SN54AS825, SN54AS826 SN74AS825, SN74AS826 # 8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS D0825 LINE 1984 - REVISED JANUARY 1986 - Functionally Equivalent to AMD's AM29825 and AM29826 - Improved IOH Specifications - Multiple Output Enables Allow Multiuser Control of the Interface - Outputs Have Undershoot Protection Circuitry - Power-Up High-Impedance State - Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs - Buffered Control Inputs to Reduce DC Loading Effect - Dependable Texas Instruments Quality and Reliability #### description These 8-bit flip-flops feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing multiuser registers, I/O ports, bidirectional bus drivers, and working registers. With the clock enable ($\overline{\text{CLKEN}}$) low, the eight D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking: $\overline{\text{CLKEN}}$ high will disable the clock buffer, thus latching the outputs. The 'AS825 has non-inverting D inputs and the 'AS826 has inverting $\overline{\text{D}}$ inputs. Taking the $\overline{\text{CLR}}$ input low causes the eight Ω outputs to go low independently of the clock. Multiuser buffered output-control inputs ($\overline{OC}1$, $\overline{OC}2$, and $\overline{OC}3$) can be used to place the eight outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a busorganized system without need for interface or pull-up components. The output controls do not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. SN54AS825 . . . JT PACKAGE SN74AS825 . . . DW OR NT PACKAGE (TOP VIEW) SN54AS825 . . . FK PACKAGE SN74AS825 . . . FN PACKAGE (TOP VIEW) SN54AS826 . . . JT PACKAGE SN74AS826 . . . DW OR NT PACKAGE (TOP VIEW) SN54AS826 . . . FK PACKAGE SN74AS826 . . . FN PACKAGE (TOP VIEW) NC - No internal connection Copyright © 1984, Texas Instruments Incorporated The SN54AS' family is characterized for operation over the full military temperature range of $-55\,^{\circ}$ C to 125 °C. The SN74AS' family is characterized for operation from 0 °C to 70 °C. #### 'AS825 FUNCTION TABLE | | | INPUTS | | | OUTPUT | |-----|-----|--------|----------|---|--------| | ÖC+ | CLR | CLKEN | CLK | D | a | | L | | X | X | Х | | | L | н | L | † | н | н | | ١٤ | н | L | † | L | L | | ال | н | н | X | Х | σo | | lн | х | × | X | X | z | $\overline{OC}^* = H$ if any of $\overline{OC}1$, $\overline{OC}2$, or $\overline{OC}3$ are high. $\overline{OC}^* = L$ if all of $\overline{OC}1$, $\overline{OC}2$, and $\overline{OC}3$ are low. #### 'AS825 logic symbol† | OC1 (11) 8 OC2 (22) OC3 (23) CLK (11) R CLKEN (13) 1C2 1D (4) 2D Δ 2D (22) 1Q 3D (5) (20) 3Q 4D (7) (18) 5Q 6D (8) (17) 6Q 8D (10) (15) 8Q | |--| |--| [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. #### 'AS825 logic diagram (positive logic) Pin numbers are for DW, JT, and NT packages. #### 'AS826 FUNCTION TABLE | | | INPUTS | | | OUTPUT | |-----|-----|--------|-----|---|--------| | ōc∗ | CLR | CLKEN | CLK | O | a | | L | L | Х | Х | X | L | | ا ا | н | L | Ť | Н | L | | اد | н | L | 1 | L | н | | L | н | н | X | Х | a_0 | | н | x | х | x | Х | Z | $\overline{OC}^* = H \text{ if any of } \overline{OC}1, \overline{OC}2, \text{ or } \overline{OC}3 \text{ are high.}$ $\overline{OC}^* = L$ if all of $\overline{OC}1$, $\overline{OC}2$, and $\overline{OC}3$ are low. #### 'AS826 logic symbol† [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12 #### 'AS826 logic diagram (positive logic) Pin numbers shown are for DW, JT, and NT packages. # SN54AS825, SN54AS826, SN74AS825, SN74AS826 8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS | bsolute maximum ratings over operating free-air temperature range (unless otherwise noted) | | |--|----| | Supply voltage, VCC 7 Input voltage 7 Voltage applied to a disabled 3-state output 5.5 | V | | Operating free-air temperature range: -55 °C to 125 12 | ۰C | #### recommended operating conditions | | | | SN54AS825
SN54AS826 | | SN74AS825
SN74AS826 | | | UNIT | | |-----------------|------------------------------|-------------------|------------------------|-----|------------------------|-----|-----|------|----| | | | | MIN | NOM | MAX | MIN | NOM | MAX | 1 | | VCC | Supply voltage | | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | ٧ | | VIH | High-level input voltage | | 2 | | | 2 | | | V | | VIL | Low-level input voltage | | | | 0.8 | | | 0.8 | V | | IOH | High-level output current | | | | - 24 | | | - 24 | mA | | loL | Low-level output current | | | | 32 | | | 48 | mA | | ·OL | | CLR low | 5 | | | 4 | | | ns | | tw | Pulse duration | CLK high or low | 9 | | - | 8 | | | | | - | | CLR inactive | 8 | | | В | | | | | | Setup time before CLK1 | Data | 7 | | | 6 | | | ns | | t _{su} | octup time porete care | CLKEN high or low | 7 | | | 6 | | | 1 | | th | Hold time, CLKEN or data a | | 0 | | | 0 | | | ns | | T _A | Operating free-air temperatu | | - 55 | | 125 | 0 | | 70 | °C | #### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | SN54AS825
SN54AS826 | | | SN74AS825
SN74AS826 | | | UNIT | | |-----------------|---------|-----------------------------------|-------------------------------|------------------------|------------------------------|-------|------------------------|----------------------|-------|---------------|--| | | | | | MIN | AIN TYP [†] MAX MIN | | TYP [†] | TYP [†] MAX | | | | | VIK | | V _{CC} = 4.5 V, | i _I = -18 mA | | | -1.2 | | | -1.2 | ٧ | | | *IK | | V _{CC} = 4.5 V to 5.5 V, | | V _{CC} - | V _{CC} - 2 | | | V _{CC} -2 | | | | | Vон | | V _{CC} = 4.5 V, | I _{OH} = -15 mA | 2.4 | 3.2 | | 2.4 | 3.2 | - | | | | • ОП | | $V_{CC} = 4.5 \text{ V},$ | I _{OH} = -24 mA | 2 | | | 2 | | | | | | VOL | | V _{CC} = 4.5 V, | I _{OL} = 32 mA | | 0.3 | 0.5 | | | | \Box \lor | | | | | $V_{CC} = 4.5 \text{ V},$ | I _{OL} = 48 mA | | | | | 0.35 | 0.5 | L. | | | lozh | | V _{CC} = 5.5 V, | V _O = 2.7 V | | | 50 | | | 50 | μA | | | OZL | | V _{CC} = 5.5 V, | V _O = 0.4 V | | | - 50 | | | 50 | μΑ | | | li | | V _{CC} = 5.5 V, | V _I = 7 V | | | 0.1 | | | 0.1 | mA | | | 1 н | | V _{CC} = 5.5 V, | V _I = 2.7 V | | | 20 | | | 20 | μA | | | lir
I | | V _{CC} = 5.5 V, | V _I = 0.4 V | | | -0.5 | | | -0.5 | mA | | | 10 [‡] | | V _{CC} = 5.5 V, | $V_{\Omega} = 2.25 \text{ V}$ | - 30 | | - 112 | - 30 | | - 112 | mA | | | 10 | | 700 | Outputs high | | 45 | 73 | | 45 | 73 | | | | - 1 | 'AS825 | V _{CC} = 5.5 V | Outputs low | | 56 | 90 | | 56 | 90 | mA | | | lcc | | 100 | Outputs disabled | | 59 | 95 | | 59 | 95 | 7 | | | | 'A\$826 | | Outputs high | | 45 | 73 | | 45 | 73 | | | | | | $V_{CC} = 5.5 \text{ V}$ | Outputs low | | 56 | 90 | | 56 | 90 | mA | | | 1 | | 3.0 | Outputs disabled | | 59 | 95 | | 59 | 95 | 1 | | [†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$. ‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} . ## switching characteristics (see Note 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | $V_{CC}=4.5$ V to 5.5 V, $C_L=50$ pF, $R1=500$ Ω , $R2=500$ Ω , $T_A=MIN$ to MAX | | | | | |------------------|-----------------|----------------|--|------|------------------------|-----|----------| | | | | SN54AS825
SN54AS826 | | SN74AS825
SN74AS826 | | | | | | | MIN | MAX | MIN | MAX | <u> </u> | | • | | | 3.5 | 9 | 3.5 | 7.5 | ns | | tpLH | CLK | Any Q | 3.5 | 11.5 | 3.5 | 11 | 1 | | ^t PHL | ČLR | Any Q | 3.5 | 14 | 3.5 | 13 | ns | | tPHL | | | 4 | 12 | 4 | 11 | пѕ | | tPZH | <u> </u> | Any Q | 4 | 13 | 4 | 12 | 1115 | | tPZL | | | 2 | 10 | 2 | 8 | | | t _{PHZ} | ōc | Any Q | 2 | 10 | 2 | 8 | ns | | [†] PLZ | | | | | | | | NOTE 1: Load circuit and voltage waveforms are shown in Section 1. #### D flip-flop signal conventions It is normal TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called $\overline{\Omega}$ and those producing complementary data are called $\overline{\Omega}$. An input that causes a Ω output to go high or a $\overline{\Omega}$ output to go low is called Preset; an input that causes a $\overline{\Omega}$ output to go high or a Ω output to go low is called Clear. Bars are used over these pin names (PRE and \overline{CLR}) if they are active-low. The devices on this data sheet are second-source designs and the pin-name convention used by the original manufacturer has been retained. That makes it necessary to designate the inputs and outputs of the inverting circuit \overline{D} and \overline{Q} . In some applications it may be advantageous to redesignate the inputs and outputs as D and \overline{Q} . In that case, outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses. Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\searrow) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (Q) is still in phase with the data input D, but now both are considered active high.