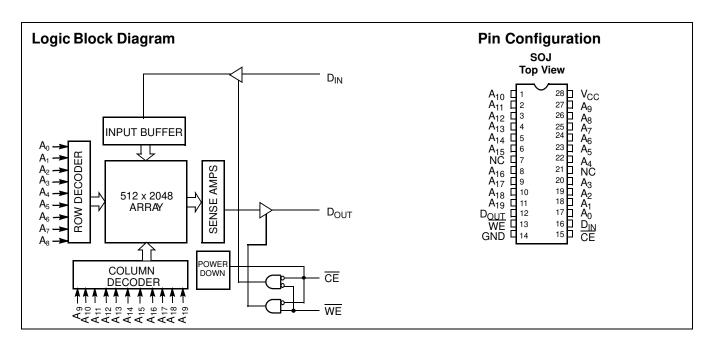


1M x 1 Static RAM

Features

- · High speed
 - $t_{AA} = 15 \text{ ns}$
- CMOS for optimum speed/power
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs

Functional Description


The CY7C107BN and CY7C1007BN are high-performance CMOS static RAMs organized as 1,048,576 words by 1 bit. Easy memory expansion is provided by an active LOW Chip Enable (CE) and three-state drivers. These devices have an automatic power-down feature that reduces power consumption by more than 65% when deselected.

<u>Writing</u> to the devices is <u>ac</u>complished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the input pin (D_{IN}) is written into the memory location specified on the address pins (A_0 through A_{19}).

Reading from the devices is accomplished by taking Chip Enable ($\overline{\text{CE}}$) LOW while Write Enable ($\overline{\text{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the data output (D_{OUT}) pin.

The output pin (D_{OUT}) is placed in a high-impedance state when the <u>device</u> is <u>deselected</u> (CE HIGH) or during a write operation (CE and WE LOW).

The CY7C107BN is available in a standard 400-mil-wide SOJ; the CY7C1007BN is available in a standard 300-mil-wide SOJ

Selection Guide

	7C107BN-15 7C1007BN-15
Maximum Access Time (ns)	15
Maximum Operating Current (mA)	80
Maximum CMOS Standby Current I _{SB2} (mA)	2

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage on V_{CC} Relative to $GND^{[1]}$ -0.5V to +7.0V DC Voltage Applied to Outputs in High Z State [1]-0.5V to V_{CC} + 0.5V DC Input Voltage [1]-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

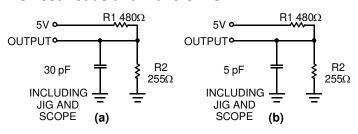
Operating Range

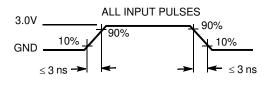
Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

			7C107 7C1007		
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]		-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-1	+1	mA
I _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq V_I \leq V_{CC}, \\ &\text{Output Disabled} \end{aligned}$	-5	+5	mA
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$		80	mA
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{array}{l} \text{Max. V}_{CC}, \overline{CE} \geq V_{IH}, V_{IN} \geq V_{IH} \text{or} \\ V_{IN} \leq V_{IL}, f = f_{MAX} \end{array}$		20	mA
I _{SB2}	Automatic CE Power-Down Current — CMOS Inputs	$\begin{array}{l} \text{Max. V}_{CC}, \overline{\text{CE}} \geq \text{V}_{CC} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3\text{V or V}_{\text{IN}} \leq 0.3\text{V}, \text{f} = 0 \end{array}$		2	mA

Capacitance^[4]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25 \times C, f = 1 \text{ MHz},$	7	pF
C _{IN} : Controls		$V_{CC} = 5.0V$	10	pF
C _{OUT}	Output Capacitance		10	pF


Notes

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 2. Ta is the "Instant On" case temperature.
- 3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

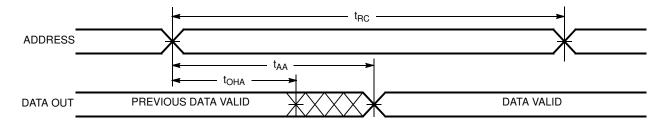
Equivalent to: THÉVENIN EQUIVALENT

> 167Ω **-•** 1.73V

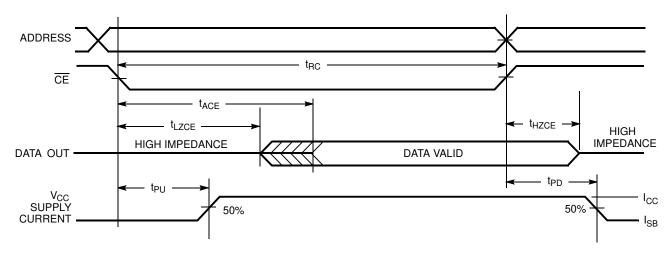
Switching Characteristics^[5] Over the Operating Range

		7C107 7C100		
Parameter	Description	Min.	Max.	Unit
READ CYCLE	·			•
t _{RC}	Read Cycle Time	15		ns
t _{AA}	Address to Data Valid		15	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		15	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		7	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		15	ns
WRITE CYCLE ^[8]		•		
t _{WC}	Write Cycle Time	15		ns
t _{SCE}	CE LOW to Write End	12		ns
t _{AW}	Address Set-Up to Write End	12		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	12		ns
t _{SD}	Data Set-Up to Write End	8		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		7	ns

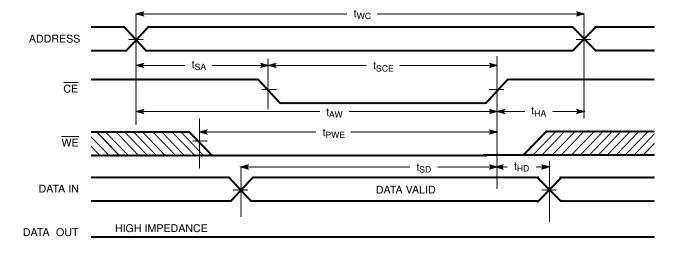
Notes:


^{5.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified

the structure of the specified logs. It is of less, timing reference levels of 1.5V, input pulse levels of 0.5.VV, and output loading of the specified logs. It is of less, timing reference levels of 1.5V, input pulse levels of 0.5.VV, and output loading of the specified logs. It is less than t_{LZWE} for any given device.
 the specified logs. It is specified logs. It is

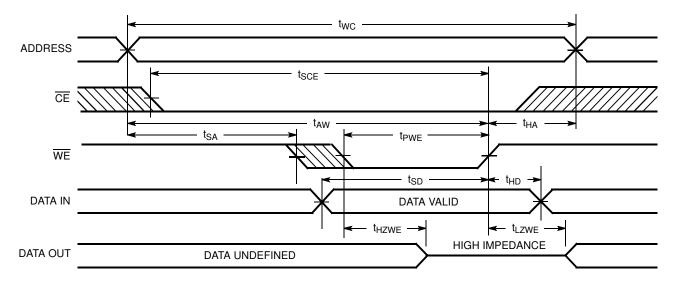


Switching Waveforms


Read Cycle No. $\mathbf{1}^{[10,\ 11]}$

Read Cycle No. 2^[11, 12]

Write Cycle No. 1 (CE Controlled)^[13]



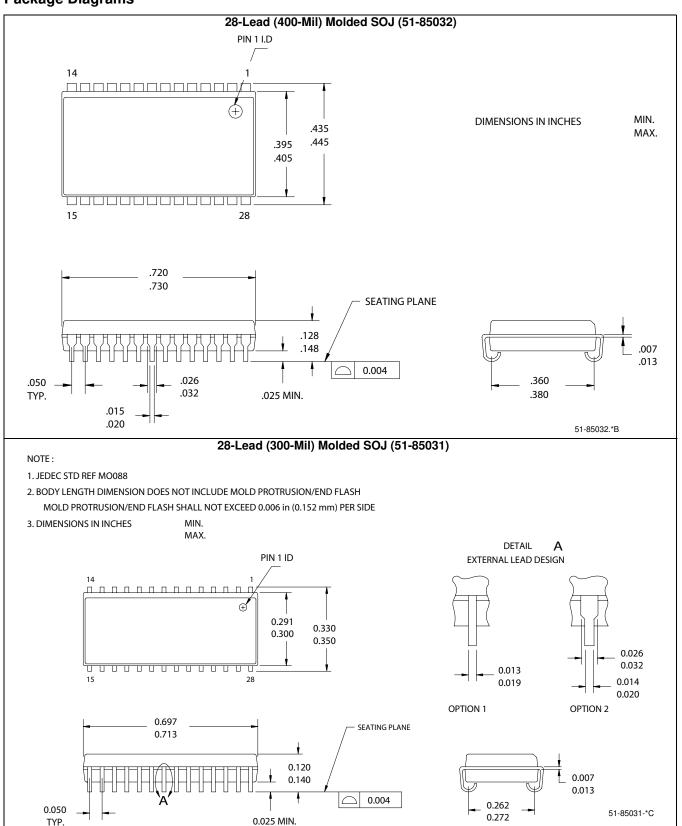
Notes:

Switching Waveforms (continued)

Write Cycle No. 2 (WE Controlled)^[13]

Truth Table

CE	WE	D _{OUT}	Mode	Power
Н	X	High Z	Power-Down	Standby (I _{SB})
L	Н	Data Out	Read	Active (I _{CC})
L	L	High Z	Write	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
15	CY7C107BN-15VC	51-85032	28-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1007BN-15VC	51-85031	28-Lead (300-Mil) Molded SOJ	
	CY7C1007BN-15VXC	51-85031	28-Lead (300-Mil) Molded SOJ (Pb-free)	
1	CY7C107BN-15VI	51-85032	28-Lead (400-Mil) Molded SOJ	Industrial

Please contact local sales representative regarding availability of these parts

Package Diagrams

All product or company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C107BN/CY7C1007BN 1M x 1 Static RAM Document Number: 001-06426					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	423847	See ECN	NXR	New Data Sheet	