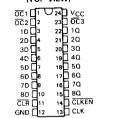
SN54AS825, SN54AS826 SN74AS825, SN74AS826

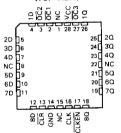
8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS D0825 LINE 1984 - REVISED JANUARY 1986

- Functionally Equivalent to AMD's AM29825 and AM29826
- Improved IOH Specifications
- Multiple Output Enables Allow Multiuser Control of the Interface
- Outputs Have Undershoot Protection Circuitry
- Power-Up High-Impedance State
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Buffered Control Inputs to Reduce DC Loading Effect
- Dependable Texas Instruments Quality and Reliability


description

These 8-bit flip-flops feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing multiuser registers, I/O ports, bidirectional bus drivers, and working registers.

With the clock enable ($\overline{\text{CLKEN}}$) low, the eight D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking: $\overline{\text{CLKEN}}$ high will disable the clock buffer, thus latching the outputs. The 'AS825 has non-inverting D inputs and the 'AS826 has inverting $\overline{\text{D}}$ inputs. Taking the $\overline{\text{CLR}}$ input low causes the eight Ω outputs to go low independently of the clock.


Multiuser buffered output-control inputs ($\overline{OC}1$, $\overline{OC}2$, and $\overline{OC}3$) can be used to place the eight outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a busorganized system without need for interface or pull-up components. The output controls do not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

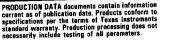
SN54AS825 . . . JT PACKAGE SN74AS825 . . . DW OR NT PACKAGE (TOP VIEW)

SN54AS825 . . . FK PACKAGE SN74AS825 . . . FN PACKAGE

(TOP VIEW)

SN54AS826 . . . JT PACKAGE SN74AS826 . . . DW OR NT PACKAGE

(TOP VIEW)


SN54AS826 . . . FK PACKAGE SN74AS826 . . . FN PACKAGE

(TOP VIEW)

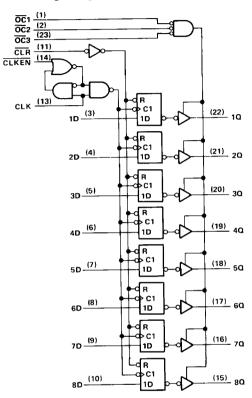
NC - No internal connection

Copyright © 1984, Texas Instruments Incorporated

The SN54AS' family is characterized for operation over the full military temperature range of $-55\,^{\circ}$ C to 125 °C. The SN74AS' family is characterized for operation from 0 °C to 70 °C.

'AS825 FUNCTION TABLE

		INPUTS			OUTPUT
ÖC+	CLR	CLKEN	CLK	D	a
L		X	X	Х	
L	н	L	†	н	н
١٤	н	L	†	L	L
ال	н	н	X	Х	σo
lн	х	×	X	X	z


 $\overline{OC}^* = H$ if any of $\overline{OC}1$, $\overline{OC}2$, or $\overline{OC}3$ are high. $\overline{OC}^* = L$ if all of $\overline{OC}1$, $\overline{OC}2$, and $\overline{OC}3$ are low.

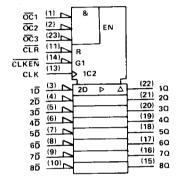
'AS825 logic symbol†

OC1 (11) 8 OC2 (22) OC3 (23) CLK (11) R CLKEN (13) 1C2 1D (4) 2D Δ 2D (22) 1Q 3D (5) (20) 3Q 4D (7) (18) 5Q 6D (8) (17) 6Q 8D (10) (15) 8Q
--

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

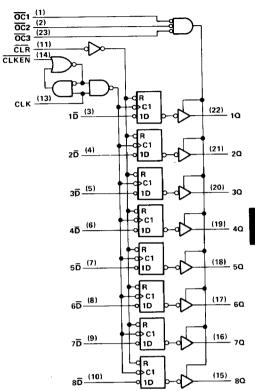
'AS825 logic diagram (positive logic)

Pin numbers are for DW, JT, and NT packages.


'AS826 FUNCTION TABLE

		INPUTS			OUTPUT
ōc∗	CLR	CLKEN	CLK	O	a
L	L	Х	Х	X	L
ا ا	н	L	Ť	Н	L
اد	н	L	1	L	н
L	н	н	X	Х	a_0
н	x	х	x	Х	Z

 $\overline{OC}^* = H \text{ if any of } \overline{OC}1, \overline{OC}2, \text{ or } \overline{OC}3 \text{ are high.}$


 $\overline{OC}^* = L$ if all of $\overline{OC}1$, $\overline{OC}2$, and $\overline{OC}3$ are low.

'AS826 logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12

'AS826 logic diagram (positive logic)

Pin numbers shown are for DW, JT, and NT packages.

SN54AS825, SN54AS826, SN74AS825, SN74AS826 8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

bsolute maximum ratings over operating free-air temperature range (unless otherwise noted)	
Supply voltage, VCC 7 Input voltage 7 Voltage applied to a disabled 3-state output 5.5	V
Operating free-air temperature range: -55 °C to 125 °C to 12	۰C

recommended operating conditions

			SN54AS825 SN54AS826		SN74AS825 SN74AS826			UNIT	
			MIN	NOM	MAX	MIN	NOM	MAX	1
VCC	Supply voltage		4.5	5	5.5	4.5	5	5.5	٧
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
IOH	High-level output current				- 24			- 24	mA
loL	Low-level output current				32			48	mA
·OL		CLR low	5			4			ns
tw	Pulse duration	CLK high or low	9		-	8			
-		CLR inactive	8			В			
	Setup time before CLK1	Data	7			6			ns
t _{su}	octup time porete care	CLKEN high or low	7			6			1
th	Hold time, CLKEN or data a		0			0			ns
T _A	Operating free-air temperatu		- 55		125	0		70	°C

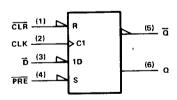
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

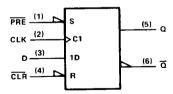
PARAMETER		TEST CONDITIONS		SN54AS825 SN54AS826			SN74AS825 SN74AS826			UNIT	
				MIN	AIN TYP [†] MAX MIN		TYP [†]	TYP [†] MAX			
VIK		V _{CC} = 4.5 V,	i _I = -18 mA			-1.2			-1.2	٧	
*IK		V _{CC} = 4.5 V to 5.5 V,		V _{CC} -	V _{CC} - 2			V _{CC} -2			
Vон		V _{CC} = 4.5 V,	I _{OH} = -15 mA	2.4	3.2		2.4	3.2	-		
• ОП		$V_{CC} = 4.5 \text{ V},$	I _{OH} = -24 mA	2			2				
VOL		V _{CC} = 4.5 V,	I _{OL} = 32 mA		0.3	0.5				\Box \lor	
		$V_{CC} = 4.5 \text{ V},$	I _{OL} = 48 mA					0.35	0.5	L.	
lozh		V _{CC} = 5.5 V,	V _O = 2.7 V			50			50	μA	
OZL		V _{CC} = 5.5 V,	V _O = 0.4 V			- 50			50	μΑ	
li		V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA	
1 н		V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μA	
lir I		V _{CC} = 5.5 V,	V _I = 0.4 V			-0.5			-0.5	mA	
10 [‡]		V _{CC} = 5.5 V,	$V_{\Omega} = 2.25 \text{ V}$	- 30		- 112	- 30		- 112	mA	
10		700	Outputs high		45	73		45	73		
- 1	'AS825	V _{CC} = 5.5 V	Outputs low		56	90		56	90	mA	
lcc		100	Outputs disabled		59	95		59	95	7	
	'A\$826		Outputs high		45	73		45	73		
		$V_{CC} = 5.5 \text{ V}$	Outputs low		56	90		56	90	mA	
1		3.0	Outputs disabled		59	95		59	95	1	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$. ‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC}=4.5$ V to 5.5 V, $C_L=50$ pF, $R1=500$ Ω , $R2=500$ Ω , $T_A=MIN$ to MAX				
			SN54AS825 SN54AS826		SN74AS825 SN74AS826		
			MIN	MAX	MIN	MAX	<u> </u>
•			3.5	9	3.5	7.5	ns
tpLH	CLK	Any Q	3.5	11.5	3.5	11	1
^t PHL	ČLR	Any Q	3.5	14	3.5	13	ns
tPHL			4	12	4	11	пѕ
tPZH	<u> </u>	Any Q	4	13	4	12	1115
tPZL			2	10	2	8	
t _{PHZ}	ōc	Any Q	2	10	2	8	ns
[†] PLZ							


NOTE 1: Load circuit and voltage waveforms are shown in Section 1.


D flip-flop signal conventions

It is normal TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called $\overline{\Omega}$ and those producing complementary data are called $\overline{\Omega}$. An input that causes a Ω output to go high or a $\overline{\Omega}$ output to go low is called Preset; an input that causes a $\overline{\Omega}$ output to go high or a Ω output to go low is called Clear. Bars are used over these pin names (PRE and \overline{CLR}) if they are active-low.

The devices on this data sheet are second-source designs and the pin-name convention used by the original manufacturer has been retained. That makes it necessary to designate the inputs and outputs of the inverting circuit \overline{D} and \overline{Q} . In some applications it may be advantageous to redesignate the inputs and outputs as D and \overline{Q} . In that case, outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\searrow) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (Q) is still in phase with the data input D, but now both are considered active high.

