Functions, Supply=5V

Sensor Output at Significant Percentages, (Vs=5.00)


% Output (%Vs)	Output Type A [psiG]	Output Type B [psiG]	Voltage [V]
0	1.6875	0.833	0.000
5		0	0.250
10	0		0.500
50			2.500
90	-15		4.500
95		-15	4.750
100			5.000

Sensor Output at Significant Percentages, (Vs=3.30)


% Output (%Vs)	Output Type A [psiG]	Output Type B [psiG)]	Voltage [V]
0	1.6875	0.833	0.000
5		0	0.165
10	0		0.330
50			1.650
90	-15		2.970
95		-15	3.315
100			3.300

EXTENDED TEMPERATURE MULTIPLIER CHART

PACKAGE, PINOUT & PRESSURE TYPE CONFIGURATION

MS4525-MMvoxxxyL

MS4525-SSvoxxxyL

MS4525-MMvoxxxyp

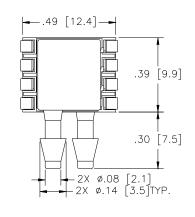
Pin Name	Pin	Function
SUPPLY	2	Positive Supply Voltage
OUTPUT	3	Analog Output
GND	4	Ground
	1, 5-8	No Connection

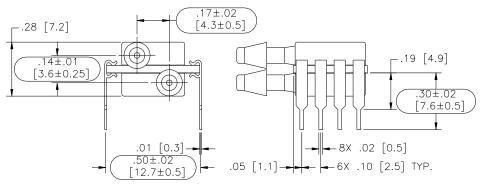
Pressure Type Description

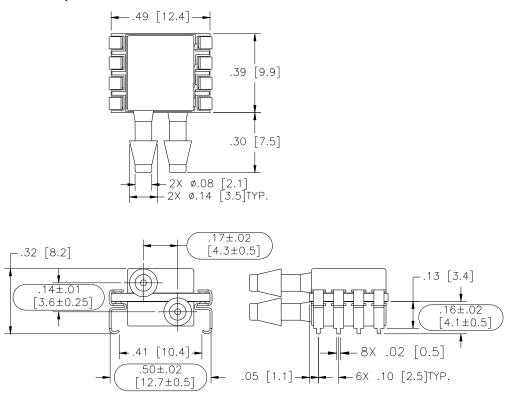
Pressure Type	P _{min}	P _{max}	Description
Absolute	0psiA	+Prange	Output is proportional to the difference between 0psiA (P_{min}) and pressure applied to Port 1.
Differential/ Bidirectional	-P _{range}	+P _{range}	Output is proportional to the difference between Port 1 and Port 2. Output swings positive when Port 1> Port 2. Output is 50% of supply voltage when Port 1=Port 2.
Gage	0psiG	+Prange	Output is proportional to the difference between 0psiG (P_{min}) and Port 1. Output swings positive when Port 1> Port 2.
Compound	-15psiG	+P _{range}	Output is proportional to the difference between -15psiG pressure (Pmin) and pressure applied to Port 1.
Vacuum	-15psiG	+0psiG	Output is inversely proportional to the difference between -15psiG (P _{min}) and pressure applied to Port 1.

 $\mathsf{P}_{\mathsf{range}}$ is equal to the maximum full scale pressure specified in the ordering information.

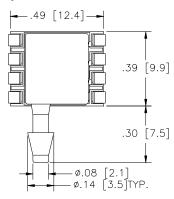
WETTED MATERIAL BY PORT DESIGNATION

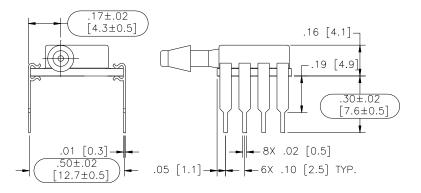

				Materia	al			
Style	Port	Ceramic	Silicon	Borosilicate Glass	RTV	Gold	Aluminum	Epoxy
DS, MM	Port 1	Х	Х	Х	Х			Х
	Port 2	Х	Х	Х	Х	Х	Х	Х
SS, TP, SM	Port 1	Х	Х	Х	Х	Х	Х	Х

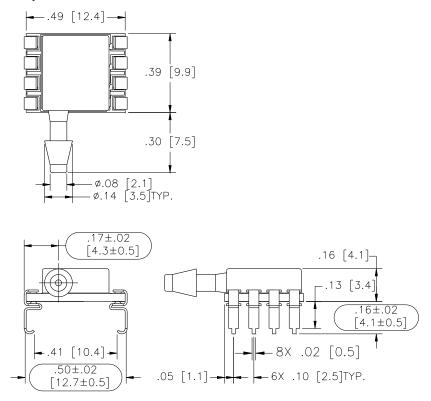

"X" Indicates Wetted Material


DIMENSIONS

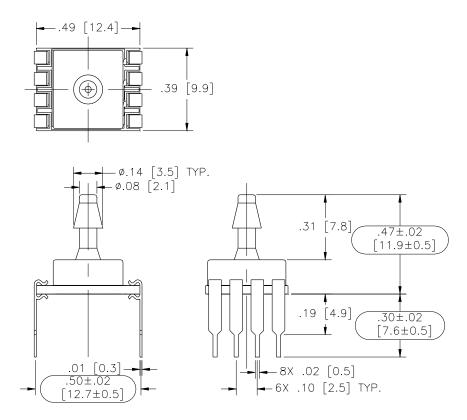
(in INCHES [mm]) Model: MS4525-DSvoxxxyP



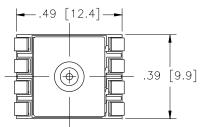

Model: MS4525-DSvoxxxyS

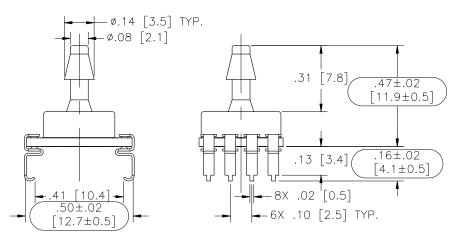


Model: MS4525-SSvoxxxyP

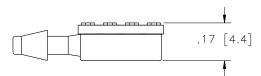


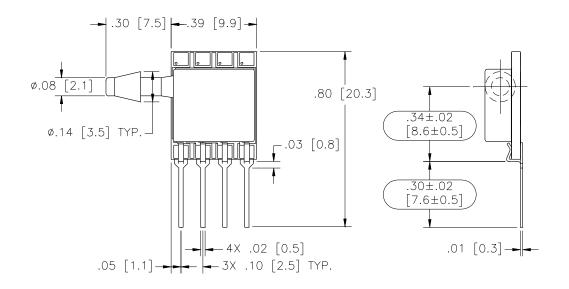
Model: MS4525-SSvoxxxyS

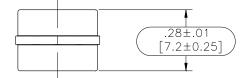


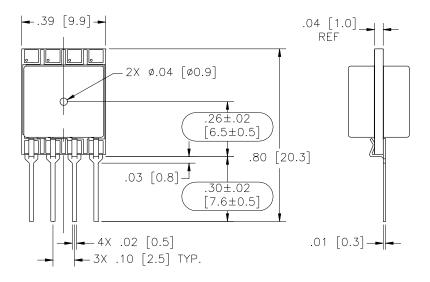


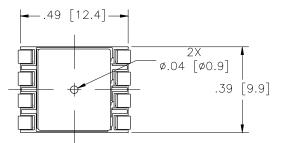
Model: MS4525-TPvoxxxyP

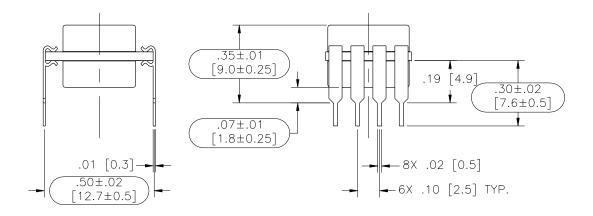

Model: MS4525-TPvoxxxyS

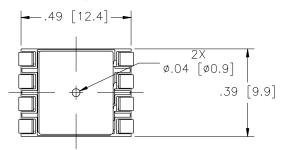


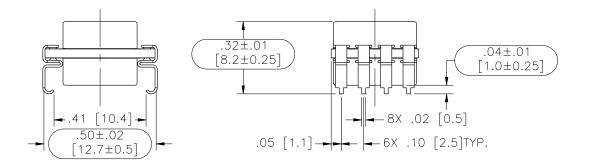



Model: MS4525-SSvoxxxyL

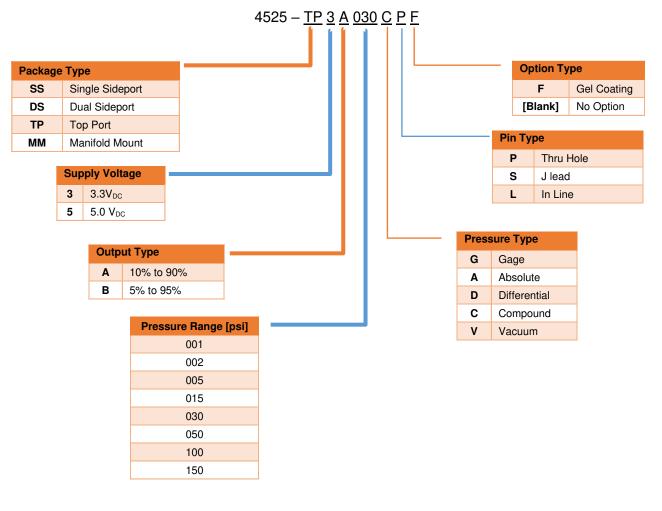

Model: MS4525-MMvoxxxyL






Model: MS4525-MMvoxxxyP

Model: MS4525-MMvoxxxyS



AVAILABLE OPTIONS

Gel Coat (-F Option)

The MS4525 is designed for nonionic and clean dry air applications. Select this option for added protection in high humidity or slightly corrosive environments with the application of a silicone gel elastomer to sensor and ASIC. For questions concerning media compatibility, contact the factory.

ORDERING INFORMATION

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity company Tel: 1 800-522-6752 Email: customercare.frmt@te.com

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company Tel: +31 73 624 6999 Email: customercare.bevx@te.com ASIA

Measurement Specialties (China) Ltd., a TE Connectivity company Tel: 86 0400-820-6015 Email: <u>customercare.shzn@te.com</u>

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.