

STE140NF20D

N-channel 200 V, 10 mΩ typ., 140 A STripFET™ II Power MOSFET (with fast diode) in an ISOTOP package

Datasheet - production data

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STE140NF20D	200 V	< 0.012 Ω	140 A

- Exceptional dv/dt capability
- Low gate charge
- 100% avalanche tested

Applications

Switching applications

Description

This Power MOSFET is produced using STMicroelectronics' unique STripFETTM process, which is specifically designed to minimize input capacitance and gate charge. The device offers extremely fast switching performance thanks to the intrinsic fast body diode, making the device ideal for hard switching topologies.

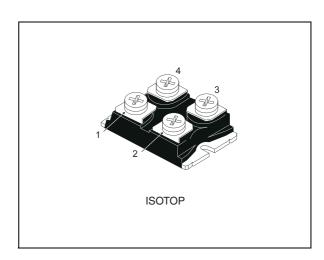


Figure 1. Internal schematic diagram

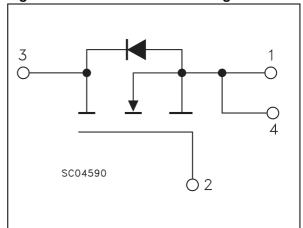


Table 1. Device summary

Order code	Marking	Package	Packaging
STE140NF20D	140NF20D	ISOTOP	Tube

Contents STE140NF20D

Contents

1	Electrical ratings 3
2	Electrical characteristics 4
	2.1 Electrical characteristics (curves)
3	Test circuits9
4	Package mechanical data10
5	Revision history

STE140NF20D Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	200	V
V _{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25 °C	140	Α
I _D	Drain current (continuous) at T _C =100 °C 88		Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	560	Α
P _{TOT}	Total dissipation at T _C = 25 °C	500	W
I _{AR} ⁽²⁾	Avalanche current, repetitive or not repetitive	140	Α
E _{AS} ⁽³⁾	Single pulse avalanche energy	800	mJ
dv/dt ⁽⁴⁾	Peak diode recovery voltage slope	25	V/ns
V _{ISO}	Insulation winthstand voltage (AC-RMS)	2500	V
T _J T _{stg}	Operating junction temperature Storage temperature	- 55 to 150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.25	°C/W
R _{thj-amb} Thermal resistance junction-ambient		40	°C/W

^{2.} Pulse width limited by Tjmax

^{3.} Strating Tj = 25 °C, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$

^{4.} $I_{SD} \leq$ 140 A, di/dt \leq 1000 A/ μ s, $V_{DD} \leq$ 80% $V_{(BR)DSS}$

Electrical characteristics STE140NF20D

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	200			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 200 V, V _{DS} = 200 V, T _C = 125 °C			10 100	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 70 A		10	12	mΩ

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f=1 MHz, V _{GS} =0	-	11100 2190 334	-	pF pF pF
C _{o(tr)} (1)	Equivalent capacitance time related	$V_{DS} = 0$ to 160 V, $V_{GS} = 0$,	-	1525	-	pF
C _{o(er)} (2)	Equivalent capacitance energy related	V _{DS} = 0 to 100 v, v _{GS} = 0,	-	1139	-	pF
R _g	Intrinsic gate resistance	f = 1 MHz open drain	-	1.4	-	Ω
$egin{array}{c} Q_{ m g} \ Q_{ m gd} \end{array}$	Total gate charge $V_{DD} = 160 \text{ V}, I_{D} = 140 \text{ A},$ Gate-source charge $V_{GS} = 10 \text{ V}$ (see Figure 16)		-	338 47 183	•	nC nC nC

^{1.} Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

^{2.} Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_{\text{d(on)}} \\ t_{\text{r}} \\ t_{\text{d(off)}} \\ t_{\text{f}} \end{array}$	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 100 V, I_{D} = 70 A, R_{G} =4.7 Ω , V_{GS} =10 V (see Figure 15)	-	232 218 283 250	-	ns ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		140	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		560	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 140 A, V _{GS} =0	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 140 A,		190		ns
Q_{rr}	Reverse recovery charge	di/dt = 100 A/μs,	-	1.4		nC
I _{RRM}	Reverse recovery current	V _{DD} = 60 V		14		Α
t _{rr}	Reverse recovery time	I _{SD} = 140 A,		257		ns
Q_{rr}	Reverse recovery charge	di/dt = 100 A/μs,	-	2.4		μC
I _{RRM}	Reverse recovery current	V _{DD} = 60 V, Tj=150 °C		18		Α

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STE140NF20D

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

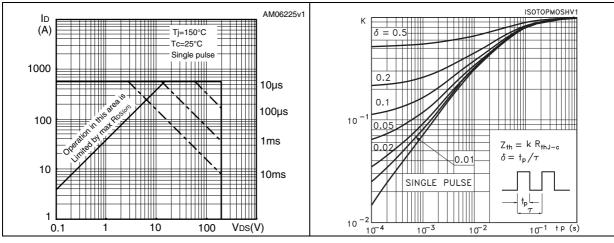


Figure 4. Output characteristics

Figure 5. Transfer characteristics

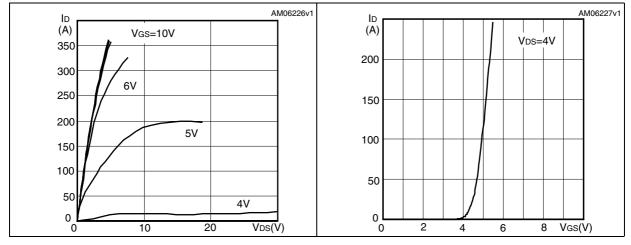


Figure 6. Gate charge vs gate-source voltage Figure 7. Static drain-source on-resistance

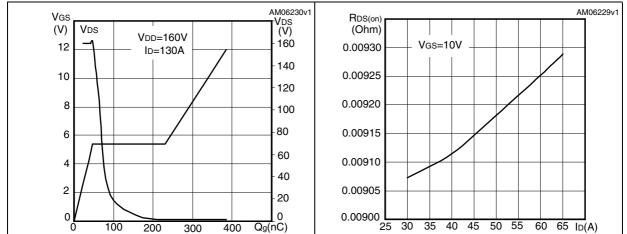
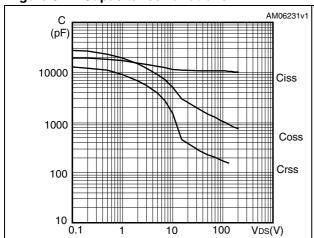



Figure 8. **Capacitance variations**

Figure 9. Output capacitance stored energy

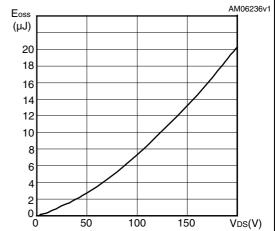
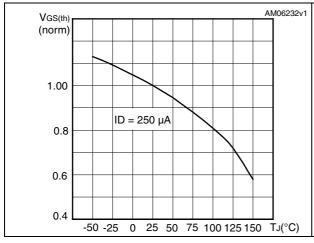
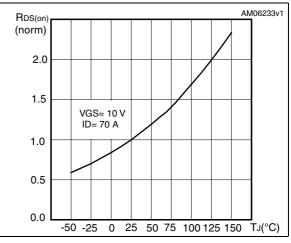
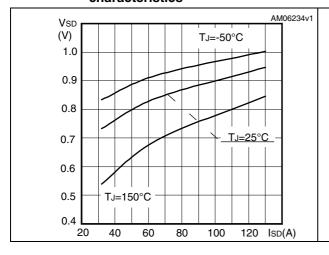
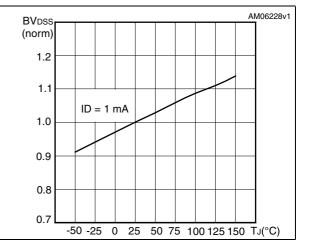
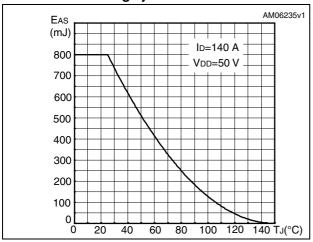




Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature


temperature



Source-drain diode forward Figure 12. characteristics


Normalized B_{VDSS} vs temperature Figure 13.

Electrical characteristics STE140NF20D

Figure 14. Maximum avalanche energy vs starting Tj

STE140NF20D Test circuits

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

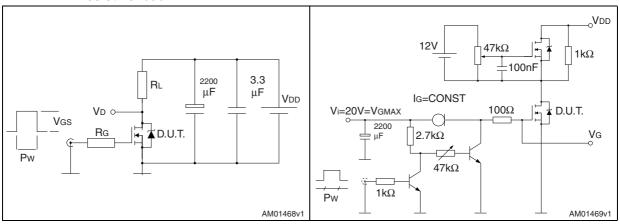


Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 18. Unclamped inductive load test circuit

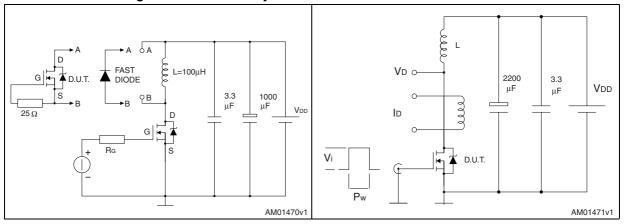
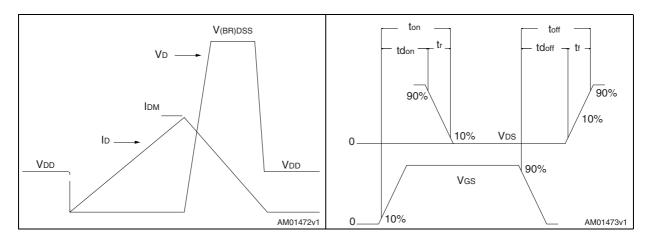
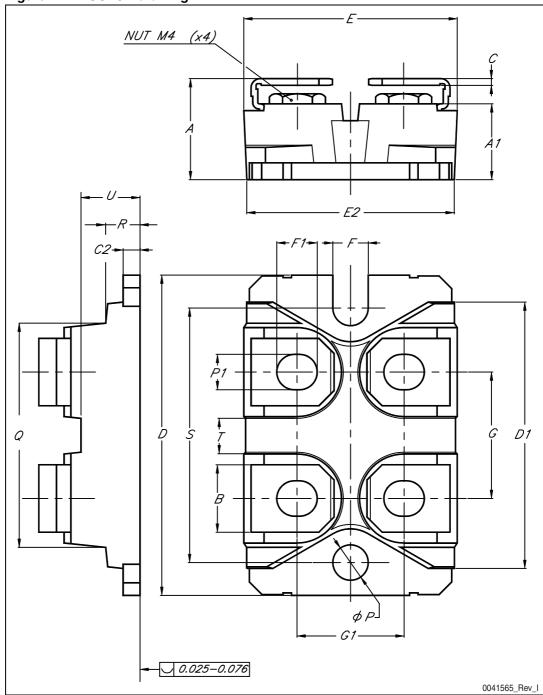



Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. ISOTOP mechanical data

Dim.		mm	
Diiii.	Min.	Тур.	Max.
Α	11.76		12.19
A1	8.92		9.58
В	7.80		8.18
С	0.76		0.84
C2	1.98		2.13
D	38		38.20
D1	31.50		31.70
E	25.20		25.45
E2	24.59		25.07
G	14.91		15.09
G1	12.57		12.83
F	4.09		4.19
F1	4.67		4.93
фР	4.09		4.27
P1	4.06		4.32
Q	26.54		26.90
R	3.94		4.42
S	30.12		30.30
Т	3.30		3.61
U	6.88		7.09

Figure 21. ISOTOP drawing

Revision history STE140NF20D

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
27-Jan-2009	1	First release
18-Jan-2010	2	Document status promoted from preliminary data to datasheet.
01-Jul-2010	3	Inserted V _{ISO} parameter in <i>Table 2: Absolute maximum ratings</i>
17-Oct-2012	4	Updated: Figure 1, 5, 6, 10, 11, 13. Updated: I _{SD} value in note 4 (below Table 2: Absolute maximum ratings). Updated: I _{DSS} and I _{GSS} values (test conditions) in Table 4: On/off states. Updated: Section 4: Package mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

 ${\rm ST}$ and the ${\rm ST}$ logo are trademarks or registered trademarks of ${\rm ST}$ in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

