Data sheet

BMI160Small, low power inertial measurement unit

Bosch Sensortec

BMI160 - Data sheet

Document revision 1.0

Document release date November 25th 2020

Document number BST-BMI160-DS000-09

Technical reference code(s) 0 273 141 187

Notes Data and descriptions in this document are subject to change without notice.

Product photos and pictures are for illustration purposes only and may differ

from the real product appearance.

Page 2

BMI160 Small, low-power Inertial Measurement Unit

The BMI160 is a highly integrated, low power inertial measurement unit (IMU) that provides precise acceleration and angular rate (gyroscopic) measurement.

The BMI160 integrates:

- 16 bit digital, triaxial accelerometer
- 16 bit digital, triaxial gyroscope

Key features

- High performance accelerometer and gyroscope (hardware synchronized)
- Very low power consumption: typ. 925 μA (accelerometer and gyroscope in full operation)
- Android Lollipop compatible: significant motion and step detector / step counter (5 μA each)
- Very small 2.5 x 3.0 mm² footprint, height 0.83 mm
- Built-in power management unit (PMU) for advanced power management
- Power saving with fast start-up mode of gyroscope
- Wide power supply range: 1.71V ... 3.6V
- Allocatable FIFO buffer of 1024 bytes (capable of handling external sensor data)
- Hardware sensor time-stamps for accurate sensor data fusion
- Integrated interrupts for enhanced autonomous motion detection
- Flexible digital primary interface to connect to host over I²C or SPI
- Extended I²C mode with clock frequencies up to 1 MHz
- Additional secondary high speed interface for OIS application
- Capable of handling external sensor data
 - (e.g. geomagnetic or barometric pressure sensors by Bosch Sensortec)

Typical applications

- Augmented Reality
- Indoor navigation
- 3D scanning / indoor mapping
- · Advanced gesture recognition
- Immersive gaming
- 9-axis motion detection
- Air mouse applications and pointers
- Pedometer / step counting
- Advanced system power management for mobile applications
- Optical image stabilization of camera modules
- Free-fall detection and warranty logging

Target Devices

- Smart phones, tablet and transformer PCs
- Game controllers, remote controls and pointing devices
- Head tracking devices
- Wearable devices, e.g. smart watches or augmented reality glasses
- Sport and fitness devices
- Cameras, camera modules
- Toys, e.g. toy helicopters

Page 3

General Description

The BMI160 is an inertial measurement unit (IMU) consisting of a state-of-the-art 3-axis, low-g accelerometer and a low power 3-axis gyroscope. It has been designed for low power, high precision 6-axis and 9-axis applications in mobile phones, tablets, wearable devices, remote controls, game controllers, head-mounted devices and toys. The BMI160 is available in a compact 14-pin $2.5 \times 3.0 \times 0.83$ mm³ LGA package. When accelerometer and gyroscope are in full operation mode, power consumption is typically 925 μ A, enabling always-on applications in battery driven devices. The BMI160 offers a wide V_{DD} voltage range from 1.71V to 3.6V and a V_{DDIO} range from 1.2V to 3.6V, allowing the BMI160 to be powered at 1.8V for both V_{DD} and V_{DDIO}.

Due to its built-in hardware synchronization of the inertial sensor data and its ability to synchronize data of external devices such as geomagnetic sensors, BMI160 is ideally suited for augmented reality, gaming and navigation applications, which require highly accurate sensor data fusion. The BMI160 provides high precision sensor data together with the accurate timing of the corresponding data. The timestamps have a resolution of only $39 \, \mu s$.

Further Bosch Sensortec sensors, e.g. geomagnetic (BMM150) can be connected as slave via a secondary I²C interface. In this configuration, the BMI160 controls the data acquisition of the external sensor and the synchronized data of all sensors is stored the register data and can be additionally stored in the built-in FIFO.

The integrated 1024 byte FIFO buffer supports low power applications and prevents data loss in non-real-time systems. The intelligent FIFO architecture allows dynamic reallocation of FIFO space for accelerometer, gyroscope and external sensors, respectively. For typical 6-DoF applications, this is sufficient for approx. 0.75 s of data capture. In a typical 9-DoF application – including the geomagnetic sensor – this is sufficient for approx. 0.5 s.

Like its predecessors, the BMI160 features an on-chip interrupt engine enabling low-power motion-based gesture recognition and context awareness. Examples of interrupts that can be issued in a power efficient manner are: any- or no-motion detection, tap or double tap sensing, orientation detection, free-fall or shock events. The BMI160 is Android 5.0 (Lollipop) compatible, and in the implementation of the Significant Motion and Step Detector interrupts, each consumes less than 30µA.

The smart built-in power management unit (PMU) can be configured, for example, to further lower the power consumption by automatically sending the gyroscope temporarily into fast start-up mode and waking it up again by internally using the any-motion interrupt of the accelerometer. By allowing longer sleep times of the host, the PMU contributes to significant further power saving on system level.

Besides the flexible primary interface (I²C or SPI) that is used to connect to the host, BMI160 provides an additional secondary interface. This secondary interface can be used in SPI mode for OIS (optical image stabilization) applications in conjunction with camera modules, or in advanced gaming use cases. When connected to a geomagnetic sensor, BMI160 will trigger autonomous read-out of the sensor data from magnetometer without the need for intervention by the host processor.

Index of Contents

SPECIFICATION	7
1.1 ELECTRICAL SPECIFICATION	7
1.2 ELECTRICAL AND PHYSICAL CHARACTERISTICS, MEASUREMENT PERFORMANCE	Ε8
1.3 ABSOLUTE MAXIMUM RATINGS	
. FUNCTIONAL DESCRIPTION	
2.1 BLOCK DIAGRAM	
2.2 Power Modes	
2.2.1 Suspend mode (accelerometer and gyroscope) 2.2.2 Fast start-up mode (gyroscope only)	14 14 15
2.3 SENSOR TIMING AND DATA SYNCHRONIZATION	18
2.3.1 SENSOR TIME	18
2.4 Data Processing	
2.4.1 Data Processing Accelerometer	19 21
2.5 FIFO	21
2.5.1 FIFO FRAMES	
2.6 INTERRUPT CONTROLLER	28
2.6.1 ANY-MOTION DETECTION (ACCEL) 2.6.2 SIGNIFICANT MOTION (ACCEL) 2.6.3 STEP DETECTOR (ACCEL) 2.6.4 TAP SENSING (ACCEL) 2.6.5 ORIENTATION RECOGNITION (ACCEL) 2.6.6 FLAT DETECTION (ACCEL) 2.6.7 LOW-G / FREE-FALL DETECTION (ACCEL) 2.6.8 HIGH-G DETECTION (ACCEL) 2.6.9 SLOW-MOTION ALERT / NO-MOTION INTERRUPT (ACCEL) 2.6.10 DATA READY DETECTION (ACCEL, GYRO AND EXTERNAL SENSORS) 2.6.11 PMU TRIGGER (GYRO) 2.6.12 FIFO INTERRUPTS (ACCEL, GYRO, AND EXTERNAL SENSORS)	
2.7 STEP COUNTER	44
2.8 DEVICE SELF TEST	
2.8.1 SELF-TEST ACCELEROMETER	
2.9 Offset Compensation	45
2.9.1 FAST OFFSET COMPENSATION	

2.9.3 Inline calibration	46
2.10 Non-Volatile Memory	46
2.11 REGISTER MAP	48
2.11.1 REGISTER (0x00) CHIPID	50
2.11.2 REGISTER (0x02) ERR REG	
2.11.3 REGISTER (0x03) PMU_STATUS	51
2.11.4 REGISTER (0x04-0x17) DATA	52
2.11.5 REGISTER (0x18-0x1A) SENSORTIME	53
2.11.6 REGISTER (0x1B) STATUS	54
2.11.7 REGISTER (0x1C-0x1F) INT_STATUS	54
2.11.8 REGISTER (0x20-0x21) TEMPERATURE	
2.11.9 REGISTER (0x22-0x23) FIFO_LENGTH	
2.11.10 REGISTER (0x24) FIFO_DATA	
2.11.11 REGISTER (0x40) ACC_CONF	
2.11.12 REGISTER (0x41) ACC_RANGE	
2.11.13 REGISTER (0x42) GYR_CONF	
2.11.14 REGISTER (0x43) GYR_RANGE	
2.11.15 REGISTER (0x44) MAG_CONF	61
2.11.16 REGISTER (0x45) FIFO_DOWNS	
2.11.17 REGISTER (0x46-0x47) FIFO_CONFIG	63
2.11.18 REGISTER (0x4B-0x4F) MAG_IF	
2.11.19 REGISTER (0x50-0x52) INT_EN	
2.11.20 REGISTER (0x53) INT_OUT_CTRL	
2.11.21 REGISTER (0x54) INT_LATCH	
2.11.22 REGISTER (0x55-0x57) INT_MAP	
2.11.23 REGISTER (0x58-0x59) INT_DATA	
2.11.24 REGISTER (0x5A-0x5E) INT_LOWHIGH	
2.11.25 REGISTER (0x5F-0x62) INT_MOTION	
2.11.27 REGISTER (0x65-0x66) INT ORIENT	
2.11.28 REGISTER (0x67-0x68) INT FLAT	
2.11.29 REGISTER (0x69) FOC CONF	
2.11.30 REGISTER (0x6A) CONF	
2.11.31 REGISTER (0x6B) IF CONF	
2.11.32 REGISTER (0x6C) PMU TRIGGER	79
2.11.33 REGISTER (0x6D) SELF TEST	
2.11.34 REGISTER (0x70) NV CONF	
2.11.35 REGISTER (0x71-0x77) OFFSET	
2.11.36 REGISTER (0x78-0x79) STEP CNT	
2.11.37 REGISTER (0x7A-0x7B) STEP_CONF	
2.11.38 REGISTER (0x7E) CMD	
3. DIGITAL INTERFACES	88
3.1 INTERFACES	88
3.2 Primary Interface	88
3.2.1 PRIMARY INTERFACE I2C/SPI PROTOCOL SELECTION	
3.2.2 PRIMARY SPI INTERFACE	
3.2.3 PRIMARY I2C INTERFACE	
3.2.4 SPI AND I ² C ACCESS RESTRICTIONS	97
3.3 SECONDARY INTERFACE	98
3.3.1 MAGNETOMETER CONNECTED TO SECONDARY INTERFACE	98

Page 6

3.3.2 CAMERA MODULE CONNECTED TO SECONDARY INTERFACE FOR OIS	100
4. PIN-OUT AND CONNECTION DIAGRAMS	101
4.1 PIN-OUT	101
4.2 CONNECTION DIAGRAMS TO USE PRIMARY INTERFACE ONLY	102
4.2.1 I ² C as primary interface	102
4.2.2 SPI 3-WIRE AS PRIMARY INTERFACE	
4.2.3 SPI 4-WIRE AS PRIMARY INTERFACE	
4.3 CONNECTION DIAGRAMS TO USE ADDITIONAL SECONDARY INTERFACE	
4.3.1 PRIMARY SPI 4-WIRE AND SECONDARY MAGNETOMETER INTERFACE (I ² C)	103
4.3.2 PRIMARY SPI 3-WIRE AND SECONDARY MAGNETOMETER INTERFACE (I ² C)	
4.3.4 PRIMARY I ² C AND SECONDARY 4-WIRE SPI AS OIS INTERFACE	
4.3.5 PRIMARY I ² C AND SECONDARY 3-WIRE SPI AS OIS INTERFACE	
5. PACKAGE	106
5.1 OUTLINE DIMENSIONS	106
5.2 Sensing axes orientation	107
5.3 LANDING PATTERN RECOMMENDATION	108
5.4 Marking	109
5.4.1 Mass production marking	
5.4.2 Engineering samples	
5.5 SOLDERING GUIDELINES	
5.6 HANDLING INSTRUCTIONS	
5.7 TAPE AND REEL SPECIFICATION	111
5.7.1 ORIENTATION WITHIN THE REEL	112
5.8 ENVIRONMENTAL SAFETY	112
5.8.1 HALOGEN CONTENT	
5.8.2 MULTIPLE SOURCING	112
6. LEGAL DISCLAIMER	113
6.1 Engineering samples	113
6.2 PRODUCT USE	113
6.3 APPLICATION EXAMPLES AND HINTS	113
7. DOCUMENT HISTORY AND MODIFICATIONS	114

1. Specification

If not stated otherwise, the given values are over lifetime and full performance temperature and voltage ranges, minimum/maximum values are $\pm 3\sigma$. The specifications are split into accelerometer and gyroscope sections of the BMI160.

1.1 Electrical specification

VDD and VDDIO can be ramped in arbitrary order without causing the device to consume significant currents. The values of the voltage at VDD and the VDDIO pins can be chosen arbitrarily within their respective limits. The device only operates within specifications if the both voltages at VDD and VDDIO pins are within the specified range. The voltage levels at the digital input pins must not fall below GNDIO-0.3V or go above VDDIO+0.3V to prevent excessive current flowing into the respective input pin. BMI160 contains a brownout detector, which ensures integrity of data in the non-volatile memory under all operating conditions.

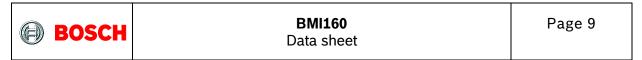
Table 1: Electrical parameter specification

OPERATING CONDITIONS BMI160								
Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Supply Voltage Internal Domains	V_{DD}		1.71	3.0	3.6	V		
Supply Voltage I/O Domain	V_{DDIO}		1.2	2.4	3.6	V		
Voltage Input Low Level	$V_{IL,a}$	SPI			0.3V _{DDIO}	-		
Voltage Input High Level	$V_{\text{IH,a}}$	SPI	0.7V _{DDIO}			-		
Voltage Output	$V_{OL,a}$	V _{DDIO} =1.62V, I _{OL} =3mA, SPI			0.2V _{DDIO}	-		
Low Level	V OL,a	V _{DDIO} =1.2V, I _{OL} =3mA, SPI			$0.23V_{\text{DDIO}}$	-		
Voltage Output	V	V _{DDIO} =1.62V, I _{OH} =3mA, SPI	0.8V _{DDIO}			-		
High Level	V _{OH,a}	V _{DDIO} =1.2V, I _{OH} =3mA, SPI	0.62V _{DDIO}			-		
Operating Temperature	T _A		-40		+85	°C		
NVM write-cycles	n_{NVM}	Non-volatile memory	14			Cycles		
		Gyro in fast start-up, accel in suspend mode, T _A =25°C		500	600			
		Gyro and accel full operation mode, T _A =25°C		925	990			
		Gyro full operation mode, accel in suspend, T _A =25°C		850	900			
Current	IDD	Accel full operation mode, gyro in suspend, T _A =25°C		180	300	μA		
consumption	100	Gyro and accel in suspend mode, T_A =25°C		3	10	μ, ,		
		Significant motion detector, gyro in suspend, accel in low power mode @50Hz, TA=25°C			30			
		Step detector, gyro in suspend, accel in low power mode @50Hz, TA=25°C			30			

Page 8

1.2 Electrical and physical characteristics, measurement performance

Table 2: Electrical characteristics accelerometer


OPERATING CONDITIONS ACCELEROMETER							
Parameter	Symbol	Condition	Min	Тур	Max	Units	
Acceleration Range	g FS2g	Selectable via serial digital interface		±2		g	
	g FS4g			±4		g	
	g FS8g			±8		g	
	g FS16g			±16		g	
Start-up time	$t_{A,su}$	Suspend/low power mode to normal mode, ODR=1.6kHz		3.2	3.8	ms	

OUTPUT SIGNAL ACCELEROMETER							
Parameter	Symbol	Condition	Min	Тур	Max	Units	
Resolution				16		bit	
	S_{2g}	g _{FS2g} , T _A =25°C	15729	16384	17039	LSB/g	
Sensitivity	S _{4g}	g _{FS4g} , T _A =25°C	7864	8192	8520	LSB/g	
Sensitivity	S _{8g}	g _{FS8g} , T _A =25°C	3932	4096	4260	LSB/g	
	S _{16g}	g _{FS16g} , T _A =25°C	1966	2048	2130	LSB/g	
Sensitivity Temperature Drift	TCSA	g _{FS8g} , Nominal V _{DD} supplies best fit straight line		±0.03		%/K	
Sensitivity change over supply voltage	S _A ,vdd	$T_A = 25^{\circ}\text{C},$ $V_{DD,min} \leq V_{DD} \leq V_{DD,max}$ best fit straight line		0.01		%/V	
	Off _{A, init}	g _{FS8g} , T _A =25°C, nominal V _{DD} supplies, component level		±25		mg	
Zero-g Offset	$Off_{A,board}$	g _{FS8g} , T _A =25°C, nominal V _{DD} supplies, soldered, board level		±40		mg	
Zeio-g Oliset	Off _{A,MSL}	g_{FS8g} , $T_A=25^{\circ}C$, nominal V_{DD} supplies, after MSL1-prec. $^1/$ soldered		±70		mg	
	Off _{A,life}	g_{FS8g} , $T_A=25^{\circ}C$, nominal V_{DD} supplies, soldered, over life time ²		±150		mg	
Zero-g Offset Temperature Drift	TCOA	g _{FS8g} , Nominal V _{DD} supplies best fit straight line		±1.0		mg/K	
Nonlinearity	NLA	Best fit straight line, g _{FS8g}		±0.5		%FS	
Output Noise	n _{A,nd}	g_{FS8g} , T_A =25°C, nominal V_{DD} , Normal mode		180	300	μg/√Hz	

¹ Values taken from qualification, according to JEDEC J-STD-020D.1

-

² Values taken from qualification, according to JEDEC J-STD-020D.1

	n _{A,rms}	Filter setting 80 Hz, ODR 200 Hz		1.8		mg-rms
Cross Axis Sensitivity	SA	Relative contribution between any two of the three axes		1		%
Alignment Error	EA	Relative to package outline		±0.5		0
Output Data rate (set of x,y,z rate)	ODRA		12.5		1600	Hz
Output Data rate accuracy (set of x,y,z rate)	AODRA	Normal mode, over whole operating temperature range		±1		%

Table 3: Electrical characteristics gyroscope

OPERATING CONDITIONS GYROSCOPE							
Parameter	Symbol	Condition	Min	Тур	Max	Unit	
	R _{FS125}			125		°/s	
	R _{FS250}			250		°/s	
Range	R _{FS500}	Selectable via serial digital interface		500		°/s	
	R _{FS1000}			1,000		°/s	
	R _{FS2000}			2,000		°/s	
Start-up time	t _{G,su}	Suspend to normal mode ODR _G =1600Hz		55		ms	
Start-up time	$t_{G,FS}$	Fast start-up to normal mode		10		ms	

OUTPUT SIGNAL GYROSCOPE							
	R _{FS2000}	Ta=25°C	15.9	16.4	16.9	LSB/º/s	
	R _F S1000	Ta=25°C	31.8	32.8	33.8	LSB/°/s	
Sensitivity	R _{FS500}	Ta=25°C	63.6	65.6	67.6	LSB/°/s	
	R _{FS250}	Ta=25°C	127.2	131.2	135.2	LSB/°/s	
	R _{FS125}	Ta=25°C	254.5	262.4	270.3	LSB/°/s	
Sensitivity change over temperature	TCS _G	R _{FS2000} , Nominal V _{DD} supplies best fit straight line		±0.02		%/K	
Sensitivity change over supply voltage	S _G ,v _D D	$\begin{aligned} & \text{T}_{\text{A}}\text{=}25\text{°C,} \\ & \text{V}_{\text{DD,min}} \leqslant \text{V}_{\text{DD}} \leqslant \text{V}_{\text{DD,max}} \\ & \text{best fit straight line} \end{aligned}$		0.01		%/V	
Nonlinearity	NL _G	Best fit straight line RFS1000, RFS2000		0.1		%FS	
g- Sensitivity		Sensitivity to acceleration stimuli in all three axis (frequency <20kHz)			0.1	°/s/g	
Zero-rate offset	$\begin{array}{c} \text{Off } \Omega_{\text{X}} \\ \Omega_{\text{y and }} \Omega_{\text{z}} \end{array}$	${\rm T_{_A}}$ =25°C, fast offset compensation off		±3		°/s	

BST-BMI160-DS000-09 | Revision 1.0 | November 2020

Bosch Sensortec

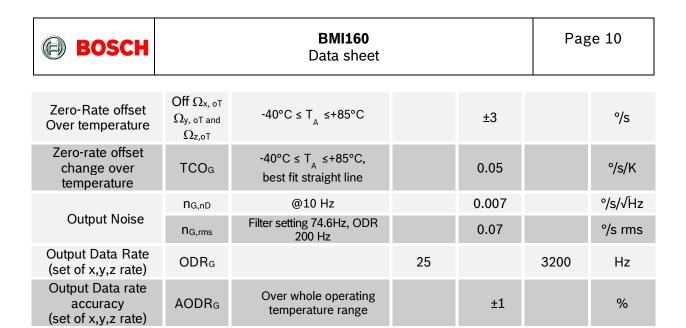


Table 4: Electrical characteristics temperature sensor

Sensitivity to stimuli in

non-sense-direction

OPERATING CONDITIONS AND OUTPUT SIGNAL OF TEMPERATURE SENSOR							
Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Temperature Sensor Measurement Range	Ts		-40		85	°C	
Temperature Sensor Slope	dTs			0.002		K/LSB	
Temperature Sensor Offset	OTs			±2		K	
Output Data Rate	ODR⊤	Accelerometer on or gyro in fast start-up		0.8		Hz	
·		Gyro active		100		Hz	
Resolution	nτ	Accelerometer on or gyro in fast start-up		8		bit	
		Gyro active		16		bit	

Cross Axis

Sensitivity

 $X_{G,S}$

2

%

Page 11

1.3 Absolute maximum ratings

Table 5: Absolute maximum ratings

Parameter	Condition	Min	Max	Units
Valta are at Coural of Dia	V _{DD} Pin	-0.3	4.25	V
Voltage at Supply Pin	V _{DDIO} Pin	-0.3	4.25	V
Voltage at any Logic Pin	Non-Supply Pin	-0.3	V _{DDIO} +0.3	V
Passive Storage Temp. Range	≤65% rel. H.	-50	+150	°C
None-volatile memory (NVM) Data Retention	T = 85°C, after 15 cycles	10		у
	Duration 200 µs, half sine		10,000	g
Mechanical Shock	Duration 1.0 ms, half sine		2,000	g
	Free fall onto hard surfaces		1.8	m
	HBM, at any Pin		2	kV
ESD	CDM		500	V
	MM		200	V

Note: Stresses above these listed maximum ratings may cause permanent damage to the device. Exposure beyond specified electrical characteristics as specified in Table 1 may affect device reliability or cause malfunction.

2. Functional Description

2.1 Block diagram

The figure below depicts the dataflow in BMI160 and the configuration parameters for data rates:

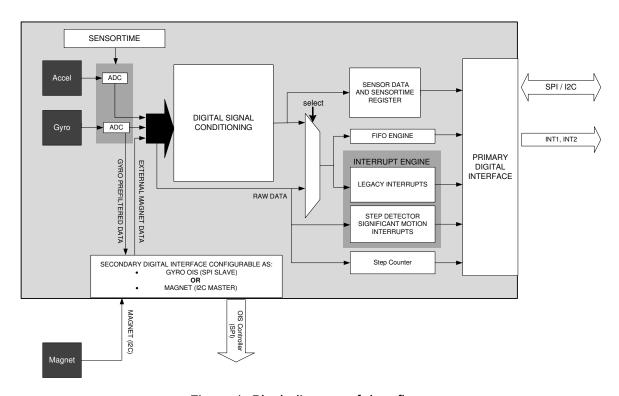


Figure 1: Block diagram of data flow

The pre-filtered input data may be already temperature compensated or other low level correction operations may be applied to them.

The data from the sensor are always sampled with a data rate of 6400 Hz for the gyroscope and 1600 Hz for the accelerometer. The data are filtered to an output data rate configured in the Register (0x40) ACC_CONF and Register (0x42) GYR_CONF for accelerometer and gyroscope, respectively. The data processing implements a low pass filter configured in the Register (0x40) ACC_CONF and Register (0x42) GYR_CONF for accelerometer and gyroscope, respectively. In addition further down sampling for the interrupt engines and the FIFO is possible and configured in the Register (0x45) FIFO_DOWNS. This down sampling discards data frames.

The sensor time is synchronized with the update of the data register. Synchronization is a purely digital statement.

Page 13

2.2 Power modes

By default BMI160 accel and gyro are in suspend mode after powering up the device. The device is powering up in less than 10ms.

Three power modes are supported for accelerometer and gyroscope:

Accelerometer

- **Normal mode:** full chip operation
- **Low power mode**: duty-cycling between suspend and normal mode. FIFO data readout are supported in lower power mode to a limited extent, see Register PMU STATUS.
- **Suspend mode**: No sampling takes place, all data is retained, and delays between subsequent I²C operations are allowed. FIFO data readout is not supported in suspend mode.

Gyroscope

Normal mode: same as accelerometerSuspend mode: same as accelerometer

• Fast start-up mode: start-up delay time to normal mode ≤10 ms

Table 6: Power modes of accelerometer and gyro in BMI160

		Accelerometer	Gyroscope	external Magnetometer BMM150
full operation mode	Normal mode	✓	✓	✓
Sleep modes	Fast Start-up mode		✓	
	Suspend mode	✓	✓	\checkmark
Low power modes	Low power mode	✓		✓

Suspend and fast start-up modes are *sleep modes*. Switching between normal and low power mode will not impact the output data from the sensor. This allows the system to switch from low power mode to normal mode to read out the sensor data in the FIFO with a data rate limited by the serial interface.

2.2.1 Suspend mode (accelerometer and gyroscope)

In suspend mode, the MEMS sensors are powered off but the digital circuitry is still active.

Note:

When all sensors are in suspend or low power mode, burst writes are not supported, normal writes need wait times after the write command is issued (\sim 400 μ s), and burst reads are not supported on Register (0x24) FIFO_DATA. If all sensors (accelerometer, gyroscope or magnetometer) are in either suspend or low power mode, the FIFO must not be read.

Page 14

2.2.2 Fast start-up mode (gyroscope only)

In **fast start-up mode** the sensing analog part is powered down, while the drive and the digital part remains largely operational. No data acquisition is performed. The latest rate data and the content of all configuration registers are kept. The fast start-up mode allows a fast transition (≤ 10 ms) into normal mode while keeping power consumption significantly lower than in normal mode.

2.2.3 Transitions between power modes

The table below for the power modes of gyroscope and accelerometer shows which power mode combinations are supported by BMI160.

With regard to the below diagram, transitions between power modes are only allowed in horizontal or vertical direction. Transitions in diagonal direction are not supported.

Table 7: Typical total current consumption in μA according to accel/gyro modes

Current consumption in μA		Accelerometer Mode				
	Suspend	Normal	Low Power			
	Suspend	3	180	See Table 8		
Gyroscope Mode	Fast Start-up	500	580	n.a.		
Would	Normal	850	925	n.a.		

The power mode setting can be configures independently from the output data rate set. The main difference between normal and low power mode is the power consumption as shown in the figure below. If the sleep time between two configured sampling intervals becomes too short to duty cycle between suspend and normal mode, the accelerometer stays automatically in normal mode. In order to make the transition between low power and normal mode as transparent as possible, an undersampling mode is defined in such a way that it mimics the behavior of the lower data rate in low power mode in normal mode. The low power mode then only switches clock sources.

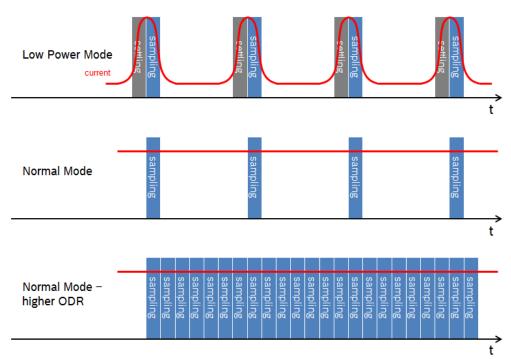


Figure 2: low power and normal mode operation

2.2.4 Low power mode (accelerometer only)

In low power modes the accelerometer toggles between normal mode and suspend mode. The power consumption is given by the power consumption in normal mode times the fraction of time the sensor is in normal mode. The time in normal mode is defined by the startup time of the MEMS element, plus the analogue settling time. This results in a minimum time in normal mode of the settling time plus (averaged samples)/1600 Hz.

Regarding register read and write operations, the note in chapter 2.2.1 applies.

2.2.4.1 Power Consumption in accelerometer low power mode

When accelerometer and gyroscope are operated in normal mode, there is no significant dependence on the specific settings like ODR, undersampling and bandwidth. The same applies to the fast power up mode of the gyroscope. If the accelerometer, however, is operated in low power mode and undersampling is enabled, the power consumption of the accel depends on the two parameters ODR and number of averaging cycles.

In low power mode (gyroscope in suspend), the actual power consumption depends on the selected setting in Register (0x40) ACC_CONF.

Table 8: Typical total current consumption in µA according to number of averaging cycles and accelerometer ODR settings (gyroscope in suspend mode and accelerometer in low power mode and undersampling)

Typical current consu	mption in		A\	VG – nui	mber of	averagir	ig cycl	es	
μА		1	2	4	8	16	32	64	128
	0.78125	3	3	4	4	5	6	9	14
	1.5625	4	4	4	5	6	9	14	25
	3.125	4	5	5	7	9	15	25	46
ODR	6.25	6	6	8	10	16	26	47	90
of accelerometer in low power mode	12.5	8	10	12	18	28	49	92	n. m.*
[Hz]	25	14	17	22	32	54	96	96 normal mode*	
(gyroscope in	50	25	30	41	62	104	no	rmal n	node*
suspend mode)	100	46	57	78	121		norma	l mode	*
	200	90	111	154		nori	mal mo	de*	
	400	172	172			normal i	mode*		
	800				normal	mode*			
		normal mode*							

^{*} Note: Those combinations are not available in low-power mode. Cycling in suspend is not possible. Pls. switch to normal power mode for these combinations.

2.2.4.2 Noise of accelerometer in low power mode

When acc_us=1, accelerometer is in undersampling mode. The noise is only depending on the number of averaging cycles

Table 9: Accel noise in mg according to averaging with undersampling (range +/- 8g)

AVG – number of averaging cycles	1	2	4	8	16	32	64	128
RMS-noise (typ.) [mg] X, Y	5.2	3.6	2.5	1.0	1.0	0.0	0.0	0.5
RMS-noise (typ.) [mg] Z	3.7	3.2	2.5	1.8	1.3	0.9	0.6	0.5

2.2.5 PMU (Power Management Unit)

The integrated PMU (Power Management Unit) allows advanced power management features by combining power management features of all built-in sensors and externally available wake-up devices.

See chapter 2.6.11, PMU Trigger (Gyro).

2.2.5.1 Automatic gyroscope power mode changes

To further lower the power consumption, the gyroscope may be configured to be temporarily put into sleep mode, which is in BMI160 configurable as suspend or fast-start-up mode, when no motion is detected by the accelerometer. This mode benefits from the accelerometer any-motion and nomotion interrupt that is used to control the power state of the gyroscope. To configure this feature Register (0x6C) PMU_TRIGGER is used.

Page 17

2.2.5.2 Power management with external geomagnetic sensor

An external magnetometer can be connected via the secondary interface. The drivers support Bosch Sensortec devices. The PMU allows advanced power management with the external magnetometer.

Table 10: Supported magnetometer and accelerometer power modes (only horizontal and vertical transitions are allowed)

		Accel					
		Suspend	Normal	Low power			
Suspend	Suspend	Supported	Supported	Supported			
Magnetometer	Normal	Supported	Supported	Supported			

Note, for setting the magnetometer to suspend mode it is required to put the magnetometer itself into suspend mode through the magnetometer interface manual mode mag_man_en in Register (0x4B-0x4F) MAG_IF and to set the magnetometer interface after that to suspend using a $mag_set_pmu_mode$ command in the Register (0x7E) CMD. Changing the magnetometer interface power mode to suspend does not imply any mode change in the magnetometer.

2.3 Sensor Timing and Data synchronization

2.3.1 Sensor Time

The Register (0x18-0x1A) SENSORTIME is a free running counter, which increments with a resolution of 39 μ s. All sensor events e.g. updates of data registers are synchronous to this register as defined in the table below. With every update of the data register or the FIFO, a bit m in the Register (0x18-0x1A) SENSORTIME toggles where m depends on the output data rate for the data register and the output data rate and the FIFO down sampling rate for the FIFO. The table below shows which bit toggles for which update rate of data register and FIFO. The time stamps in Register (0x18-0x1A) SENSORTIME are available independent of the power mode the device is in.

Table 11: Sensor time

Bit <i>m</i> in sensor_time	Resolution [ms]	Update rate [Hz]
0	0.039	25641
1	0.078	12820
2	0.156	6400
3	0.3125	3200
4	0.625	1600
5	1.25	800
6	2.5	400
7	5	200
8	10	100
9	20	50
10	40	25
11	80	12.5
12	160	6.25
13	320	3.125
14	640	1.56
15	1280	0.78
16	2560	0.39
17	5120	0.20
18	10240	0.10
19	20480	0.049
20	40960	0.024
21	81920	0.012
22	163840	0.0061
23	327680	0.0031

2.3.2 Data synchronization

The sensor data from accelerometer and gyroscope are strictly synchronized on hardware level, i.e. they run on exactly the same sampling rate.

BMI160 supports various level of data synchronization:

- Internal hardware synchronization of accelerometer, gyroscope and external sensor data.
- High precision synchronization of external data with sensor data through hardware timestamps. The hardware timestamp resolution is 39 µs.

Page 19

- Hardware synchronization of the data of accelerometer, gyro and external sensor through a unique DRDY interrupt signal.
- FIFO entries of the accelerometer, gyro and external sensor are already synchronized by hardware. The according time stamp can be provided with each full FIFO read.
- Synchronization of external data (e.g. magnetometer data) with FIFO data at data sampling granularity through hardware signaling

2.4 Data Processing

The accelerometer digital filter can be configured through the parameters: acc_bwp , acc_odr and acc_us . The gyroscope digital filter can be configured through the parameters: gyr_bwp and gyr_odr . There is no undersampling parameter for the gyroscope.

Note:

Illegal settings in configuration registers will result in an error code in the Register (0x02) ERR_REG. The content of the data register is undefined, and if the FIFO is used, it may contain no value.

2.4.1 Data Processing Accelerometer

The accelerometer digital filter can be configured through the parameters: acc_bwp , acc_odr and acc_us in Register (0x40) ACC_CONF for the accelerometer. The accelerometer data can only be processed in normal power mode or in low power mode.

2.4.1.1 Accelerometer data processing for normal power mode

When normal power mode is used, the undersampling mode should be disabled (acc_us=0b0). In this configuration mode, the accelerometer data is sampled at equidistant points in the time, defined by the accelerometer output data rate parameter (acc_odr). The output data rate can be configured in one of eight different valid ODR configurations going from 12.5Hz up to 1600Hz.

Note: Lower ODR values than 12.5Hz are not allowed when undersampling mode is not enabled. If they are used they result in an error code in Register (0x02) ERR REG.

When acc_us=0b0, the acc_bwp parameter needs to be set to 0b010 (normal mode). The filter bandwidth shows a 3db cutoff frequency shown in the following table:

Table 12: 3dB cutoff frequency of the accelerometer according to ODR with normal filter mode

Accelerometer ODR [Hz]	12.5	25	50	100	200	400	800	1600
3dB Cutoff frequency [Hz]	5.06	10.12	20.25	40.5	80	162 (155 for Z axis)	324 (262 for Z axis)	684 (353 for Z axis)

The noise is also depending on the filter settings and ODR, see table below.

Page 20

Table 13: Accelerometer noise in mg according to ODR with normal filter mode (range +/- 8g)

ODR in Hz		12.5	25	50	100	200	400	800	1600
Normal Mode	X, Y	0.5	0.0	0.0	4.0	4.0	0.5	3.6	5.2
RMS-Noise (typ.) [mg]	Z	0.5	0.6	0.9	1.3	1.8	2.5	3.2	3.7

When the filter mode is set to **OSR2** (acc_bwp=0b001 and acc_us=0b0), both stages of the digital filter are used and the data is oversampled with an oversampling rate of 2. That means that for a certain filter configuration, the ODR has to be 2 times higher than in the normal filter mode. Conversely, for a certain filter configuration, the filter bandwidth will be the half of the bandwidth achieved for the same ODR in the normal filter mode. For example, for ODR=50Hz we will have a 3dB cutoff frequency of 10.12Hz.

When the filter mode is set to **OSR4** (acc_bwp=0b000 and acc_us=0b0), both stages of the digital filter are used and the data is oversampled with an oversampling rate of 4. That means that for a certain filter configuration, the ODR has to be 4 times higher than in the normal filter mode. Conversely, for a certain filter configuration, the filter bandwidth will be 4 times smaller than the bandwidth achieved for the same ODR in the normal filter mode. For example, for ODR=50Hz we will have a 3dB cutoff frequency of 5.06Hz.

2.4.1.2 Accelerometer data processing for low power mode

When low power mode is used, the undersampling mode must be enabled (acc_us=0b1). In this configuration mode, the accelerometer regularly changes between a suspend power mode phase where no measurement is performed and a normal power mode phase, where data is acquired. The period of the duty cycle for changing between suspend and normal mode will be determined by the output data rate (acc_odr). The output data rate can be configured in one of 12 different valid ODR configurations going from 0.78Hz up to 1600Hz.

The samples acquired during the normal mode phase will be averaged and the result will be the output data. The number of averaged samples can be determined by the parameter acc_bwp through the following formula:

averaged samples = 2^{(Val(acc_bwp))} skipped samples = (1600/ODR)-averaged samples

A higher number of averaged samples will result in a lower noise level of the signal, but since the normal power mode phase is increased, the power consumption will also rise. This relationship can be observed in chapter Power Consumption.

Note: When undersampling (acc_us=0b1 in Register (0x40) ACC_CONF) and the use of prefiltered data for interrupts or FIFO is configured an error code is flagged in Register (0x02) ERR_REG. Pre-filtered data for interrupts are configured through int_motion_src=0b1 or int_tap_src=0b1 in Register (0x58-0x59) INT_DATA. Pre-filtered data for the FIFO are configured through acc_fifo_filt_data=0b0 in Register (0x45) FIFO_DOWNS.

Page 21

2.4.2 Data Processing Gyroscope

The gyroscope digital filter can be configured through the parameters: gyr_bwp and gyr_odr in GYR_CONF for the gyroscope. There is no undersampling option for the gyroscope data processing. The gyroscope data can only be processed in normal power mode.

There are three data processing modes defined by gyr_bwp. Normal mode, OSR2, OSR4. For details see chapter 2.11.13.

2.4.2.1 Gyroscope data processing for normal power mode

When the filter mode is set to normal (gyr_bwp=0b010), the gyroscope data is sampled at equidistant points in the time, defined by the gyroscope output data rate parameter (gyr_odr). The output data rate can be configured in one of eight different valid ODR configurations going from 25Hz up to 3200Hz.

Note: Lower ODR values than 25Hz are not allowed. If they are used they result in an error code in Register (0x02) ERR REG.

The filter bandwidth as configured by gyr-odr shows a 3db cutoff frequency shown in the following table:

Gyroscope ODR [Hz]	25	50	100	200	400	800	1600	3200
3dB Cutoff frequency [Hz]	10.7	20.8	39.9	74.6	136.6	254.6	523.9	890

The noise is also depending on the filter settings and ODR, see table below.

ODR in Hz	12.5	25	50	100	200	400	800	1600
Normal Mode RMS-Noise	0.5	0.6	0.9	1 2	1.8	2.5	3.6	5.2
(typ.) [mg]	0.5	0.6	0.9	1.3	1.0	2.5	3.2	3.7

When the filter mode is set to **OSR2** (gyr_bwp=0b001), both stages of the digital filter are used and the data is oversampled with an oversampling rate of 2. That means that for a certain filter configuration, the ODR has to be 2 times higher than in the normal filter mode. Conversely, for a certain filter configuration, the filter bandwidth will be the approximately half of the bandwidth achieved for the same ODR in the normal filter mode. For example, for ODR=50Hz we will have a 3dB cutoff frequency of 10.12Hz.

When the filter mode is set to **OSR4** (gyr_bwp=0b000), both stages of the digital filter are used and the data is oversampled with an oversampling rate of 4. That means that for a certain filter configuration, the ODR has to be 4 times higher than in the normal filter mode. Conversely, for a certain filter configuration, the filter bandwidth will be approximately 4 times smaller than the bandwidth achieved for the same ODR in the normal filter mode. For example, for ODR=50Hz we will have a 3dB cutoff frequency of 5.06Hz.

Note: the gyroscope doesn't feature a low power mode. Therefore, there is also no undersampling mode for the gyroscope data processing.

2.5 FIFO

A FIFO is integrated in BMI160 to support low power applications and prevent data loss in non-real-time systems. The FIFO has a size of 1024 bytes. The FIFO architecture supports to

Page 22

dynamically allocate FIFO space for accelerometer and gyroscope. For typical 6 DoF applications, this is sufficient for approx. 0.75 s of data capture. In typical 9DoF applications – including the magnetometer – this is sufficient for approx. 0.5 s. If not all sensors are enabled or lower ODR is used on one or more sensors, FIFO size will be sufficient for capturing data longer, increasing ODR of one or more sensors will reduce available capturing time. The FIFO features a FIFO full and watermark interrupt. Details can be found in chapter 2.6.12.

Page 23

A schematic of the data path when the FIFO is used is shown in the figure below.

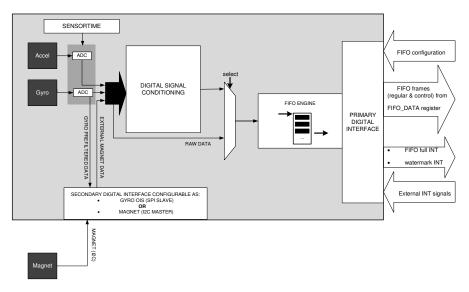


Figure 3: Block diagram of FIFO data path

2.5.1 FIFO Frames

When using the FIFO, the stored data can be read out by performing a burst read on the register (0x24) FIFO_DATA. The data is stored in units called frames.

2.5.1.1 Frame rates

The frame rate for the FIFO is defined by the maximum output data rate of the sensors enabled for the FIFO via the Register (0x46-0x47) FIFO_CONFIG. If pre-filtered data are selected in Register (0x45) FIFO_DOWNS, a data rate of 6400 Hz for the gyroscope and 1600 Hz for the accelerometer is used.

The frame rate can be reduced further via downsampling (Register (0x45) FIFO_DOWNS). This can be done independently for each sensor. Downsampling just drops sensor data; no data processing or filtering is performed.

2.5.1.2 Frame format

When using the FIFO, the stored data can be read out by performing a burst read on the register (0x24) FIFO_DATA. The data will be stored in frames. The frame format is important for the software to appropriately interpret the information read out from the FIFO.

The FIFO can be configured to store data in either header mode or in headerless mode (see figure below). The headerless mode is usually used when neither the structure of data nor the number of sensors change during data acquisition. In this case, the number of storable frames can be maximized. In contrast, the header mode is intended for situations where flexibility in the data structure is required, e.g. when sensors runs at different ODRs or when switching sensors on or off on the fly during operation.

Page 24

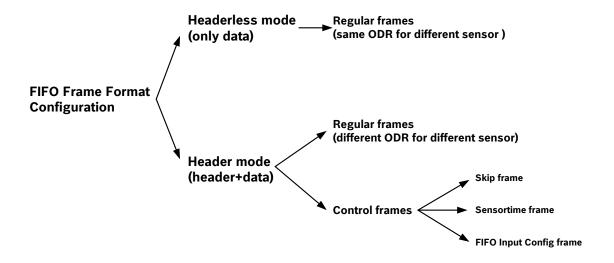


Figure 4: FIFO frame configurations

In **headerless mode** no header byte is used and the frames consist only of data bytes. The data bytes will always be sensor data. Only regular frames with the same ODR for all sensors are supported and no external interrupt flags are possible. This mode has the advantage of an easy frame format and an optimized usage of the 1024 bytes of FIFO storage. It can be selected by disabling fifo_header in Register (0x46-0x47) FIFO_CONFIG. In case of overreading the FIFO, non-valid frames always contain the fixed expression (magic number) 0x80 in the data frame.

In **header mode** every frame consists of a header byte followed by one or more data bytes. The header defines the frame type and contains parameters for the frame. The data bytes may be sensor data or control data. Header mode supports different ODRs for the different sensor data and external interrupt flags. This mode therefore has the advantage of allowing maximum flexibility of the FIFO engine. It is activated by enabling fifo_header in Register (0x46-0x47) FIFO CONFIG.

2.5.1.3 Header byte format

The header format is shown below:

Bit	7	6	5	4
Content	fh_mode<1:0>		fh_parm<3:2>	
Bit	3	2	1	0
Read/Write	fh_parm<1:0>		fh ext<1:0>	

Page 25

The fh mode, fh opt and fh ext fields are defined as

fh_mode<1:0>	Definition	fh_parm <3:0>	fh_ext<1:0>
0b10	Regular	Frame content	Tag of INT2 and INT1
0b01	Control	Control Opcode	
0b00	Reserved	Na	
0b11	Reserved	Na	

f parm=0b0000 is invalid for regular mode, a header of 0x80 indicates an uninitialized frame.

2.5.1.4 Data bytes Format

When the FIFO is set to "headerless mode", only sensor data will be saved into the FIFO (in the same order as in the data register). Any combination of accelerometer, gyroscope and external sensor data can be stored. External interrupt tags are not supported in headerless mode.

When the FIFO is set to "header mode", the data byte format is different depending on the type of frame. There are two basic frame types, control frames and regular data frames. Each different type of control frame has its own data byte format. It can contain skipped frames, sensortime data or FIFO configuration information as explained in the following chapters. If the frame type is a regular frame (sensor data), the data byte section of the frame depend on how the data is being transmitted in this frame (as specified in the header byte section). It can include data from only one sensor or any combination of accelerometer, gyroscope and external sensor data.

2.5.1.5 Frame types

Regular frame (fh_mode=0b10)

Regular frames are the standard FIFO frames and contain sensor data. Regular frames can be identified by fh_mode set to 0b10 in the **header byte** section. The fh_parm frame defines which sensors are included in the data byte of the frame. The format of the fh_param is defined in the following table:

Name		fh_parm<2:0>		
Bit	3	2	1	0
Content	reserved	fifo_mag_data	fifo_gyr_data	fifo_acc_data

When fifo_<sensor $x>_data$ is set to '1'('0'), data for sensor x is included (not included) in the data part of the frame.

The fh_ext<1:0> field is set when an external interrupt is triggered. External interrupt tags are configured using <code>int<x>_output_en</code> in Register (0x53) INT_OUT_CTRL, <code>int<x>_input_en</code> in Register (0x54) INT_LATCH and <code>fifo_tag_int<x>_en</code> in Register (0x46-0x47) FIFO_CONFIG. For details, please refer to chapter 2.5.2.4.

The **data byte** part for regular data frames is identical to the format defined for the Register (0x04-0x17) DATA. If a header indicates that not all sensors are included in the frame, these data are skipped and do not consume space in the FIFO.

Page 26

Control frame (fh_mode=0b01):

Control frames, which are only available in header mode, are used for special or exceptional information. All control frames contribute to the *fifo_byte _counter* in Register (0x22-0x23) FIFO_LENGTH. In detail, there are three types of control frame, which can be distinguished by the *fh_parm* field:

Skip frame (fh_parm=0b000):

In case of a FIFO overflow, a skip frame is prepended to the FIFO content when the next readout is performed. A skip frame indicates the number of skipped frames since the last readout.

In the header byte of a FIFO_input_config frame, fh_mode equals 0b01 (since it is a control frame) and the fh_param equals 0b000 (indicating FIFO_input_config frame). The data byte part of a skip frame consists of one byte and contains the number of skipped

frames. When more than 0xFF frames have been skipped, 0xFF is returned.

Sensortime frame (fh parm=0b001):

If the sensortime frame functionality is activated (see description of Register (0x46-0x47) FIFO_CONFIG) and the FIFO is overread, the last data frame is followed by a sensortime frame. This frame contains the BMI160 timestamp content corresponding th the time at which the last data frame was read.

In the header byte of a sensortime frame, fh_mode = 0b01 (since is a control frame) and fh_param = 0b001 (indicating sensortime frame). The data byte part of a sensortime frame consists of 3 bytes and contains the 24-bit sensortime. A sensortime frame does not consume memory in the FIFO.

FIFO_input_config frame (fh_parm=0b010):

Whenever the configuration of the FIFO input data sources changes, a FIFO input config frame is inserted into the FIFO in front of the data to which the configuration change is applied.

In the header byte of a FIFO_input_config frame, fh_mode = 0b01 (since it is a control frame) and fh_param = 0b010 (indicating FIFO_input_config frame). The data byte part of a FIFO_input_config Frame consists of one byte and contains data corresponding to the following table:

Bit	7	6	5	4
Content	reserved		mag_if_ch	mag_conf_ch
Bit	3	2	1	0
Read/Write	gyr_range_ch	gyr_conf_ch	acc_range_ch	acc conf ch

gyr_range_ch: A change in Register (0x43) GYR_RANGE becomes active.

gyr_conf_ch: A change in Register (0x42) GYR_CONF or gyr_fifo_filt_data or

gyr fifo downsampling in Register (0x45) FIFO DOWNS becomes

active.

acc_range_ch: A change in Register (0x41) ACC_RANGE becomes active.

Page 27

acc_conf_ch: A change in Register (0x40) ACC_CONF or acc_fifo_filt_data or

acc fifo downsampling in Register (0x45) FIFO DOWNS becomes

active.

mag_if_ch: Will be set if there are changes on interface configuration

(e.g. device address, read/write address). It can be used to switch

to another device or different data-set within connected device.

mag_conf_ch: A change in Register (0x44) MAG_CONF becomes active.

2.5.2 FIFO conditions and details

2.5.2.1 Overflows

In the case of overflows the FIFO will overwrite the oldest data. A skip frame will be prepended at the next FIFO readout if the available FIFO space falls below the maximum size frame.

2.5.2.2 Overreads

If more data bytes are read from the FIFO than valid data bytes are available, '0x80' is returned. Since a header '0x80' indicates an invalid frame, the SW can recognize the end of valid data. After the invalid header the data is undefined. This is valid in both headerless and header mode. In addition, if header mode and the sensortime frame are enabled, the last data frame is followed by a sensortime frame. After this frame, a 0x80 header will be returned that indicates the end of valid data.

2.5.2.3 Partial frame reads

When a frame is only partially read through, it will be repeated within the next reading operation (including the header).

2.5.2.4 FIFO synchronization with external events

External events can be synchronized with the FIFO data by connecting the event source to one of the BMI160 interrupt pins (which needs to be configured as an input interrupt pin). External events can be generated e.g. by a camera module. Each frame contains the value of the interrupt input pin at the time of the external event.

The fh_ext<1:0> field is set when an external interrupt is triggered. External interrupt tags are configured using <code>int<x>_output_en</code> in Register (0x53) INT_OUT_CTRL, <code>int<x>_input_en</code> in Register (0x54) INT_LATCH and <code>fifo_tag_int<x>_en</code> in Register (0x46-0x47) FIFO_CONFIG.

2.5.2.5 FIFO Reset

A reset of the BMI160 is triggered by writing the opcode 0xB0 "fifo_flush" to the Register (0x7E) CMD. This will clears all data in the FIFO while keeping the FIFO settings unchanged.

Automatic resets are only done in two exceptional cases where the data would not be usable without a reset:

- a sensor is enabled or disabled in headerless mode,
- a transition between headerless and headermode occurred.

Page 28

2.5.2.6 Error Handling

In case of a configuration error in Register (0x46-0x47) FIFO_CONFIG, no data will be written into the FIFO and the error is reported in Register (0x02) ERR_REG.

2.6 Interrupt Controller

There are 2 interrupt output pins, to which thirteen different interrupt signals can be mapped independently via user programmable parameters.

Available interrupts supported by accelerometer in normal mode are:

- Any-motion (slope) detection for motion detection
- Significant motion
- Step detector
- **Tap sensing** for detection of single or double tapping events
- Orientation detection
- **Flat detection** for detection of a situation when one defined plane of the sensor is oriented parallel to the earth's surface
- Low-g/high-g for detecting very small acceleration (e.g. free-fall) or very high acceleration (e.g. shock events)
- No/slow-motion detection for triggering an interrupt when no (or slow) motion occurs during a certain amount of time

In addition to that the common interrupts for accelerometer and gyroscope are

- Data ready ("new-data") for synchronizing sensor data read-out with the MCU / host controller
- FIFO full / FIFO watermark allows FIFO fill level and overflow handling.

All Interrupts are available only in normal (low-noise) and low-power modes, but not in suspend mode. In suspend mode only the status (like orientation or flat) can be read out, but no interrupt will be triggered (unless latching is used).

If latching is used the interrupts (as well as the interrupt status) will be latched also in suspend mode, but no new interrupts will be generated.

Input Interrupt Pins: For special applications (e.g. PMU Trigger, FIFO Tag) interrupt pins can be configured as input pins. For all other cases (standard interrupts), the pin must be configured as an output.

Note: The direction of the interrupt pins is controlled with $int < x > output_en$ and $int_x input_en$ in Register (0x53) INT_OUT_CTRL and Register (0x54) INT_LATCH. If both are enabled, the input (e.g. marking fifo) is driven by the interrupt output.

2.6.1 Any-motion detection (Accel)

The any-motion detection uses the slope between two successive acceleration signals to detect changes in motion. The interrupt is configured in the Register (0x5F-0x62) INT_MOTION. It generates an interrupt when the absolute value of the acceleration exceeds a preset threshold <code>int_anym_th</code> for a certain number <code>int_anym_dur</code> of consecutive slope data points is above the slope threshold <code>int_anym_th</code>.

If the same number of data points falls below the threshold, the interrupt is reset. In order to avoid acceleration data saturation, when data is at maximal value (e.g. '0x8000' or '0X7FFF' for a 16 bit sensor); it is considered that the slope is at maximal value, too.

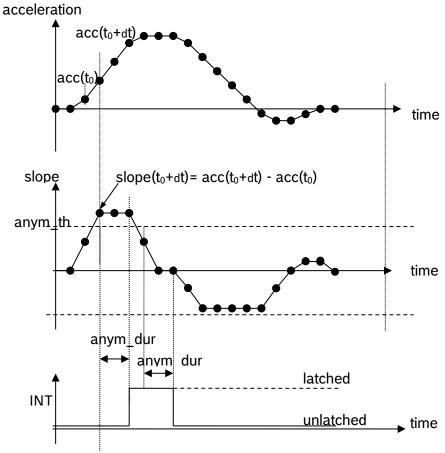


Figure 5: Any-motion (slope) interrupt detection

The criteria for any-motion detection are fulfilled and the slope interrupt is generated if any of the axis exceeds the threshold int_anym_th for int_anym_dur consecutive times. As soon as all the channels fall or stay below this threshold for int_anym_dur consecutive times the interrupt is reset. If this interrupt is triggered in latch mode it remains blocked (disabled) until the latching is cleared. The any-motion interrupt logic sends out the signals of the axis that has triggered the interrupt $(int_anym_first_x, int_anym_first_y, int_anym_first_z)$ and the signal of motion direction (int_anym_sign) .

2.6.2 Significant Motion (Accel)

The significant motion interrupt implements the interrupt required for motion detection in Android 4.3 and greater:

https://source.android.com/devices/sensors/composite sensors.html#Significant

A significant motion is a motion due to a change in the user location.

Examples of such significant motions are walking or biking, sitting in a moving car, coach or train, etc. Examples of situations that should not trigger significant motion include phone in pocket and

Page 30

person is not moving, phone is on a table and the table shakes a bit due to nearby traffic or washing machine.

The algorithm uses acceleration and performs the following steps to detect a significant motion:

- 1. Look for movement.
- 2. [Movement detected] Sleep for 3 seconds.
- 3. Look for movement. Either option a or option b will happen:
 - a. [One second has passed without movement] Go back to 1.
 - b. [Movement detected] Report that a significant movement has been found and wake up the application processor.

The significant motion and the anymotion interrupt are exclusive. To select the interrupt, use <code>int_sig_mot_sel</code> in Register (0x5F-0x62) INT_MOTION.

The following block diagram illustrates the algorithm:

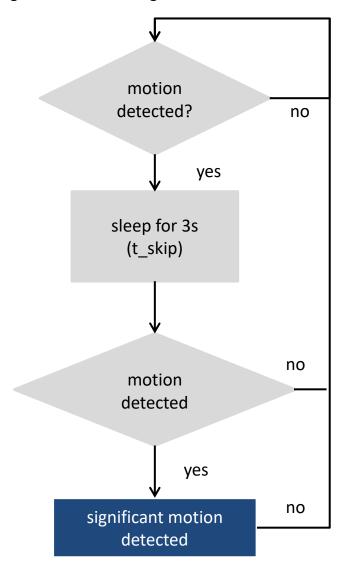


Figure 6: Block diagram of significant motion interrupt algorithm

Page 31

Configurable parameters are:

 $sig_th = 0x14; // \sim 70mg same as anym_th$

t_skip = 0x01; // 2.56s 0=1.28s, 1=2.56s, 2=5,12s 3=10.24s

t proof = 0x02; // 0.96s 0=0.24s, 1=0.48s, 2=0.96s 3=1.92s

2.6.3 Step Detector (Accel)

A step detection is the detection of a single step event, while the user is walking or running. The step detector is triggered when a peak is detected in the acceleration magnitude (vector length of 3D acceleration). In order to achieve a robust step detection the peak needs to exceed a configurable threshold min_threshold and a minimum delay time min_steptime between two consecutive peaks needs to be observed. The step detector can be configured in three modes:

- Normal mode (default setting, recommended for most applications)
- Sensitive mode (can be used for light weighted, small persons)
- Robust mode (can be used, if many false positive detections are observed)

More details can be found in Register (0x7A-0x7B) STEP_CONF and the according step counter application note.

The step detector is the trigger for a step counter. The step counter is described in more detail in chapter 2.7.

2.6.4 Tap Sensing (Accel)

Double-Tap implements same functionality as two single taps in a short well-defined period of time. If the period of time is too short or too long no interrupt is fired.

The interrupt is configured in the Register (0x63-0x64) INT_TAP. When the preset threshold *int_tap_th* is exceeded, a tap is detected and a *int_s_tap_int* in Register (0x1C-0x1F) INT_STATUS is set and an interrupt is fired. The double-tap interrupt is generated only when a second tap is detected within a specified period of time. In this case, the *int_d_tap_int* in Register (0x1C-0x1F) INT_STATUS is set.

The slope between two successive acceleration data is needed to detect a tap-shock and quiet-period. The time difference between the two successive acceleration values depends on data rate selected for the interrupt source, which depends on the configured downsampling rate in Register (0x58-0x59) INT_DATA and the configured output data rate in Register (0x40) ACC_CONF, when filtered data have been selected in the Register (0x58-0x59) INT_DATA. The time delay *int_tap_dur* between two taps is typically between 12.5ms and 500ms. The threshold is typically between 0.7g and 1.5g in 2g measurement range. Due to different coupling between sensor and device shell (housing) and different measurement ranges of the sensor these parameters are configurable.

The criteria for a double-tap are fulfilled and an interrupt is generated if the second tap occurs after int_tap_quiet and within int_tap_dur . The tap direction is determined by the 1st tap. If during int_tap_quiet period (30/20ms) a tap occurs, it will be considered as a new tap.

The slope detection interrupt logic stores the direction of the (first) tap-shock in a status register. This register needs to be locked for *int_tap_shock* 50/75ms in order to prevent other slopes to overwrite this information.

Page 32

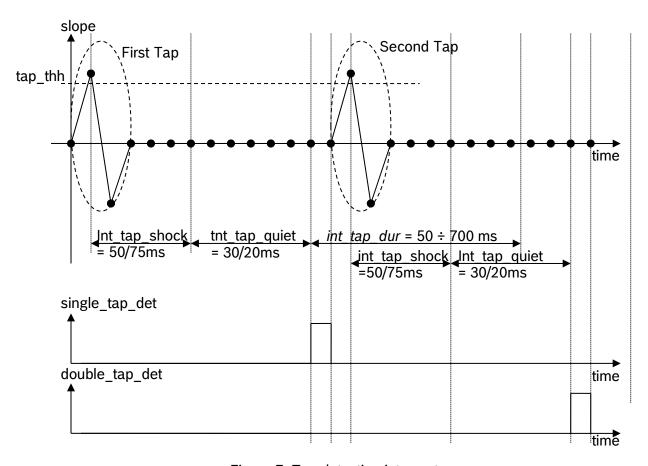


Figure 7: Tap detection interrupt

The single-tap and double-tap interrupts are enabled through the *int_s_tap_en* and *int_d_tap_en* registers.

When a tap or double-tap interrupt is triggered, the signals of the axis that has triggered the interrupt (int_tap_first_x, int_tap_first_y, int_tap_first_z) and the signal of motion direction (int_tap_sign) will set in Register (0x1C-0x1F) INT_STATUS.

The axis on which the biggest slope occurs will trigger the tap. The second tap will be triggered by any axis (not necessarily same as the first tap).

If this interrupt is triggered in latch mode it remains blocked (disabled) until the latching is reset.

2.6.5 Orientation recognition (Accel)

The orientation recognition feature informs on an orientation change of the sensor with respect to the gravitational field vector g. There are the orientations face up/face down and orthogonal to that portrait upright, landscape left, portrait downside, and landscape right. The interrupt to face up/face down may be enabled separately through <code>int_orient_ud_en</code> in Register (0x65-0x66) INT ORIENT.

The sensor orientation is defined by the angles phi and Theta (phi is rotation around the stationary z axis, theta is rotation around the stationary y axis).

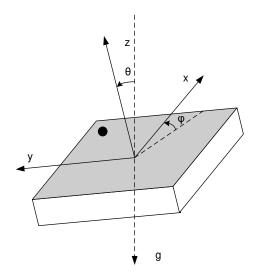


Figure 8: definition of coordinate system with respect to pin 1 marker

The measured acceleration vector components look as follows:

$$acc_{r} = 1g \cdot \sin \theta \cdot \cos \varphi \tag{1}$$

$$acc_{x} = 1g \cdot \sin \theta \cdot \cos \varphi$$

$$acc_{y} = -1g \cdot \sin \theta \cdot \sin \varphi$$
(1)
(2)

$$acc_z = 1g \cdot \cos \theta \tag{3}$$

(2)/(1):
$$\frac{acc_y}{acc_x} = -\tan\varphi$$

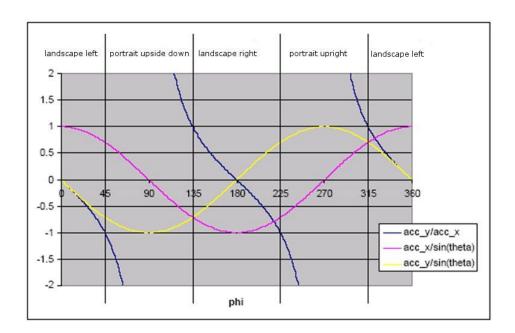


Figure 9: Angle-to-Orientation Mapping

Note that the sensor measures the direction of the force which needs to be applied to keep the sensor at rest (i.e. opposite direction than g itself).

Looking at the phone from frontside / portrait upright corresponds to the following angles:

$$\theta=90^{\circ}$$
 , $\varphi=270^{\circ}$

The orientation value is stored in the output register *int_orient in* Register (0x1C-0x1F) INT_STATUS. There are three orientation calculation modes: symmetrical, high-asymmetrical and low-asymmetrical. The mode is selected by the register *int_orient_mode* in Register (0x65-0x66) INT_ORIENT as follows:

Table 14: Orientation mode

orient_mode	Orientation mode
00	Symmetrical
01	High asymmetrical
10	Low asymmetrical
11	Symmetrical

The register int_orient has the following meanings depending on the switching mode:

Table 15: Symmetrical mode

orient	Name	Angle	Condition
x00	landscape left	315° <phi<45°< td=""><td> acc_y/acc_x <1 && acc_x≥0</td></phi<45°<>	acc_y/acc_x <1 && acc_x≥0
x01	landscape right	135° <phi<225°< td=""><td> acc_y/acc_x <1 && acc_x<0</td></phi<225°<>	acc_y/acc_x <1 && acc_x<0
x10	portrait upside down	45° <phi<135°< td=""><td> acc_y/acc_x ≥1 && acc_y<0</td></phi<135°<>	acc_y/acc_x ≥1 && acc_y<0
x11	portrait upright	225° <phi<315°< td=""><td>$acc_y/acc_x \ge 1 \&\& acc_y \ge 0$</td></phi<315°<>	$ acc_y/acc_x \ge 1 \&\& acc_y \ge 0$

Table 16: High asymmetrical mode

orient	Name	Angle	Condition
x00	landscape left	297° <phi<63°< td=""><td> acc_y/acc_x <2 && acc_x≥0</td></phi<63°<>	acc_y/acc_x <2 && acc_x≥0
x01	landscape right	117° <phi<243°< td=""><td> acc_y/acc_x <2 && acc_x<0</td></phi<243°<>	acc_y/acc_x <2 && acc_x<0
x10	portrait upside down	63° <phi<117°< td=""><td> acc_y/acc_x ≥2 && acc_y<0</td></phi<117°<>	acc_y/acc_x ≥2 && acc_y<0
x11	portrait upright	243° <phi<297°< td=""><td> acc_y/acc_x ≥2 && acc_y≥0</td></phi<297°<>	acc_y/acc_x ≥2 && acc_y≥0

Table 17: Low asymmetrical mode

orient	Name	Angle	Condition
x00	landscape left	333° <phi<27°< td=""><td> acc_y/acc_x <0.5 && acc_x≥0</td></phi<27°<>	acc_y/acc_x <0.5 && acc_x≥0
x01	landscape right	153° <phi<207°< td=""><td> acc_y/acc_x <0.5 && acc_x<0</td></phi<207°<>	acc_y/acc_x <0.5 && acc_x<0
x10	portrait upside down	27° <phi<153°< td=""><td> acc_y/acc_x ≥0.5 && acc_y<0</td></phi<153°<>	acc_y/acc_x ≥0.5 && acc_y<0
x11	portrait upright	207° <phi<333°< td=""><td> acc_y/acc_x ≥0.5 && acc_y≥0</td></phi<333°<>	acc_y/acc_x ≥0.5 && acc_y≥0

BST-BMI160-DS000-09 | Revision 1.0 | November 2020

Bosch Sensortec

Page 35

The engine uses 8 bits wide acceleration data for the orientation recognition. For upside or downside orientation, the <code>int_orient<2></code> in Register (0x1C-0x1F) INT_STATUS has the definition

Table 18: upside and downside mode

MSB acc_z			
0 upside	(270° < θ < 90°)	\rightarrow acc_z >= 0	
1 downside	(90° < θ < 270°)	\rightarrow acc_z < 0	

int_orient<2> also is computed when flat interrupt is activated.

Both portrait/landscape and upside/downside recognition use a hysteresis. The hysteresis for portrait/landscape detection is configurable and applies to all conditions as described in the tables below.

Table 19: Symmetrical mode

orient	Name	Angle	Condition
x00	landscape left	315°+hy <phi< 45°-<br="">hy</phi<>	acc_y < acc_x -hyst && acc_x≥0
x01	landscape right	135°+hy <phi< 225°-hy<="" td=""><td> acc_y < acc_x -hyst && acc_x<0</td></phi<>	acc_y < acc_x -hyst && acc_x<0
x10	portrait upside down	45°+hy <phi< 135°-<br="">hy</phi<>	acc_y > acc_x +hyst && acc_y<0
x11	portrait upright	225°+hy <phi< 315°-hy</phi< 	acc_y > acc_x +hyst && acc_y≥0

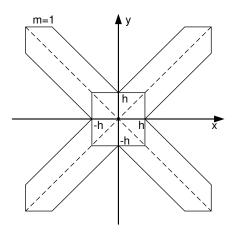


Figure 10: Hysteresis in symmetrical mode

Page 36

Table 20: High asymmetrical mode

orient	Name	Angle	Condition
x00	landscape left	297°+hy <phi<63°-hy< td=""><td> acc_y <2*(acc_x -hyst) && acc_x≥0</td></phi<63°-hy<>	acc_y <2*(acc_x -hyst) && acc_x≥0
x01	landscape right	117°+hy <phi<243°-hy< td=""><td> acc_y <2*(acc_x -hyst) && acc_x<0</td></phi<243°-hy<>	acc_y <2*(acc_x -hyst) && acc_x<0
x10	portrait upside down	63°+hy <phi<117°-hy< td=""><td> acc_y >2* acc_x +hyst && acc_y<0</td></phi<117°-hy<>	acc_y >2* acc_x +hyst && acc_y<0
x11	portrait upright	243°+hy <phi<297°-hy< td=""><td> acc_y >2* acc_x +hyst && acc_y≥0</td></phi<297°-hy<>	acc_y >2* acc_x +hyst && acc_y≥0

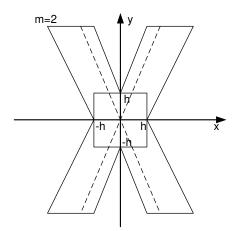


Figure 11: Hysteresis in high asymmetrical mode

Table 21: Low asymmetrical mode

orient	Name	Angle	Condition
x00	landscape left	333°+hy <phi<27°-hy< th=""><th> acc_y <(acc_x -hyst)/2 && acc_x≥0</th></phi<27°-hy<>	acc_y <(acc_x -hyst)/2 && acc_x≥0
x01	landscape right	153°+hy <phi<207°-hy< th=""><th> acc_y <(acc_x -hyst)/2 && acc_x<0</th></phi<207°-hy<>	acc_y <(acc_x -hyst)/2 && acc_x<0
x10	portrait upside down	27°+hy <phi<153°-hy< td=""><td> acc_y > acc_x /2+hyst && acc_y<0</td></phi<153°-hy<>	acc_y > acc_x /2+hyst && acc_y<0
x11	portrait upright	207°+hy <phi<333°-hy< td=""><td> acc_y > acc_x /2+hyst && acc_y≥0</td></phi<333°-hy<>	acc_y > acc_x /2+hyst && acc_y≥0

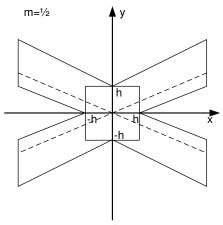


Figure 12: Hysteresis in low asymmetrical mode

Page 37

The hysteresis for upside/downside detection is fixed to 11.5° which is ~200 mg (205 LSB in 2g mode and is scalable with the g range).

Table 22: Upside/downside hysteresis for all 3 modes

orient	Name	Angle	Condition
0xx	upside	281.5° <theta<78.5°< td=""><td>acc_z>200mg (acc_z >200mg and acc_z≥0)</td></theta<78.5°<>	acc_z>200mg (acc_z >200mg and acc_z≥0)
1xx	downside	101.5° <phi<258°< td=""><td>acc_z<-200mg (acc_z >200mg and acc_z<0)</td></phi<258°<>	acc_z<-200mg (acc_z >200mg and acc_z<0)

2.6.5.1 Blocking

It is be possible to block the orientation detection (no orientation interrupt will be triggered). The orientation interrupt blocking feature is configurable via the *int_orient_blocking* in Register (0x65-0x66) INT_ORIENT bits in the following manner:

"00" → Interrupt blocking is disabled

"01" \rightarrow Interrupt blocked if device close to the horizontal position or acceleration of any axis >1.5g "10" \rightarrow Interrupt blocked if device close to the horizontal position or acceleration of any axis >1.5g or slope>0.2g (for 3 consecutive data samples)

"11" \rightarrow Interrupt blocked if device close to the horizontal position or slope>0.4g or acceleration of any axis>1.5g or another orientation change within 100ms (same orientation and acc <1.5g for 100ms)

For all states where interrupt blocking through slope detection is used, the interrupt is re-enabled after the slope has been below the threshold for 3 times in a row.

For all states where 100ms interrupt blocking is enabled, in order to trigger the interrupt, the orientation remains the same (stable) until the timer runs out (for ~100ms). The timer starts to count when orientation changes between two consecutive samples. If the orientation changes while timer is still counting, the timer is restarted.

The theta blocking (phone close to the horizontal position) is defined by the following inequality:

$$((theta_blk)_6 * ((acc_z)_{SAT} * (acc_z)_{SAT})_6)_{10} > ((acc_x)_{SAT} * (acc_x)_{SAT})_{10} + ((acc_y)_{SAT} * (acc_y)_{SAT})_{10}$$

where:

()₆ means usage of 6-bit arithmetic (6 MSBs from a value is used);

 $()_{SAT}$ means absolute value reduced to 6 bits saturated to 1g (MSB-1 is taken as MSB, saturation arithmetic for this conversion)

If other than 2g range is selected, acceleration values shall be amplified before blocking computation to have the same scale as in 2g range.

2.6.5.2 Interrupt generation and latching

The orientation interrupt is triggered at every change of the <code>int_orient</code> status register value. If register bit <code>int_orient_ud_en</code> in Register (0x65-0x66) INT_ORIENT is '1', then all bits in the <code>int_orient</code> register, those indicating the portrait/landscape orientation, as well as those indicating the upside/downside orientation are considered for the generation of the interrupt condition. If register bit <code>int_orient_ud_en</code> is '0', then only the bits in the <code>int_orient</code> register that indicate the

portrait/landscape orientation are considered for the generation of the interrupt condition, while those bits indicating the upside/downside orientation are ignored. The bit indicating upside/downside orientation is <code>int_orient<2></code>, while the bit-field indicating the portrait/landscape orientation is <code>int_orient<1:0></code>. If orient_ud_en is '0' then the <code>int_orient<2></code> status bit is 0. In case the orientation interrupt condition has been satisfied the orientation relevant fields in Register (0x1C-0x1F) INT_STATUS are updated.

2.6.5.3 Rotation of the Reference Coordinate System

The given specification is valid for an upright mounted PCB. In order to also enable horizontal mounting, x and z axis can be exchanged via the register int_axes_ex for the flat and orientation interrupt. For all other interrupts and in all other functions, e.g. data registers and FIFO, the x, y, and z axes will not be affected. The x-, y-, z-axis will keep right-hand principle after the exchange

2.6.6 Flat Detection (Accel)

This interrupt detects flat orientation. This interrupt fires when the device gets into horizontal position ($int_flat=1 \rightarrow e.g.$ it is being placed on a table) or when it goes out of it ($int_flat=0 \rightarrow e.g.$ it is picked up).

The interrupt is configured in the Register (0x67-0x68) INT_FLAT. The condition for activating the interrupt is:

[((theta_flat)₆ * ((acc_z)_{SAT}*(acc_z)_{SAT})₆)₁₀ - ("000000" & int_flat_hy) >= ((acc_x)_{SAT}*(acc_x)_{SAT})₁₀ + ((acc_y)_{SAT} * (acc_y)_{SAT})₁₀ AND (no_movement)

The condition to deactivate the interrupt in non-latched mode is:

[((theta_flat)₆ * ((acc_z)_{SAT}*(acc_z)_{SAT})₆)₁₀ + ("000000" & int_flat_hy) < ((acc_x)_{SAT}*(acc_x)_{SAT})₁₀ + ((acc_y)_{SAT} * (acc_y)_{SAT})₁₀] OR NOT (no_movement)

no_movement is "0" if slope > 0.2g for 3 consecutive samples when orient_blocking = "10" no_movement is "0" if slope > 0.4g for 3 consecutive samples when orient_blocking = "11"

If no_movement is "1", then flat interrupt is reset.

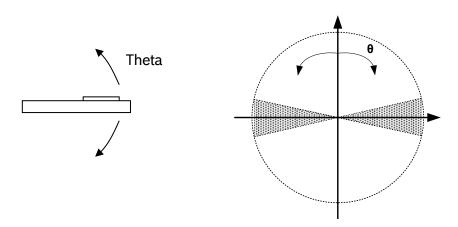


Figure 13: Flat Orientation Angles

Before the interrupt is actually fired, the device must remain flat for a certain period (e.g. int flat hold time = 1s).

Note:

Rotation of the Reference Coordinate System is possible for the Flat interrupt, see chapter 2.6.5.3.

2.6.7 Low-g / free-fall Detection (Accel)

For freefall detection, the absolute values of the acceleration data of all axes are observed (global criteria). A sum of the absolute values of all accelerations $|acc_x| + |acc_y| + |acc_z|$ is compared with the threshold int_low_th . The interrupt will be generated if the threshold is exceeded and the measured acceleration stays below the hysteresis level $int_low_th+int_low_th$ for some minimum number of samples ($int_low_th+int_low_th$).

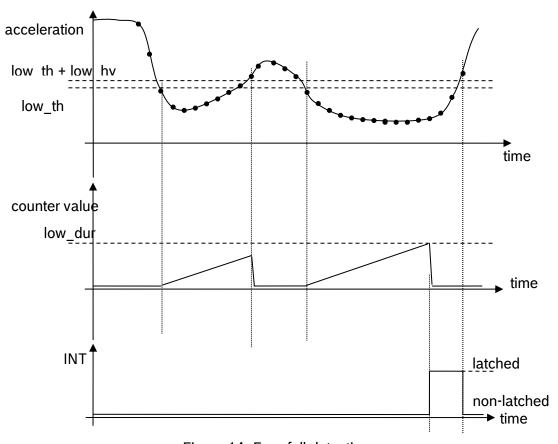


Figure 14: Free-fall detection

2.6.8 High-g detection (Accel)

This interrupt is configured in the Register (0x5A-0x5E) INT_LOWHIGH. The interrupt is asserted if the absolute value of acceleration data of at least one enabled axis exceeds the programmed threshold <code>int_high_th</code> and the sign of the value does not change for a minimum duration of <code>int_high_dur</code>. The interrupt condition is cleared when the absolute value of acceleration data of all selected axes falls below the threshold <code>int_high_th</code> minus the hysteresis <code>int_high_hy</code> or if the sign of the acceleration value changes. The X, Y and Z axes are enabled with the <code>int_high_en_x</code>, <code>int_high_en_y</code>, and <code>int_high_en_z</code>, respectively.

Page 40

When the high-g interrupt is triggered, the signals of the axis that has triggered the interrupt $(int_high_first_x, int_high_first_y, int_high_first_z)$ and the motion direction (int_high_sign) are set in the Register (0x1C-0x1F) INT STATUS.

If this interrupt is triggered in latch mode it stays blocked (disabled) until the latching is cleared.

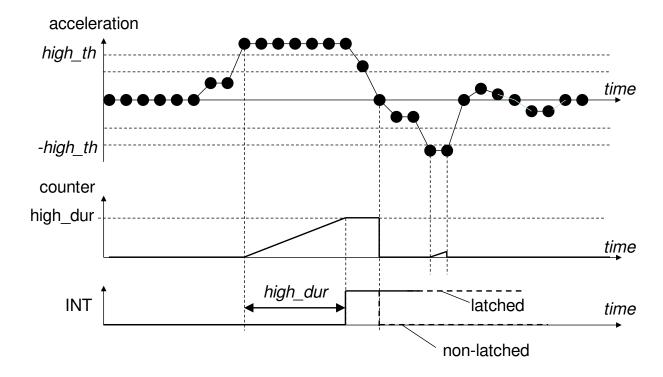


Figure 15: Free-fall detection

2.6.9 Slow-Motion Alert / No-Motion Interrupt (Accel)

This interrupt engine monitors the slopes of each axis. The interrupt is configured in the Register (0x5F-0x62) INT_MOTION. It behaves similar to the any-motion interrupt, but with a different set of the parameters. As the only difference between the slow-motion interrupt and the any-motion interrupt, the slow-motion engine doesn't store the information which axis has triggered the interrupt and in which direction.

The slow-motion/no-motion interrupt engine can be configured in two modes. It can act as an interrupt very similar to the any-motion interrupt, where the slope on the selected axis is monitored and an interrupt is generated when a slope threshold is exceeded for a programmable number of samples. The figure below illustrates the operation of the slow-motion interrupt engine in terms of relevant signals and timing.

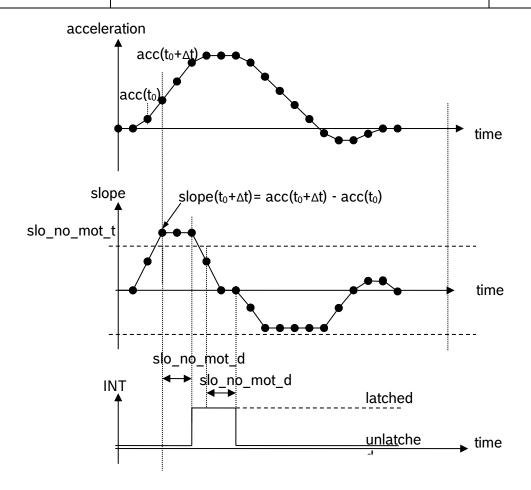


Figure 16: Slow motion, no motion

The interrupt engine can also be configured as a no-motion interrupt, where an interrupt is generated when the slope on all selected axis remains smaller than a programmable threshold for a programmable time. In order to save register space, some configuration registers have different interpretations depending on the selected mode. The signals and timings relevant to the no-motion interrupt functionality are depicted in the figure below.

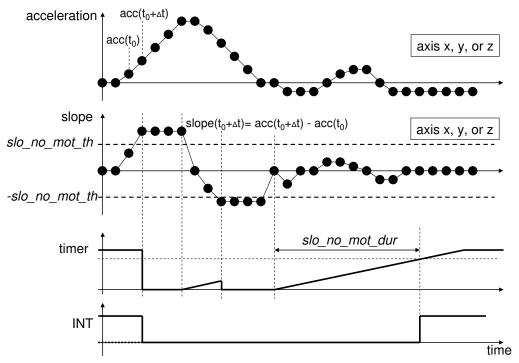


Figure 17: Signal timings no motion interrupt

The figure below shows the differences in the logic operation between the slow-motion and nomotion interrupt functionality.

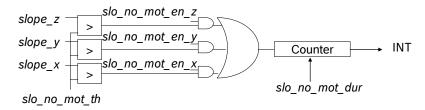


Figure 18: Slow motion interrupt mode

Figure 19: No motion interrupt mode

Page 43

2.6.9.1 Register slo no mot dur

The meaning of register $int_slo_no_mot_dur$ changes depending on the state of the no_mot_sel configuration bit. If $int_no_mot_sel$ ='0', register $int_slo_no_mot_dur$ defines the number of consecutive slope data points of the selected axis which must exceed the threshold value $int_slo_no_mot_th$ for an interrupt to be asserted. Register (0x5F-0x62) INT_MOTION lists the relationship between the setting of $int_slo_no_mot_dur$ and the number of slope data points filtered prior to asserting the interrupt.

However, if no_mot_sel ='1', register $int_slo_no_mot_dur$ defines the time no slope data point of any of the selected axis must exceed the threshold value $int_slo_no_mot_th$ for an interrupt to be asserted. The tick times of 1.28s, 5.12s and 10.24s depend on the value programmed into $int_slo_no_mot_dur$ <5:0>. By means of using variable tick times, a no-motion delay between 1s and 430s may be adjusted.

2.6.9.2 Register slo no mot th

The *int_slo_no_mot_th* register defines the threshold against which the calculated slope values of each axis are compared. The scaling is independent on the selected interrupt mode. The user must scale the *int_slo_no_mot_th* value according to the adjusted range.

2.6.10 Data Ready Detection (Accel, Gyro and external sensors)

This interrupt fires whenever a new data sample from accel and gyro is complete. This allows a low latency data readout.

The data update detection monitors the *data_update* signals for all axes and sensors. It generates an interrupt as soon as the values for all axes and sensors which are required for the configured output data rates have been updated.

The interrupt is cleared automatically when the update for the next sample starts or the data is read out from the data register.

2.6.11 PMU Trigger (Gyro)

Whenever a PMU (power management unit) trigger (either wakeup or sleep) is issued, wakeup_int in Register (0x6C) PMU_TRIGGER configures if an interrupt is send to the application processor. If the AP wants to trigger sleeps itself for the gyro, the gyr_wakeup_trigger is configured accordingly and no wakeup triggers are issued.

The PMU trigger interrupt is from the system perspective used in a similar manner as the anymotion and nomotion interrupts. The PMU trigger interrupt follows the Register (0x54) INT LATCH configuration for resetting the interrupt.

2.6.12 FIFO Interrupts (Accel, Gyro, and external sensors)

The FIFO supports two interrupts, a FIFO full interrupt and a watermark interrupt. The FIFO full interrupt is issued when the FIFO is full and the next full data sample would cause a FIFO overflow, which may lead to samples being deleted. Technically, that means that a FIFO full interrupt is issued, whenever less space than two maximum size frames is left in the FIFO. The FIFO watermark interrupt is fired, when the FIFO fill level in *fifo_byte_counter* in Register (0x22-0x23) FIFO_LENGTH is above a pre-configured watermark, defined in *fifo_watermark* in Register (0x46-0x47) FIFO CONFIG.

Note: The unit of *fifo_watermark* is 4 bytes whereas the unit of *fifo_byte_counter* is single bytes.

Page 44

2.7 Step Counter

The step counter implements the function required for step counting in Android 4.4 and greater: https://source.android.com/devices/sensors/sensor-types#step_counter

The step counter accumulates the steps detected by the step detector interrupt. Based on more sophisticated algorithms, the step counter features a higher accuracy and reporting latency than the step detector interrupt described in Chapter 2.6.3.

The step counter is configurable to the following modes through the step detector settings:

- Normal mode (default setting, recommended for most applications)
- Sensitive mode (can be used for light weighted, small persons)
- Robust mode (can be used, if many false positive detections are observed)

In order to read out the step counter values it is recommended to switch to normal mode

The step counter is enabled and reset with *step_cnt_en* in Register (0x7A-0x7B) STEP_CONF. It shares its configuration with the step detector interrupt in Register (0x7A-0x7B) STEP_CONF.

The step counter can be used in low-power mode. In order to receive the most recent number of counted steps, it is recommended to switch to normal mode prior to reading out the Register (0x78-0x79) STEP CNT.

More details can be found in the step counter field test report.

2.8 Device self test

This feature permits to check the sensor functionality via a built-in self-test (BIST). The accelerometer has a comprehensive self test function for the MEMS element, the gyroscope implements a simple self-test/life-test.

2.8.1 Self-test accelerometer

By applying electrostatic forces to the sensor core instead of external accelerations, the entire signal path of the sensor can be tested. Activating the self-test results in a static offset of the acceleration data; any external acceleration or gravitational force applied to the sensor during active self-test will be observed in the output as a superposition of both acceleration and self-test signal. All three axes are activated at the same time.

Before the self-test is enabled the g-range should be set to 8 g. The Register (0x40) ACC_CONF has to be set to value 0x2C (acc_odr=1600Hz; acc_bwp=2; acc_us=0). Otherwise the accelerometer self-test mode will not function correctly.

The self-test is activated by writing the value '0b01' to the $acc_self_test_enable$ bits in the Register (0x6D) SELF_TEST. It is possible to control the direction of the deflection of all 3 axes through the bit $acc_self_test_sign$. The excitations occurs in negative (positive) direction if $self_test_sign = '0b0'$ ('0b1'). The amplitude of the deflection has to be set high by writing $acc_self_test_amp='0b1'$. After the self-test is enabled, the user should wait 50 ms before interpreting the acceleration data

Page 45

In order to ensure a proper interpretation of the self-test signal it is recommended to perform the self-test for both (positive and negative) directions and then to calculate the difference of the resulting acceleration values. The table below shows the minimum absolute differences for each axis. The actually measured absolute signal differences can be significantly larger.

Table 23: Accelerometer self test minimum difference values

	x-axis signal	y-axis signal	z-axis signal
Minimum difference signal	2 g	2 g	2 g

It is recommended to perform a reset of the device after a self-test has been performed. If the reset cannot be performed, the following sequence must be kept to prevent unwanted interrupt generation: disable interrupts, change parameters of interrupts, wait for at least 50ms, enable desired interrupts.

2.8.2 Self-test gyroscope

The gyroscope BIST can be triggered during normal operation mode. It checks the sensors drive amplitude, its frequency and the stability of the drive control loop. Hence, disturbances of the movement by particles, mechanical damage or pressure loss can be detected.

The self-test for the gyroscope will be started by writing a '1' to gyr_self_test_enable in Register (0x6D) SELF_TEST. The result will be in gyr_self_test_ok in Register (0x1B) STATUS.

In addition, any particles or damages can be easily identified in a "Manual Performance Check". Due to the outstanding offset and noise performance the measured values at zero-rate fit the specified performance.

2.9 Offset Compensation

BMI160 offers fast and manual compensation as well as inline calibration.

Fast offset compensation is performed with pre-filtered data, and the offset is then applied to both, pre-filtered and filtered data. If necessary the result of this computation is saturated to prevent any overflow errors (the smallest or biggest possible value is set, depending on the sign). The public offset compensation Register (0x71-0x77) OFFSET are images of the corresponding registers in the NVM. With each image update (see chapter 2.10 for details) the contents of the NVM registers are written to the public registers. The public registers can be overwritten by the user at any time. Offset compensation needs to be enabled through *gyr_off_en* and *acc_off_en* in Register (0x71-0x77) OFFSET.

2.9.1 Fast offset compensation

Fast offset compensation (FOC) is a one-shot process that compensates offset errors of accelerometer and gyro by setting the offset compensation registers to the negated offset error. This is best suited for "end-of-line trimming" with the customers device positioned in a well-defined orientation.

Before triggering, the FOC needs to be configured via the Register (0x69) FOC_CONF. Accelerometer and gyroscope FOC can be separately disabled or enabled. Gyroscope target

Page 46

value is always 0 dps, for the accelerometer the target value has to be defined for each channel (-1g, 0g, +1g) depending on sensor position relative to the earth gravity field.

FOC is triggered by issuing a *start_foc* command to Register (0x7E) CMD. Once triggered, the status of the fast correction process is reflected in the status bit *foc_rdy* in Register (0x1B) STATUS. *Foc_rdy* is '0' while the measurement is in progress. Accelerometer and gyroscope values are measured with preset filter settings. This will take a maximum time of 250 ms.

The negated measured values are written to Register (0x71-0x77) OFFSET automatically (overwriting previous offset register values), cancelling out offset errors if "gyr_off_en" and "acc_off_en" in Register (0x71-0x77) OFFSET are activated.

For the accelerometer offset, the accuracy is 3.9 mg.

Fast compensation should not be used in combination with the low-power mode. In low-power mode the conditions (availability of necessary data) for proper function of fast compensation are not fulfilled.

Fast offset compensation does not clear the data ready bit in Register (0x1B) STATUS. It is recommended to read the Register (0x04-0x17) DATA after FOC completes, to remove a stall data ready bit from before the FOC.

2.9.2 Manual offset compensation

The contents of the public compensation Register (0x71-0x77) OFFSET may be set manually via the digital interface. After modifying the Register (0x71-0x77) OFFSET the next data sample is not valid.

Writing to the offset compensation registers is not allowed while the fast compensation procedure is running.

"gyr off en" and "acc off en" in Register (0x71-0x77) OFFSET need to be activated as well.

2.9.3 Inline calibration

For certain applications, it is often desirable to calibrate the offset once and to store the compensation values permanently. This can be achieved by using fast or manual offset compensation to determine the proper compensation values and then storing these values permanently in the NVM.

Each time the device is reset, the compensation values are loaded from the non-volatile memory into the image registers and used for offset compensation.

2.10 Non-Volatile Memory

The entire memory of the BMI160 consists of volatile and non-volatile registers. Part of it can be both read and written by the user. Access to non-volatile memory is only possible through (volatile) image registers.

We support a maximum number of write cycles equal or less than 14.

Page 47

The Register (0x70) NV_CONF and Register (0x71-0x77) OFFSET have an NVM backup which is accessible by the user.

The content of the NVM is loaded to the image registers after a reset (either POR or softreset). As long as the image update is in progress, bit *nvm_rdy* in Register (0x1B) STATUS is '0', otherwise it is '1'.

The image registers can be read and written like any other register.

Writing to the NVM is a three-step procedure:

Write the new contents to the image registers.

Write '1' to bit *nvm_prog_en in the* Register (0x6A) CONF register in order to unlock the NVM. Write prog_nvm (0xA0) to the Register (0x7E) CMD to trigger the write process.

Writing to the NVM always renews the entire NVM contents. It is possible to check the write status by reading bit nvm_rdy . While $nvm_rdy = '0'$, the write process is still in progress; if $nvm_rdy = '1'$, then writing is completed. As long as the write process is ongoing, no change of power mode and image registers is allowed. An NVM write cycle can only be initiated, when the accelerometer is in normal mode.

2.11 Register Map

This chapter contains register definitions. REG[x] < y > denotes bit y in byte x in register REG. Val(Name) is the value contained in the register interpreted as non-negative binary number. When writing to reserved bits, '0' should be written when not stated different.

	Read/write		rea	ad only		write o	nly		reserved	
Register Address	Register Name	Default Value	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x7E	CMD	0x00				cr	md			
0x7D	-	-				rese	erved			
0x7C	-	-				rese	erved			
0x7B	STEP_CONF_1	0x03		rese	erved		step_cnt_en		step_conf_10_8	1
0x7A	STEP_CONF_0	0x15					onf_7_0			
0x79	STEP_CNT_1	0x00					nt_15_8			
0x78	STEP_CNT_0	0x00				step_c	nt_7_0			
0x77	OFFSET_6	0x00	gyr_off_en	acc_off_en	off_gyi	r_z_9_8		_y_9_8	off_gyı	_x_9_8
0x76	OFFSET_5	0x00					_z_7_0			
0x75	OFFSET_4	0x00					_y_7_0			
0x74	OFFSET_3	0x00				_0,	_x_7_0			
0x73	OFFSET_2	0x00					acc_z			
0x72	OFFSET_1	0x00					acc_y			
0x71	OFFSET_0	0x00				off_a	acc_x	:0	:0	:
0x70 0x6F	NV_CONF	0x00		rese	erved		u_spare_0	i2c_wdt_en	i2c_wdt_sel	spi_en
0x6E	-	-					erved			
0x6D	SELF_TEST	0x00		reserved			acc_self_test_	and politicat	ann noif i	est enable
			wasawas d		min aloan atata	enable	amp	acc_self_test_ sign		
0x6C 0x6B	PMU_TRIGGER IF CONF	0x00 0x00	reserved rese	wakeup_int	gyr_sleep_state	e gyr_wake node	up_trigger		gyr_sleep_trigge	spi3
0x6A	CONF	0x00	rese	rveu		erved		reserved	nvm prog en	reserved
0x69	FOC CONF	0x00	reserved	foc gyr en		acc x	foc	acc v		acc z
0x68	INT FLAT 1	0x00	rese			at hold	reserved	I	int flat hy	acc_z
0x67	INT FLAT 0	0x11	rese		IIIC_III	at_noid		t theta	IIIC_liat_riy	
0x66	INT_ORIENT_1	0x48	int_orient_axes ex					nt_theta		
0x65	INT ORIENT 0	0x18	_		ient hy		int orien	t blocking	int orie	nt mode
0x64	INT TAP 1	0x0A		reserved				int tap th		_
0x63	INT TAP 0	0x04	int tap quiet	int tap shock		reserved		'-	int tap dur	
0x62	INT_MOTION_3	0x24	rese	rved	int_sig_r	mot_proof	int_sig_	mot_skip	int_sig_mot_ sel	int_slo_nomo_ sel
0x61	INT_MOTION_2	0x14			-	int_slo_	nomo_th			
0x60	INT_MOTION_1	0x14				int_an	ymo_th			
0x5F	INT_MOTION_0	0x00			int_slo_r	nomo_dur			int_an	ym_dur
0x5E	INT_LOWHIGH_4	0xC0					igh_th			
0x5D	INT_LOWHIGH_3	0x0B					gh_dur			
0x5C	INT_LOWHIGH_2	0x81	int_hi	gh_hy			rved		Int_lo	bw_hy
0x5B	INT_LOWHIGH_1	0x30					ow_th			
0x5A	INT_LOWHIGH_0 INT_DATA_1	0x07 0x00	int motion are			Int_io	w_dur			
0x59 0x58	INT_DATA_1	0x00	int_motion_src int_low_high_sr		reserved		reserved int_tap_src		reserved	
0x57	INT_DATA_0	0x00	int2 flat	int2 orient	int2_s_tap	int2 d tap	int2 nomotion	int2 anymotion		int2 lowg step
0x57	INT_MAP_2 INT_MAP_1	0x00	int1 drdy	int1 fwm	int1 ffull	int1_pmu_trig	int2_nomotion	int2_anymotion	int2_nigng int2_ffull	int2_lowg_step
0x55	INT_MAP_0	0x00	int1_drdy	int1 orient	int1_s_tap	int1_d_tap		int1 anymotion		int1 lowg step
0x54	INT LATCH	0x00		rved	int2 input en	int1 input en		/	latch	
0x53	INT_OUT_CTRL	0x00	int2 output en	int2 od	int2 lvl	int2_edge_ctrl	int1 output en		int1 lvl	int1 edge ctrl
0x52	INT EN 2	0x00			erved	8		int nomoz en	_	int nomox en
0x51	INT_EN_1	0x00	reserved	int_fwm_en	int_ffull_en	int_drdy_en	int_low_en		int_highg_y_en	
0x50	INT_EN_0	0x00	int_flat_en	int_orient_en	int_s_tap_en	int_d_tap_en		int_anymo_z_ en		
0x4F	MAG_IF_4	0x00				write	_data			
0x4E	MAG_IF_3	0x4C				write	_addr			
0x4D	MAG_IF_2	0x42				read	_addr			
0x4C	MAG_IF_1	0x80	mag_manual_ en	reserved			offset		mag_r	d_burst
0x4B	MAG_IF_0	0x20				i2c_device_addr				reserved
0x4A	-	-					erved			
0x48	-	-	££	66-	E.C		erved	E.E. 1	E.C. 4:	
0x47	FIFO_CONFIG_1	0x10	fifo_gyr_en	fifo_acc_en	fifo_mag_en	fifo_header_en		тіто_tag_int2_en	fifo_time_en	reserved
0x46	FIFO_CONFIG_0	0x80	67 611		66.		er_mark		66.	
0x45	FIFO_DOWNS	0x88	acc_fifo_filt_ data		acc_fifo_downs		gyr_fifo_filt_ data		gyr_fifo_downs	
0x44	MAG_CONF	0x0B		rese	erved			mag	_odr	
0x43	GYR_RANGE	0x00		nud	reserved	hum			gyr_range	
0x42	GYR_CONF	0x28	rese			_bwp		• • • • • • • • • • • • • • • • • • • •	_odr range	
0x41	ACC_RANGE	0x03		rese	erved			acc_	range	

Page 49

0x40	ACC CONF	0x28	acc us acc bwp acc odr							
0x3F	-	-	_			rese	erved		_	
0x25	-	-		reserved						
0x24	FIFO_DATA	0x00		fifo_data						
0x23	FIFO_LENGTH_1	0x00			reserved			fifo	_byte_counter_1	0_8
0x22	FIFO_LENGTH_0	0x00					counter_7_0			
0x21	TEMPERATURE_1	0x80					ure_15_8			
0x20	TEMPERATURE_0	0x00	_				ture_7_0			
0x1F	INT_STATUS_3	0x00	flat	orient_2	orient		high_sign	high_first_z	high_first_y	high_first_x
0x1E	INT_STATUS_2	0x00	tap_sign	tap_first_z	tap_first_y	tap_first_x	anym_sign	anym_first_z	anym_first_y	anym_first_x
0x1D	INT_STATUS_1 INT_STATUS_0	0x00	nomo_int	fwm_int	ffull_int	drdy_int	lowg_int	highg_int	rese	
0x1C 0x1B	STATUS	0x00 0x01	flat_int drdy acc	orient_int	s_tap_int	d_tap_int	pmu_trigger_int	anym_int	sigmot_int gyr self test	step_int reserved
UXID	SIAIUS	UXUT	uruy_acc	drdy_gyr	drdy_mag	nvm_rdy	foc_rdy	mag_man_op	ok	reserveu
0x1A	SENSORTIME 2	0x00				sensor ti	me 23 16			
0x19	SENSORTIME_1	0x00					ime_15_8			
0x18	SENSORTIME_0	0x00				sensor_	time_7_0			
0x17	DATA_19	0x00				acc_z	_15_8			
0x16	DATA_18	0x00				acc_	z_7_0			
0x15	DATA_17	0x00		acc_y_15_8						
0x14	DATA_16	0x00		acc_y_7_0						
0x13	DATA_15	0x00	acc_x_15_8							
0x12	DATA_14	0x00	acc_x_7_0							
0x11	DATA_13	0x00	gyr_z_15_8							
0x10	DATA_12	0x00		gyr_z_7_0						
0x0F	DATA_11	0x00	gyr_y_15_8							
0x0E	DATA_10	0x00		gyr_y_7_0						
0x0D	DATA_9	0x00		gyr_x_15_8						
0x0C	DATA_8	0x00		gyr_x_7_0						
0x0B	DATA_7	0x00		rhall_15_8						
0x0A	DATA_6	0x00				rhall	_7_0			
0x09	DATA_5	0x00				mag_:	z_15_8			
0x08	DATA_4	0x00				mag_	z_7_0			
0x07	DATA_3	0x00				mag_	y_15_8			
0x06	DATA_2	0x00	mag_y_7_0							
0x05	DATA_1	0x00		mag_x_15_8						
0x04	DATA_0	0x00				mag_	x_7_0			
0x03	PMU_STATUS	0x00	rese	rved	acc_pmi	u_status	gyr_pmu	ı_status	mag_pm	u_status
0x02	ERR_REG	0x00	mag_drdy_err	drop_cmd_err	i2c_fail_err		err_c	code		fatal_err
0x01	-	-	reserved							
0x00	CHIP_ID	0xD1	chip_id							

Figure 20: BMI160 register map

Page 50

2.11.1 Register (0x00) CHIPID

ADDRESS 0x00 RESET na MODE R

DESCRIPTION The register contains the chip identification code.

DEFINITION

Name		Register (0x00) Cl	HIPID	
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	1	1	0	1
Content	chip_id<7:4>			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	1
Content	chip_id<3:0>			

2.11.2 Register (0x02) ERR_REG

ADDRESS 0x02 RESET 0b00000000 MODE RW

DESCRIPTION Reports sensor error flags. Flags are reset when read.

DEFINITION

Bit	Acronym	Definition
7	Reserved	
6	drop_cmd_err	Dropped command to Register
5	Reserved	
4:1	error_code	0000: no error 0001: error 0010: error 0011: low-power mode and interrupt uses pre- filtered data 0100: reserved 0101: reserved 0110: ODRs of enabled sensors in header-less mode do not match 0111: pre-filtered data are used in low power mode 1000-1111: reserved The first reported error will be shown in the error code.
0	fatal_err	Chip not operable

Page 51

The register is meant for debug purposes, not for regular verification if an operation completed successfully.

Extensions under consideration:

fatal_err: Error during bootup. Broken hardware (e.g. NVM error, see ASIC spec for

details). This flag will not be cleared after reading the register. The only way

to clear the flag is a POR.

Acc_conf_err: Accelerometer ODR and BW not compatible gyr_conf_err: Gyroscope ODR and BW not compatible

Error flags (bits 7:4) store error event until they are reset by reading the register.

2.11.3 Register (0x03) PMU_STATUS

ADDRESS 0x03
RESET 0b0000-0000
MODE R
DESCRIPTION Shows the current power mode of the sensor.
DEFINITION

Name		Register (0x03) PM	MU_STATUS	
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	1	0	0	0
Content	reserved		acc_pmu_status	
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	gyr_pmu_status		mag_pmu_status	

acc_pmu_status	Accel Mode
0b00	Suspend
0b01	Normal
0b10	Low Power
	0 M I

gyr_pmu_status	Gyro Mode
0b00	Suspend
0b01	Normal
0b10	Reserved
0b11	Fast Start-Up

mag_pmu_status	Magnet Mode
0b00	Suspend
0b01	Normal
0b10	Low Power

Page 52

The register reflects the current power modes of all sensor configured as soon as they are effective. If a sensor is enabled, the new sensor mode is reported as soon as the MEMS is up and before digital filters have settled. The settling time depends on filter settings. The power modes may be changed through the Register (0x7E) CMD. In addition, for the gyroscope through register events may be defined, which change the gyro power mode.

In low power mode the FIFO is not accessible. For read outs of the FIFO the sensor has to be set to normal mode, after read-out the sensor can be set back to low power mode.

2.11.4 Register (0x04-0x17) DATA

ADDRESS 0x04 (20 byte) RESET (BYTEWISE) 0b0000-0000 MODE R

DESCRIPTION Register for accelerometer, gyroscope and magnetometer data. DATA[0-19] are treated as atomic update unit with respect to an I2C/SPI operation. A read operation on the Register (0x04-0x17) DATA resets the appropriate *_drdy bits in

Register (0x1B) STATUS. E.g. when only [0] is read, only *drdy_gyr* is reset. DEFINITION

DATA[0-19] contains the latest data for the x, y, and z axis of magnetometer MAG_[X-Z], gyroscope GYR_[X-Z], and accelerometer ACC_[X-Z]. The rationale for the ordering is the probability for these configurations is decreasing

- Readout of accel and sensortime
- Readout of gyro, accel, and sensortime
- Readout of magnetometer, gyro, accel, and sensortime
- Readout of magnetometer, accel, and sensortime

If the secondary interface is in OIS mode, from the OIS interface the OIS data are accessible through Register (0x04-0x17) DATA [8-13].

REG (0x04 - 0x17)	DATA[X]	Acronym
0x04	X=0	MAG_X<7:0> (LSB)
0x05	X=1	MAG_X<15:8> (MSB)
0x06	X=2	MAG_Y<7:0> (LSB)
0x07	X=3	MAG_Y<15:8> (MSB)
0x08	X=4	MAG_Z<7:0> (LSB)
0x09	X=5	MAG_Z<15:8> (MSB)
0x0A	X=6	RHALL<7:0> (LSB)
0x0B	X=7	RHALL<15:8> (MSB)
0x0C	X=8	GYR_X<7:0> (LSB)
0x0D	X=9	GYR_X<15:8> (MSB)
0x0E	X=10	GYR_Y<7:0> (LSB)
0x0F	X=11	GYR_Y<15:8> (MSB)
0x10	X=12	GYR_Z<7:0> (LSB)
0x11	X=13	GYR_Z<15:8> (MSB)
0x12	X=14	ACC_X<7:0> (LSB)
0x13	X=15	ACC_X<15:8> (MSB)
0x14	X=16	ACC_Y<7:0> (LSB)

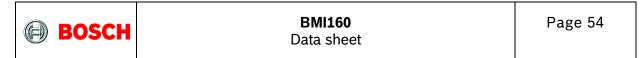
0x15	X=17	ACC_Y<15:8> (MSB)
0x16	X=18	ACC_Z<7:0> (LSB)
0x17	X=19	ACC_Z<15:8> (MSB)

2.11.5 Register (0x18-0x1A) SENSORTIME

ADDRESS 0x18 (3 byte)

RESET 0x0000

MODE R


DESCRIPTION Sensortime is a 24 bit counter available in suspend, low power, and normal mode. The value of the register is shadowed when it is read in a burst read with the data register at the beginning of the operation and the shadowed value is returned. When the FIFO is read the register is shadowed whenever a new frame is read.

DEFINITION The sensortime increments with 39 μ s. The accuracy of the counter is the same as for the output data rate as described in section 2.3. The sensortime is unique for approx. 10 min and 54 seconds. I.e. the register value starts at 0x000000 and wraps after 0xFFFFFF has been reached.

Name		Register (0x18-0x1	LA) SENSORTIME [0]
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	sensor_time<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	sensor_time<3:0>			

Name		Register (0x18-0x1	LA) SENSORTIME [:	1]
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	sensor_time<15:11	>		
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	sensor_time<10:8>			

Name		Register (0x18-0x1	LA) SENSORTIME [2]
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	sensor_time<23:19	>		

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	sensor_time<19:16	>		

2.11.6 Register (0x1B) STATUS

ADDRESS 0x1B RESET 0b00000000 MODE R DESCRIPTION Reports sensor status flags. DEFINITION

Bit	Acronym	Definition
7	drdy_acc	Data ready (DRDY) for accelerometer in register
6	drdy_gyr	Data ready (DRDY) for gyroscope in register
5	drdy_mag	Data ready (DRDY) for magnetometer in register
4	nvm_rdy	NVM controller status
3	foc_rdy	FOC completed
2	mag_man_op	'0' indicates no manual magnetometer interface operation '1' indicates a manual magnetometer interface operation triggered via MAG_IF[2] or MAG_IF[3]
1	gyr_self_test_ok	'0' when gyroscope self-test is running or failed. '1' when gyroscope self-test completed successfully.

Drdy_*: gets reset when one byte of the register for sensor * is read.

Nvm rdy: status of NVM controller: $(0) \rightarrow NVM$ write operation is in progress; $(1) \rightarrow NVM$

is ready to accept a new write trigger

foc rdy: Fast offset compensation completed

2.11.7 Register (0x1C-0x1F) INT_STATUS

ADDRESS 0x1C (4 byte)

RESET

MODE R

DESCRIPTION The register contains interrupt status flags.

DEFINITION

Each flag is associated with a specific interrupt function. It is set when the associated interrupt triggers. The setting of Register (0x54) INT_LATCH <3:0> controls if the interrupt signal and hence the respective interrupt flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Register (0x1C-0x1F) INT_STATUS [0]	Acronym	definition
7	flat_int	Flat interrupt
6	orient_int	Orientation interrupt
5	s_tap_int	Single tap interrupt
4	d_tap_int	Double tap interrupt
3	pmu_trigger_int	pmu trigger interrupt
2	anym_int	Anymotion
1	sigmot_int	Significant motion interrupt
0	step_int	Step detector interrupt

^{&#}x27;0' interrupt inactive, '1' interrupt active.

Register (0x1C-0x1F) INT_STATUS [1]		definition
7	nomo_int	Nomotion
6	fwm_int	Fifo watermark
5	ffull_int	Fifo full
4	drdy_int	Data ready
3	lowg_int	Low g
2	highg_z_int	High g
1		Reserved
0		Reserved

^{&#}x27;0' interrupt inactive, '1' interrupt active.

Register (0x1C-0x1F) INT_STATUS [2]		Definition
7	tap_sign	sign of single/double tap triggering signal was '0'→positive / '1' →negative
6	tap_first_z	single/double tap interrupt: '1' → triggered by, or '0'→not triggered by z-axis
5	tap_first_y	single/double tap interrupt: '1' → triggered by, or '0'→not triggered by y-axis
4	tap_first_x	single/double tap interrupt: '1' → triggered by, or '0'→not triggered by x-axis
3	anym_sign	slope sign of slope tap triggering signal was '0'→positive, or '1' →negative
2	anym_first_z	Anymotion interrupt: '1' → triggered by, or '0'→not triggered by z-axis
1	anym_first_y	Anymotion interrupt: '1' → triggered by, or '0'→not triggered by y-axis
0	anym_first_x	Anymotion interrupt: '1' → triggered by, or '0'→not triggered by z-axis

Page 56

Register (0x1C-0x1F) INT_STATUS [3]	acronym	definition
7	flat	device is in '1' \rightarrow flat, or '0' \rightarrow non flat position; only valid if (0x16) int_flat_en = '1'
6	orient<2>	Orientation value of z-axis: $0 \rightarrow 0$ upward looking, or $0 \rightarrow 0$ downward looking. The flag always reflect the current orientation status, independent of the setting of <3:0>. The flag is not updated as long as an orientation blocking condition is active.
<5:4>	orient<1:0>	orientation value of xx-y-plane: '00'→portrait upright; '01'→portrait upside down; '10'→landscape left; '11'→landscape right; The flags always reflect the current orientation status, independent of the setting of <3:0>. The flag is not updated as long as an orientation blocking condition is active.
3	high_sign	sign of acceleration signal that triggered high-g interrupt was '0'→positive, '1' →negative
2	high_first_z	high-g interrupt: '1' \rightarrow triggered by, or '0' \rightarrow not triggered by z-axis
1	high_first_y	high-g interrupt: '1' \rightarrow triggered by, or '0' \rightarrow not triggered by y-axis
0	high_first_x	high-g interrupt: '1' \rightarrow triggered by, or '0' \rightarrow not triggered by x-axis

The status bits in [2] and [3] are only meaningful if the corresponding interrupt in [0] or [1] is active.

2.11.8 Register (0x20-0x21) TEMPERATURE

ADDRESS 0x20 (2 byte)

RESET na

MODE R

DESCRIPTION Contains the temperature of the sensor

DEFINITION

The temperature is disabled when all sensors are in suspend mode. The output word of the 16-bit temperature sensor is valid if the gyroscope is in normal mode, i.e. $gyr_pmu_status=0b01$. The resolution is typically ½ 9 K/LSB. The absolute accuracy of the temperature is in the order of

Value	Temperature
0x7FFF	87 – ½° °C
•••	
0x0000	23 °C
•••	
0x8001	-41 + ½° °C
0x8000	Invalid

If the gyroscope is in normal mode (see Register (0x03) PMU_STATUS), the temperature is updated every 10 ms (+-12%). If the gyroscope is in suspend mode or fast-power up mode, the

Page 57

temperature is updated every 1.28 s aligned with bit 15 of the Register (0x20-0x21) TEMPERATURE.

2.11.9 Register (0x22-0x23) FIFO_LENGTH

ADDRESS 0x22 (2 byte)
RESET see definition
MODE see definition
DESCRIPTION FIFO data readout register.
DEFINITION

The register contains FIFO status flags.

Name		Register (0x22-0x2	23) FIFO_LENGTH [[0]
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	fifo_byte_counter<7	7:4>		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	fifo_byte_counter<3	3:0>		
Name		Register (0x22-0x2	23) FIFO_LENGTH [[1]
Name Bit	7	Register (0x22-0x2	23) FIFO_LENGTH [5	[1] 4
	7 R	_	_	_
Bit		6	5	4
Bit Read/Write	R	6 R	5 R	4 R
Bit Read/Write Reset Value	R n/a	6 R	5 R	4 R
Bit Read/Write Reset Value Content	R n/a Reserved	6 R n/a	5 R n/a	4 R n/a
Bit Read/Write Reset Value Content Bit	R n/a Reserved 3 R	6 R n/a	5 R n/a	4 R n/a

fifo_byte_counter: Current fill level of FIFO buffer. This includes the skip frame for a full FIFO. An empty FIFO corresponds to 0x000. The byte counter may be reset by reading out all frames from the FIFO buffer or when the FIFO is reset through the Register (0x7E) CMD. The byte counter is updated, when a complete frame is read or written.

Page 58

2.11.10 Register (0x24) FIFO_DATA

ADDRESS 0x24
RESET see definition
MODE see definition
DESCRIPTION FIFO data readout register.
DEFINITION

The FIFO data are organized in frames as described in chapter 2.5.1. The new data flag is preserved. Read burst access must be used, the address will not increment when the read burst reads at the address of FIFO_DATA. When a frame is only partially read out, it is retransmitted including the header at the next readout.

Name	Register (0x24) FIFO_DATA				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	
Content	fifo_data<7:4>				
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	
Content	fifo_data<3:0>				

fifo_data<7:0>: FIFO data readout; data format depends on the setting of Register (0x46-0x47) FIFO_CONFIG.

2.11.11 Register (0x40) ACC_CONF

ADDRESS 0x40 RESET 0b00101000 MODE RW

DESCRIPTION Sets the output data rate, the bandwidth, and the read mode of the acceleration sensor.

DEFINITION

Name	Register (0x40) ACC_CONF			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	1	0
Content	acc_us	acc_bwp		
Bit	3	2	1	0
Bit Read/Write	3 R/W	2 R/W	1 R/W	0 R/W
	R/W		_	

Page 59

acc us: undersampling parameter. The undersampling parameter is typically used in low

power mode

acc_bwp: bandwidth parameter determines filter configuration (acc_us=0) and averaging for

undersampling mode (acc_us=1). For details see chapter 2.2.4.

acc_odr: define the output data rate in Hz is given by 100/28-val(acc_odr). The output data rate

is independent of the power mode setting for the sensor

acc_odr	Output data rate in Hz
0b0000	Reserved
0b0001	25/32
0b0010	25/16
•••	
0b1000	100
•••	
0b1011	800
0b1100	1600
0b1101-0b1111	Reserved

When acc_us is set to '0' and the accelerometer is in low-power mode, it will change to normal mode. If the acc_us is set to '0' and an command to enter low-power mode is send to the Register (0x7E) CMD, this command is ignored.

Configurations without a bandwidth number are illegal settings and will result in an error code in the Register (0x02) ERR_REG.

2.11.12 Register (0x41) ACC_RANGE

ADDRESS 0x41 RESET see definition MODE see definition

DESCRIPTION The register allows the selection of the accelerometer g-range.

DEFINITION

Name	Register (0x41) ACC_RANGE			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	Reserved			
0				
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	1	1
Content	acc_range<3:0>			

acc_range<3:0>: Selection of accelerometer g-range:

'0b0011' \rightarrow ±2g range; '0b0101' \rightarrow ±4g range; '0b1000' \rightarrow ±8g range;

Page 60

'0b1100' \rightarrow ±16g range; all other settings \rightarrow ±2g range

reserved: write '0'

Changing the range of the accelerometer does not clear the data ready bit in the Register (0x1B) STATUS. It is recommended to read the Register (0x04-0x17) DATA after the range change to remove a stall data ready bit from before the range change.

2.11.13 Register (0x42) GYR_CONF

ADDRESS 0x42 RESET 0b00101000 MODE RW

DESCRIPTION Sets the output data rate, the bandwidth, and the read mode of the gyroscope in the sensor. DEFINITION

Name	Register (0x42) GYR_CONF			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	1	0
Content	reserved		gyr_bwp	
Bit	3	2	1	0
Bit Read/Write	3 R/W	2 R/W	1 R/W	0 R/W
	R/W		_	

gyr_odr: defines the output data rate of the gyro in the sensor. This is independent of the power mode setting for the sensor. The output data rate in Hz is given by $100/2^{8\text{-val(gyr_odr)}}$.

gyr_odr	Output data rate in Hz
0b0110	25
0b1000	100
0b1100	1600
0b1101	3200
0b111x	Reserved

gyr_bwp: the gyroscope bandwidth coefficient defines the 3 dB cutoff frequency of the low pass filter for the sensor data. For details see Section 2.4.2.

Configurations without a bandwidth number are illegal settings and will result in an error code in the Register (0x02) ERR_REG.

Page 61

2.11.14 Register (0x43) GYR_RANGE

ADDRESS 0x43 RESET 0b00000000 MODE RW

DESCRIPTION Defines the BMI160 angular rate measurement range DEFINITION

A measurement range is selected by setting the range bits as follows:

Name		Register (0x43) GYR_RANGE			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	Reserved				
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	reserved	gyr_range<2:0>			

range[2:0]	Full Scale	Resolution
' 000'	±2000°/s	16.4 LSB/°/s ⇔ 61.0 m°/s / LSB
'001'	±1000°/s	32.8 LSB/°/s ⇔ 30.5 m°/s / LSB
'010'	±500°/s	65.6 LSB/°/s ⇔ 15.3 m°/s / LSB
'011'	±250°/s	131.2 LSB/°/s ⇔ 7.6 m°/s / LSB
'100'	±125°/s	262.4 LSB/°/s ⇔ 3.8m°/s / LSB
'101', '110', '111'	reserved	

gyr_range<2:0>: Angular Rate Range and Resolution.

reserved: write '0'

Changing the range of the gyroscope does not clear the data ready bit in the Register (0x1B) STATUS. It is recommended to read the Register (0x04-0x17) DATA after the range change to remove a stall data ready bit from before the range change.

2.11.15 Register (0x44) MAG_CONF

ADDRESS 0x44 RESET 0b1000-1000 MODE RW

DESCRIPTION Sets the output data rate of the magnetometer interface in the sensor.

Name		Register (0x44) MAG_CONF		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	Reserved			

Page 62

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	mag_odr <3:0>			

DEFINITION

Bits <3:0> define the poll rate for the magnetometer attached to the magnetometer interface. This is independent of the power mode setting for the sensor. The output data rate in Hz is given by $50/2^{7\text{-val}(ODR<3:0>)}$. In addition to setting the poll rate, it is required to configure the magnetometer properly using the Register (0x4B-0x4F) MAG_IF.

Bit<3:0>

mag_odr	Output data rate in Hz
0b0000	reserved
0b0001	25/32
0b0010	25/16
0b0110	25
0b1000	100
0b1011	800
0b1100 - 0b1111	reserved

Bit <7:4> reserved

2.11.16 Register (0x45) FIFO_DOWNS

ADDRESS 0x45 (1 byte) RESET 0b0000-0000

MODE RW

DESCRIPTION Used to configure the down sampling ratios of the accel and gyro data for FIFO. DEFINITION The downsampling ratio for the gyro data are given by $2^{\text{Val(gyr_fifo_downs)}}$, the downsampling ratio for accel data are given by $2^{\text{Val(acc_fifo_downs)}}$. [acc,gyr]_fifo_filt_data=0 (1) selects pre-filtered (filtered) data for the FIFO for accelerometer and gyroscope, respectively.

Name		Register (0x45) FIFO_DOWNS			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	1	0	0	0	
Content	acc_fifo_filt_data	acc_fifo_downs			
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	1	0	0	0	
Content	gyr_fifo_filt_data	gyr_fifo_downs			

Page 63

2.11.17 Register (0x46-0x47) FIFO_CONFIG

ADDRESS 0x46 (2 bytes)

RESET see definition

MODE see definition

DESCRIPTION The Register (0x46-0x47) FIFO_CONFIG is a read/write register and can be used for reading or setting the current FIFO watermark level. This register can also be used for setting the different modes of operation of the FIFO, e.g. which data is going to be stored in it and which format is going to be used (header or headerless mode).

DEFINITION

Name	Register (0x46-0x47) FIFO_CONFIG [0]			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	fifo_water_mark <7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	fifo_water_mark <3:0>			

fifo_water_mark <7:0>: fifo_water_mark defines the FIFO watermark level. An interrupt will be generated, when the number of entries in the FIFO exceeds fifo water mark. The unit of fifo water mark are 4 bytes.

Name		Register (0x46-0x47) FIFO_CONFIG [1]		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	fifo_gyr_en	fifo_acc_en	fifo_mag_en	fifo_header_en
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	fifo_tag_int1_en	fifo_tag_int2_en	fifo_time_en	reserved

When all the sensors are disabled, the FIFO is disabled and no headers are written. The sensors can be disabled via *fifo gyr en*, *fifo acc en* and *fifo mag en*, respectively.

fifo_gyr_en:
fifo_acc_en:
fifo_mag_en:

'0' no gyro data are stored in FIFO, '1' gyro data are stored in FIFO (all 3 axes)
'0' no acc data are stored in FIFO, '1' acc data are stored in FIFO (all 3 axes)
'0' no mag data are stored in FIFO, '1' mag data are stored in FIFO (all 3 axes)

fifo_header_en: If '1' each frame contains a header as defined in chapter 2.5. If '0' the frame

format will be headerless. In this case, the output data rates of all enabled

sensors for the FIFO need to be identical.

fifo_tag_int1_en: 1' ('0') enables (disables) FIFO tag (interrupt) fifo_tag_int2_en: 1' ('0') enables (disables) FIFO tag (interrupt)

fifo_time_en: '1'('0') returns (does not return) a sensortime frame after the last valid frame

when more data are read than valid frames are in the FIFO.

Page 64

2.11.18 Register (0x4B-0x4F) MAG_IF

ADDRESS 0x4B (5 byte)

RESET

[0]: 0b0010-0000

[1]: 0b1000-0000

[2]: 0b0100-0010

[3]: 0b0100-1100

[4]: 0b0000-0000

MODE RW

DESCRIPTION Register for indirect addressing of the magnetometer connected to the magnetometer interface. This register allows read and write operations on the magnetometer register map. In addition it is used to setup the read loop for the magnetometer data. Setup and read loop are exclusive to each other, i.e. during the read loop no registers in the magnetometer may be accessed.

DEFINITION

Register (0x4B-0x4F) MAG_IF [0] bit definition	
7:1	I2C device address
0	reserved

Register (0x4B- 0x4F) MAG_IF [1] bit definition	Acronym	
7	mag_manual_en	Enable magnetometer register access on MAG_IF[2] (read operations) or MAG_IF[3] (write operations). This implies that the Register (0x04-0x17) DATA are not updated with magnetometer values. Accessing magnetometer requires the magnetometer in normal mode in Register (0x03) PMU_STATUS.
6	reserved	
<5:2>	mag_offset	Trigger-readout offset in units 2.5 ms. If set to zero, the offset is maximum, i.e. after readout a trigger is issued immediately.
<1:0>	mag_rd_burst	Data length of read burst operation, which reads out data from magnetometer (0b00=1,0b01=2,0b10=6,0b11=8 byte).

Register	Setup mode	Trigger and Readout mode
MAG_IF[2]	Address to read	Address to read
MAG_IF[3]	Address to write	Address to write
MAG_IF[4]	Data to write	Data to write

2.11.19 Register (0x50-0x52) INT_EN

ADDRESS 0x50 (3 byte) RESET

Page 65

[0] 0b0000-0000

[1] 0b0000-0000

[2] 0b0000-0000

MODE RW

DESCRIPTION Controls which interrupt engines are enabled.

DEFINITION

Register (0x50-0x52) INT_EN [0]	Acronym	Definition
7	int_flat_en	Flat interrupt
6	int_orient_en	Orientation interrupt
5	int_s_tap_en	Single tap interrupt
4	int_d_tap_en	Double tap interrupt
3		Reserved
2	int_anymo_z_en	Anymotion z
1	int_anymo_y_en	Anymotion y
0	int_anymo_x_en	Anymotion x

^{&#}x27;0' disables the interrupt, '1' enables it.

Register (0x50-0x52) INT_EN [1]	acronym	definition
7		Reserved
6	int_fwm_en	FIFO watermark
5	int_ffull_en	FIFO full
4	int_drdy_en	Data ready
3	int_low_en	Low g
2	int_highz_en	High g z
1	int_highy_en	High g y
0	int_highx_en	High g x

^{&#}x27;0' disables the interrupt, '1' enables the interrupt.

Register (0x50-0x52) INT_EN [2]	acronym	definition
7		Reserved
6		Reserved
5		Reserved
4		Reserved
3	int_step_det_en	Step detector
2	int_nomoz_en	No/slow motion z
1	int_nomoy_en	No/slow motion y
0	int_nomox_en	No/slow motion x

^{&#}x27;0' disables the interrupt, '1' enables the interrupt.

Note: Step_cnt_en and step_cnt_clr enable and clear the step counter (which is not related to interrupts).

Page 66

2.11.20 Register (0x53) INT_OUT_CTRL

ADDRESS 0x53 RESET 0b0000-0000 MODE RW

DESCRIPTION Contains the behavioral configuration (electrical definition of the interrupt pins. DEFINITION

Register (0x53) INT_OUT_CTRL	Acronym	definition
7	int2_output_en	Output enable for INT2 pin, select '0'→output disabled, or '1' →output enabled
6	int2_od	select '0'→push-pull, or '1' →open drain behavior for INT2 pin. Only valid if int2_output_en=1.
5	int2_lvl	'0'→active low, or '1'→active high level for INT2 pin. If int2_output_en=1 this applies for interrupt outputs, if int2_output_en=0 this applies to trigger PMU configured in Register (0x6C) PMU_TRIGGER. For tagging a frame in FIFO through fifo_tag_int2_en in Register (0x46-0x47) FIFO_CONFIG the setting of int2_lvl is not relevant.
4	int2_edge_crtl	'1' ('0') is edge (level) triggered for INT2 pin. This configuration is only meaningful when the pin is enabled as input.
3	int1_output_en	Output enable for INT1 pin, select '0'→output disabled, or '1' →output enabled
2	int1_od	select '0'→push-pull, or '1' →open drain behavior for INT1 pin. Only valid if int1_output_en=1
1	int1_lvl	select '0'→active low, or'1'→active high level for INT1 pin. If int1_output_en=1 this applies for interrupt outputs, if int1_output_en=0 this applies to trigger PMU configured in Register (0x6C) PMU_TRIGGER. For tagging in FIFO through fifo_tag_int2_en in Register (0x46-0x47) FIFO_CONFIG the setting of int2_lvl is not relevant. For tagging a frame in FIFO through fifo_tag_int1_en in Register (0x46-0x47) FIFO_CONFIG the setting of int1_lvl is not relevant.
0	int1_edge_crtl	'1' ('0') is edge (level) triggered for INT1 pin. This configuration is only meaningful when the pin is enabled as input.

int<x>_edge_crtl is only relevant for int<x>_output_en ='1'

2.11.21 Register (0x54) INT_LATCH

ADDRESS 0x54 RESET 0b0000-0000

Page 67

MODE RW

DESCRIPTION Contains the interrupt reset bit and the interrupt mode selection.

Not applied to new data, orientation, and flat interrupt.

Register (0x54) INT_LATCH	MODE	Definition
<7:6>	n/a	Reserved
5	RW	Input enable for INT2 pin, select '0'→input disabled, or '1' →input enabled
4	RW	Input enable for INT1 pin, select '0'→input disabled, or '1' →input enabled
<3:0>	RW	Latched/non-latched/temporary interrupt modes

<3:0>	Interrupt mode
0b0000	non-latched
0b0001	temporary, 312.5µs
0b0010	temporary, 625µs
0b0011	temporary, 1.25ms
0b0100	temporary, 2.5 ms
0b0101	temporary, 5ms
0b0110	temporary, 10ms
0b0111	temporary 20ms
0b1000	temporary, 40ms
0b1001	temporary, 80ms
0b1010	temporary, 160ms
0b1011	temporary, 320ms
0b1100	temporary, 640ms
0b1101	temporary, 1.28s
0b1110	temporary, 2.56s
0b1111	latched

The times for the temporary modes have been selected to be 50% of the pre-filtered data rate and then power of two increments.

2.11.22 Register (0x55-0x57) INT_MAP

ADDRESS 0x55 (3 bytes)

RESET

[0] 0b0000-0000

[1] 0b0000-0000

[2] 0b0000-0000

MODE RW

DESCRIPTION Controls which interrupt signals are mapped to the INT1 and INT2 pin.

DEFINITION

The tables show bit number of a register and meaning of the interrupt pin.

Page 68

The times for the temporary modes have been selected to be 50% of the pre-filtered data rate and then power of two increments.

Register (0x55-0x57) INT_MAP [0]	Interrupt mapped to pin INT1
7	Flat
6	Orientation
5	Single tap
4	Double tap
3	No motion
2	Anymotion / Significant motion
1	High-g
0	Low-g / Step detection

Register (0x55-0x57) INT_MAP [1]<7:4>	Interrupt mapped to pin INT1
7	Data ready
6	FIFO watermark
5	FIFO full
4	PMU trigger

Register (0x55-0x57) INT_MAP [1]<3:0>	Interrupt mapped to pin INT2
3	Data ready
2	FIFO watermark
1	FIFO full
0	PMU trigger

Register (0x55-0x57) INT_MAP [2]	Interrupt mapped to pin INT2
7	Flat
6	Orientation
5	Single tap
4	Double tap
3	No motion
2	Anymotion / Significant motion
1	High-g
0	Low-g / Step detection

^{&#}x27;1' means mapping is active, '0' means mapping is inactive.

When the external interrupt is mapped to an interrupt pin, all other interrupt mappings are disabled for this interrupt. When an external interrupt is mapped to an interrupt pin, no other interrupts may be enabled.

Application Note: There are two interrupt types defined in BMI160: Data driven interrupts (fifo_watermark, fifo_full, data ready) and physical interrupts (all others). If edge triggered interrupts are used and the user relies on a new edge if after servicing the interrupt the interrupt condition still holds, only one type of interrupt should be mapped to an interrupt pin, if edge triggered interrupts are needed.

Page 69

2.11.23 Register (0x58-0x59) INT_DATA

ADDRESS 0x58 (2 byte)

RESET

[0] 0b0000-0000

[1] 0b0000-0000

MODE RW

DESCRIPTION Contains the data source definition for the two interrupt groups.

DEFINITION

Name		Register (0x58-0x59) INT_DATA [0]		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int_lowhigh_src	Reserved		
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int_tap_src	Reserved		
Name		Register (0x58-0x	59) INT_DATA [1]	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0

Bit	1	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int_motion_src	Reserved		
_ • •				
Bit	3	2	1	0
Bit Read/Write	3 R/W	2 R/W	1 R/W	0 R/W
	R/W		1 R/W 0	

int_lowhighg_src: '0' ('1') selects filtered (pre-filtered) data for the interrupt engine for the low

and high g interrupts. Pre-filtered data are not supported in low-power

mode.

int_tap_src: '0' ('1') selects filtered (pre-filtered) data for the interrupt engine for the

single and double tap interrupts. Pre-filtered data are not supported in low-

power mode.

int_motion_src: '0' ('1') selects filtered (pre-filtered) data for the interrupt engine for the

nomotion and anymotion interrupts. Pre-filtered data are not supported in

low-power mode.

Page 70

2.11.24 Register (0x5A-0x5E) INT_LOWHIGH

ADDRESS 0x5A (5 bytes)

RESET see definition

MODE see definition

DESCRIPTION Contains the configuration for the low g interrupt

DEFINITION

Register (0x5A-0x5E) INT_LOWHIGH[0] contains the delay time definition for the low-g interrupt.

Name		Register (0x5A-0x5E) INT_LOWHIGH [0]			
Bit	7	6	5	4	
Read/Write	W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	int low dur<7:4>				

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	1	1
Content	int_low_dur<3:0>			

int_low_dur<7:0>: low-g interrupt trigger delay according to [int_low_dur<7:0> + 1] • 2.5 ms in a range from 2.5 ms to 640 ms; the default corresponds to a delay of 20 ms. If Register (0x58-0x59) INT_DATA configures that this interrupt uses pre-filtered data, the sensor must not be in low power mode.

Register (0x5A-0x5E) INT_LOWHIGH[1] contains the threshold definition for the low-g interrupt.

Name		Register (0x5A-0x	(5E) INT_LOWHIGH	[1]
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	1	1
Content	int_low_th<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int_low_th<3:0>			

int_low_th<7:0>: low-g interrupt trigger threshold according to Val(int_low_th<7:0>) • 7.81 mg for Val(int_low_th<7:0>)>0 and 3.91 mg for Val(int_low_th<7:0>)=0. The range of the threshold is from 3.91 mg to 2.000 g; the default value corresponds to an acceleration of 375 mg

BST-BMI160-DS000-09 | Revision 1.0 | November 2020

Bosch Sensortec

Page 71

Register (0x5A-0x5E) INT_LOWHIGH[2] contains the low-g interrupt mode selection, the low-g interrupt hysteresis setting, and the high-g interrupt hysteresis setting.

Name	Register (0x5A-0x5E) INT_LOWHIGH [2]			[2]
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	int_high_hy<1:0>		Reserved	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	reserved		int_low_hy<1:0>	

int_high_hy<1:0>: hysteresis of high-g interrupt according to Val(int_high_hy<1:0>) · 125 mg (2-g range), Val(int_high_hy<1:0>) · 250 mg (4-g range), Val(int_high_hy<1:0>) · 500 mg (8-g range), or Val(int_high_hy<1:0>) · 1000 mg (16-g range)

int_low_hy<1:0>: hysteresis of low-g interrupt according to <code>int_low_hy<1:0></code> · 125 mg independent of the selected accelerometer g-range

Register (0x5A-0x5E) INT_LOWHIGH[3] contains the delay time definition for the high-g interrupt.

Name		Register (0x5A-0x5E) INT_LOWHIGH [3]			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	int_high_dur<7:4>				
Bit	3	2	1	0	
		_	_	•	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	1	0	1	1	
Content	int_high_dur<3:0>				

int_high_dur<7:0>:high-g interrupt trigger delay according to [int_high_dur<7:0> + 1] • 2.5 ms in a range from 2.5 ms to 640 ms; the default corresponds to a delay of 30 ms. If Register (0x58-0x59) INT_DATA configures that this interrupt uses prefiltered data, the sensor is not entering low-power mode.

Register (0x5A-0x5E) INT LOWHIGH[4] contains the threshold definition for the high-g interrupt.

Name		Register (0x5A-0x5E) INT_LOWHIGH[4]		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	1	0	0
Content	high_th<7:4>			

BST-BMI160-DS000-09 | Revision 1.0 | November 2020

Bosch Sensortec

Page 72

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	high_th<3:0>			

int_high_th<7:0>: threshold of high-g interrupt according to $Val(int_high_th<7:0>) \cdot 7.81$ mg (2g range), $Val(int_high_th<7:0>) \cdot 15.63$ mg (4g range), $Val(int_high_th<7:0>) \cdot 31.25$ mg (8g range), or $Val(int_high_th<7:0>) \cdot 62.5$ mg (16g range).

For $Val(int_high_th<7:0>)=0$, the thresholds are defined by 3.91 mg (2g range), 7.81 mg (4g range), 15.63 mg (8g range), 31.25 mg (16g range)

2.11.25 Register (0x5F-0x62) INT_MOTION

ADDRESS 0x5F (4 byte)

RESET

[0] 0000-0000

[1] 0001-0100

[2] 0001-0100

[3] 0001-0100

MODE see definition

DESCRIPTION Contains the configuration for the anymotion and nomotion interrupts DEFINITION

Register (0x5F-0x62) INT_MOTION[0] contains the definition of the number of samples to be evaluated for the anymotion interrupt and the slow/no-motion interrupt trigger delay.

Name		Register (0x5F-0x62) INT_MOTION [0]		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int_slo_no_mot_dur<5:2>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int_slo_no_mot_dur<1:0>		int_anym_dur<1:0>	

int_slo_no_mot_dur<5:0>: Function depends on whether the slow-motion or no-motion interrupt function has been selected. If the slow-motion interrupt function has been enabled (int_no_mot_sel = '0') then [int_slo_no_mot_dur<1:0>+1] consecutive slope data points must be above the slow/no-motion threshold (int_slo_no_mot_th) for the slow-/no-motion interrupt to trigger. If the no-motion interrupt function has been enabled (int_no_mot_sel = '1') then int_slo_no_motion_dur<5:0> defines the time for which no slope data points must exceed the slow/no-motion threshold (int_slo_no_mot_th) for the slow/no-motion interrupt to trigger. The maximum delay time in seconds may be calculated according with the following equation:

Page 73

int_slo_no_mot_dur<5:4>='b00' \rightarrow [int_slo_no_mot_dur<3:0> + 1] \cdot 1.28 s \cdot > [1.28 - 20.48] s int_slo_no_mot_dur<5:4>='b01' \rightarrow [int_slo_no_mot_dur<3:0> + 5] 5.12 s-> [25.6 - 102.4] s int_slo_no_mot_dur<5>='1' \rightarrow [int_slo_no_mot_dur<4:0> + 11] \cdot 10.24 s-> [112.64 - 430.08] s

The minimum delay time is given by

```
 \begin{array}{l} \text{int\_slo\_no\_mot\_dur} < 5:4 > = 'b00' \rightarrow [\text{int\_slo\_no\_mot\_dur} < 3:0 >] \cdot 1.28 \text{ s} \ \ -> [0-19.20] \text{ s} \\ \text{int\_slo\_no\_mot\_dur} < 5:4 > = 'b01' \rightarrow [\text{int\_slo\_no\_mot\_dur} < 3:0 >] 5.12 \text{ s} -> [0-76.8] \text{ s} \\ \text{int\_slo\_no\_mot\_dur} < 5 > = '1' \rightarrow [\text{int\_slo\_no\_mot\_dur} < 4:0 > + 10] \cdot 10.24 \text{ s} -> [102.40 - 419.84] \text{ s} \\ \end{array}
```

int_anym_dur<1:0>: slope interrupt triggers if [int_anym_dur<1:0>+1] consecutive slope data points are above the slope interrupt threshold int_anym_th<7:0>

Register (0x5F-0x62) INT_MOTION[1] contains the threshold definition for the any-motion interrupt.

Name	Register (0x5F-0x62) INT_MOTION [1]			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	int_anym_th<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content	int_anym_th<3:0>			

Int anymo th<7:0>: Threshold of the any-motion interrupt. It is range-dependent and defined as difference sample-to-sample according to int anym th<7:0> 3.91 mg (2-g range) / int anym th<7:0> 7.81 mg (4-g range) / int anym th<7:0> 15.63 mg (8-g range) int anym_th<7:0> · 31.25 mg (16-g range)

For int_anym_th<7:0>=0x00 the threshold is 1.95 mg (2g range) / 3.91 mg (4g range) /

7.81 mg (8g range) / 15.63 mg (16g range)

Register (0x5F-0x62) INT_MOTION[2] contains the threshold definition for the slow/no-motion interrupt.

Name		Register (0x5F-0x62) INT_MOTION [2]		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	int_slo_no_mot_th<	<7:4>		

BST-BMI160-DS000-09 | Revision 1.0 | November 2020

Bosch Sensortec

Page 74

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content	int_slo_no_mot_th<	<3:0>		

```
Threshold of slow/no-motion interrupt. It is range-dependent and
int_slo_no_mot_th<7:0>:
                  defined
                             as
                                         sample-to-sample
                                                              difference
                                                                            according
                  int slo no mot th<7:0>
                                                         3.91 mg
                                                                                     range),
                  int slo no mot th<7:0>
                                                         7.81 mg
                                                                         (4-g
                                                                                     range),
                  int slo no mot th<7:0>
                                                         15.63 mg
                                                                         (8-g
                                                                                     range),
                  int_slo_no_mot_th<7:0> · 31.25 mg (16-g range)
```

For int_slo_no_mot_th<7:0>=0x00 the threshold is 1.95 mg (2g range) / 3.91 mg (4g range) / 7.81 mg (8g range) / 15.63 mg (16g range)

Register (0x5F-0x62) INT_MOTION[3] contains slow / no motion configuration

Name		Register (0x5F-0x6	62) INT_MOTION [3]	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	reserved		int_sig_mot_proof<1:0>	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content	int_sig_mot_skip <	1:0>	int_sig_mot_sel	int_no_mot_sel

int_no_mot_sel: '1' ('0') selects no-motion (slow-motion) interrupt function int_sig_mot_sel: '1' ('0') selects significant (anymotion) interrupt function int_sig_mot_skip: set the skip time of the significant motion interrupt: 0=1.5s, 1=3s, 2=6s, 3=12s int_sig_mot_proof: set the proof time of the significant motion interrupt: 0=0.25s, 1=0.5s, 2=1s, 3=2s

2.11.26 Register (0x63-0x64) INT_TAP

ADDRESS 0x63 (2 byte)
RESET see definition
MODE see definition
DESCRIPTION Contains the configuration for the tap interrupts
DEFINITION

Register (0x63-0x64) INT_TAP[0] contains the timing definitions for the single tap and double tap interrupts.

Name		Register (0x63-0x64) INT_TAP [0]		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int_tap_quiet	int_tap_shock	reserved	reserved

 ${\tt BST\text{-}BMI160\text{-}DS000\text{-}09} \mid {\tt Revision} \ 1.0 \mid {\tt November} \ 2020$

Bosch Sensortec

Page 75

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content	reserved	int_tap_dur<2:0>		

int_tap_quiet: selects a tap quiet duration of '0' \rightarrow 30 ms, '1' \rightarrow 20 ms int_tap_shock: selects a tap shock duration of '0' \rightarrow 50 ms, '1' \rightarrow 75 ms

reserved: write '0'

int_tap_dur<2:0>: selects the length of the time window for the second shock event for double

tap detection according to '0b000' \rightarrow 50 ms, '0b001' \rightarrow 100 ms, '0b010' \rightarrow 150 ms, '0b011' \rightarrow 200 ms, '0b100' \rightarrow 250 ms, '0b101' \rightarrow 375 ms, '0b110'

 \rightarrow 500 ms, '0b111' \rightarrow 700 ms.

If Register (0x58-0x59) INT_DATA configures that this interrupt uses pre-filtered data, the sensor is not entering low-power mode.

Register (0x63-0x64) INT_TAP[1] defines the threshold definition for the single and double tap interrupts.

Name	Register (0x63-0x64) INT_TAP [1]			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			int_tap_th<4>
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	1	0
Content	int_tap_th<3:0>			

reserved: write '0'

int_tap_th<3:0>: threshold of the single/double-tap interrupt corresponding to an acceleration

difference of val(int_tap_th<3:0>) \cdot 62.5mg (2g-range), val(int_tap_th<3:0>) \cdot 125mg (4g-range), val(int_tap_th<3:0>) \cdot 250mg (8g-range), and val(int_tap_th<3:0>) \cdot 500mg (16g-range). Int_tap_th<3:0>=0b0000, val(int_tap_th<3:0>)=0.5 is used in the above formulas, e.g.

int_tap_th<3:0>=0b0000 means 31.25mg in 2g-range.

2.11.27 Register (0x65-0x66) INT_ORIENT

ADDRESS 0x65 (2 byte)

RESET see definition

MODE see definition

DESCRIPTION Contains the configuration for the orientation interrupt

DEFINITION

Register (0x65-0x66) INT_ORIENT[0] contains the definition of hysteresis, blocking, and mode for the orientation interrupt

Name	Register (0x65-0x66) INT_ORIENT [0]

BOS(СН	BMI160 Data sheet		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	int_orient_hyst<3:0	>		

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	int orient blocking	<1:0>	int orient mode<1:	:0>

reserved: write '0'

int orient hyst<3:0>: sets the hysteresis of the orientation interrupt; 1 LSB corresponds to

62.5 mg irrespective of the selected g-range

int_orient_blocking<1:0>: selects the blocking mode that is used for the generation of the

orientation interrupt. The following blocking modes are available:

 $'0b00' \rightarrow no blocking,$

'0b01' → theta blocking or acceleration in any axis > 1.5g,

'0b10' → ,theta blocking or acceleration slope in any axis > 0.2 g or

acceleration in any axis > 1.5g

 $'0b11' \rightarrow theta$ blocking or acceleration slope in any axis > 0.4 g or acceleration in any axis > 1.5g and value of orient is not stable for at

least 100ms

int_orient_mode<1:0>: sets the thresholds for switching between the different orientations.

The settings: '0b00' \rightarrow symmetrical, '0b01' \rightarrow high-asymmetrical,

'0b10' → low-asymmetrical, '0b11' → symmetrical.

Register (0x65-0x66) INT_ORIENT[1] contains the definition of the axis orientation, up/down masking, and the theta blocking angle for the orientation interrupt.

Name		Register (0x65-0x66) INT_ORIENT [1]		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	n/a	1	0	0
Content	int_axes_ex	int_orient_ud_en	int_orient_theta<5:4>	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	int_orient_theta<3:0)>		

int_axes_ex: axes remapping of x-, y- and z-axis

value=0: x_{reg}=x_{sensor}, y_{reg}=y_{sensor}, z_{reg}=z_{sensor} value=1: x_{reg}←y_{sensor}, y_{reg}←z_{sensor}, z_{reg}←x_{sensor}

Page 77

int orient ud en:

change of up/down-bit '1' \rightarrow generates an orientation interrupt, '0' \rightarrow is

ignored and will not generate an orientation interrupt

int orient theta<5:0>:defines a blocking angle between 0° and 44.8°

2.11.28 Register (0x67-0x68) INT_FLAT

ADDRESS 0x67 (2 byte)

RESET see definition

MODE see definition

DESCRIPTION Contains the configuration for the flat interrupt

DEFINITION

Register (0x67-0x68) INT_FLAT[0] contains the definition of the flat threshold angle for the flat interrupt.

Name	Register (0x67-0x68) INT_FLAT[0]			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	n/a	n/a	0	0
Content	reserved		int_flat_theta<5:4>	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	int_flat_theta<3:0>			

reserved: write '0'

int_flat_theta<5:0>: defines threshold for detection of flat position in range from 0° to 44.8°.

Register (0x67-0x68) INT_FLAT[1] contains the definition of the flat interrupt hold time and flat interrupt hysteresis.

Name		Register (0x67-0x68) INT_FLAT [1]			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	1	
Content	reserved	int_flat_hold_time<		1:0>	
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	1	
Content	reserved	int_flat_hy<2:0>			

reserved: write '0'

int_flat_hold_time<1:0>: delay time for which the flat value must remain stable for the flat

interrupt to be generated: '0b00' \rightarrow 0 ms, '0b01' \rightarrow 640 ms, '0b10' \rightarrow

1280 ms, '0b11' \rightarrow 2560 ms

int_flat_hy<2:0>: defines flat interrupt hysteresis.

Page 78

2.11.29 Register (0x69) FOC_CONF

ADDRESS 0x69

RESET 0b00000000

MODE RW

DESCRIPTION Contains configuration settings for the fast offset compensation for the accelerometer and the gyroscope

DEFINITION

Name		Register (0x69) FOC_CONF			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	Reserved	foc_gyr_en	foc_acc_x<1:0>		
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	foc_acc	_y<1:0>	foc_acc	_z<1:0>	

reserved: write '0'

foc_gyr_en: enables fast offset compensation for all three axis of the gyro.

foc_acc_x: offset compensation target value for x-axis is '0b00' \rightarrow disabled, '0b01' \rightarrow +1

g, '0b10' \rightarrow -1 g, or '0b11' \rightarrow 0 g.

foc_acc_y: offset compensation target value for y-axis is '0b00' \rightarrow disabled, '0b01' \rightarrow +1

g, '0b10' \rightarrow -1 g, or '0b11' \rightarrow 0 g.

foc_acc_z: offset compensation target value for z-axis is '0b00' \rightarrow disabled, '0b01' \rightarrow +1

g, '0b10' \rightarrow -1 g, or '0b11' \rightarrow 0 g.

2.11.30 Register (0x6A) CONF

ADDRESS 0x6A
RESET 0b00000000
MODE RW
DESCRIPTION Configuration of the sensor
DEFINITION

Register (0x6A) CONF Bit	Acronym	Definition
7	reserved	
6	reserved	
5	reserved	
4	reserved	
3	reserved	
2	reserved	
1	nvm_prog_en	Enable NVM programming
0	reserved	

nvm_prog_en: '1'('0') enables (disables) that the NVM may be programmed

Page 79

2.11.31 Register (0x6B) IF_CONF

ADDRESS 0x6B RESET see definition MODE RW

DESCRIPTION Contains settings for the digital interface.

DEFINITION

Name	Register (0x6B) IF_CONF			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved		if_mode<1:0>	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			spi3

reserved: write '0'

spi3: select '0' \rightarrow 4-wire SPI, or '1' \rightarrow 3-wire SPI mode for primary if_mode: 00: primary interface: autoconfig / secondary interface: off

01: Primary interface:I2C / secondary interface:OIS

02: Primary interface: autoconfig / secondary interface: Magnetometer

11: reserved

2.11.32 Register (0x6C) PMU_TRIGGER

ADDRESS 0x6C RESET 0b0000-0000 MODE RW

DESCRIPTION Used to set the trigger conditions to change the gyro power modes DEFINITION

The pmu_gyr_mode in Register (0x03) PMU_STATUS is updated with each transition triggered.

Name		Register (0x6C) PMU_TRIGGER			
Bit	7	6	5	4	
Read/Write	RW	RW	RW	RW	
Reset Value	0	0	0	0	
Content	Reserved	wakeup_int	gyr_sleep_state	gyr_wakeup_trigg er<1>	
Bit	3	2	1	0	
Read/Write	RW	RW	RW	RW	
Reset Value	0	0	0	0	
Content	gyr_wakeup_trigg er<0>	gyr_sleep_trigger <	2:0>		

Page 80

gyr_wakeup_trigger: when both trigger conditions are enabled, both conditions must be active to trigger the transition.

gyr_wakeup_trigger	anymotion	INT1 pin
0b00	no	no
0b01	no	yes
0b10	yes	no
0b11	yes	yes

gyr_sleep_trigger: when more than one trigger condition is enabled, one is sufficient to trigger the transition.

gyr_sleep_trigger	nomotion	Not INT1 pin	INT2 pin
0b000	no	no	no
0b001	no	no	yes
0b010	no	yes	no
0b011	no	Yes	yes
0b100	yes	no	no
0b101	yes	no	yes
0b110	yes	yes	no
0b111	Yes	yes	yes

If gyr_sleep_trigger and gyr_wakeup_trigger are active at the same time, the gyr_wakeup_trigger wins.

The INTx pin takes into account the edge/level triggered setting in the Register (0x53) INT_OUT_CTRL.

gyr sleep state: '1'('0') transitions to suspend (fast start-up) state

wakeup_int: '1'('0') triggers an interrupt, when a gyro wakeup is triggered

2.11.33 Register (0x6D) SELF_TEST

ADDRESS 0x6D RESET 0b0000-0000 MODE RW

DESCRIPTION Contains the settings for the sensor self-test configuration and trigger. DEFINITION

Name	Register (0x6D) SELF_TEST			
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			gyr_self_test_ enable
Bit	3	2	1	0

Page 81

Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	acc_self_test_amp	acc_self_test_sign	acc_self_test-er	able<1:0>

reserved: write '0x0'

gyr_self_test_enable: starts self-test of the gyroscope. The result can be obtained from Register (0x1B) STATUS.

acc_self_test_amp; select amplitude of the selftest deflection '1' \rightarrow high,

default value is low ('0'),

acc_self_test_sign: select sign of self-test excitation as '1' \rightarrow positive, or '0' \rightarrow negative acc_self_test_enable: starts self-test of the accel: '0b00' \rightarrow self-test disabled, '0b01' \rightarrow self-test enabled. After the self-test has been enabled a delay of a least 50 ms is necessary for the read-out value to settle The result can be obtained from Register (0x1B) STATUS.

In addition, for the accel self test the Register (0x40) ACC_CONF has to be set to value 0x2C (acc_odr=1600Hz; acc_bwp=2; acc_us=0), otherwise the accelerometer selftest will not function correctly. It is enabled for all 3 axis at the same time.

2.11.34 Register (0x70) NV_CONF

ADDRESS 0x70 RESET see definition MODE RW

DESCRIPTION Contains settings for the digital interface.

DEFINITION

This register is backed by NVM and loaded from NVM during bootup.

Name		Register (0x70) NV_CONF			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	reserved				
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	reserved	i2c_wdt_en	i2c_wdt_sel	spi_en	

reserved: write '0'

i2c_wdt_en: if I2C interface mode is selected then '1' \rightarrow enable, or '0' \rightarrow disables the

watchdog at the SDI pin (= SDA for I²C)

i2c wdt sel: select an I²C watchdog timer period of '0' \rightarrow 1 ms, or '1' \rightarrow 50 ms

spi_en: disable the I2C and only enable SPI for the primary interface, when it is in

autoconfig if_mode.

2.11.35 Register (0x71-0x77) OFFSET

ADDRESS 0x71 (7 byte)

Page 82

RESET Reads from NVM MODE RW

DESCRIPTION Contains the offset compensation values for accelerometer and gyroscope DEFINITION

Offset values, which are added to the internal filtered and pre-filtered data for gyroscope and accelerometer if the function is enabled with gyr_off_en and acc_off_en in the register; the offset values are represented with two's complement notation; the content of the register may be written to the NVM; it is automatically restored from the NVM after each power-on or soft reset; offset values may be written directly by the user; it is generated automatically after triggering the fast offset compensation procedure.

[0]	acc_off_x<7:0>
[1]	acc_off_y<7:0>
[2]	acc_off_z<7:0>
[3]	off_gyr_x<7:0>
[4]	off_gyr_y<7:0>
[5]	off_gyr_z<7:0>

Name		Register (0x71-0x77) OFFSET [6]		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	gyr_off_en	acc_off_en	off_gyr_z<9:8>	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	off_gyr_y<9:8>		off_gyr_x<9:8>	

The offset of the accelerometer off_acc_[xyz] is a 8 bit two-complement number in units of 3.9 mg independent of the range selected for the accelerometer.

The offset of the gyroscope off_gyr_[xyz] is a 10 bit two-complement number in units of 0.061 $^{\circ}$ /s. Therefore a maximum range that can be compensated is -31.25 $^{\circ}$ /s to +31.25 $^{\circ}$ /s. The configuration is done in the Register (0x70) NV CONF.

The MSBs for the gyro offset setting are also contained in OFFSET[6]. Aside from this, the register also contains the two bits gyr_off_en and acc_off_en, which can be set to 1 in order to enable gyro and accel offset compensation, respectively.

2.11.36 Register (0x78-0x79) STEP_CNT

ADDRESS 0x78 (2 byte)
RESET
[0] 0b0000-0000
[1] 0b0000-0000
MODE R
DESCRIPTION Contains the number of steps.
DEFINITION

Page 83

Name	Register (0x78-0x79) STEP_CNT [1]				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	step_cnt<15:12>				
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	step_cnt<11:8>				
Name		Register (0x78-0x7	79) STEP_CNT [0]		
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Read/Write Reset Value	R 0	R 0	R 0	R 0	
Reset Value	0				
Reset Value Content	0 step_cnt<7:4>	0	0	0	
Reset Value Content Bit	0 step_cnt<7:4> 3 R	2	1	0	

step_cnt: number of steps counted since last POR or step counter reset

2.11.37 Register (0x7A-0x7B) STEP_CONF

ADDRESS 0x7A (2 byte)

RESET na

MODE R

DESCRIPTION Contains configuration of the step detector

DEFINITION

Name	Register (0x7A-0x7B) STEP_CONF [0]				
Bit	7	6	5	4	
Read/Write	W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	step_conf<7:4>				
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	step_conf<3:0>				

Name	Register (0x7A-0x7B) STEP_CONF [1]				
Bit	7	6	5	4	
Read/Write	W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	reserved				

BST-BMI160-DS000-09 | Revision 1.0 | November 2020

Bosch Sensortec

Page 84

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	step_cnt_en	step_conf<10:8>		

Page 85

There are three settings to balance between sensitivity (false negatives) and robustness (false positives):

Normal mode:

Recommended for most applications. Well balanced between false positives and false negatives.

STEP_CONF[0]: 0x15 (0b0001 0101)

STEP_CONF[1]: 0x03 (0b0000 0011) (the step_cnt_en bit is set to 0)

Sensitive mode:

Recommended for light weighted persons. Will give few false negatives but eventually more false positives.

STEP_CONF[0]: 0x2D (0b0010 1101)

STEP CONF[1]: 0x00 (0b0000 0000) (the step cnt en bit is set to 0)

Robust mode:

Will give few false positives but eventually more false negatives.

STEP CONF[0]: 0x1D (0b0001 1101)

STEP_CONF[1]: 0x07 (0b0000 0111) (the step_cnt_en bit is set to 0)

The step counter register can be read out at Register (0x78-0x79) STEP_CNT. The step counter can be reset by sending the command 0xB2 to the Register (0x7E) CMD.

2.11.38 Register (0x7E) CMD

Register (0x7E) CMD ADDRESS 0x7E RESET na MODE R

DESCRIPTION Command register triggers operations like *softreset*, NVM programming, etc. DEFINITION

Name	Register (0x7E) CMD				
Bit	7	6	5	4	
Read/Write	W	W	W	W	
Reset Value	0	0	0	0	
Content	cmd<7:4>				
Bit	3	2	1	0	
Read/Write	W	W	W	W	
Reset Value	0	0	0	0	
Content	cmd<3:0>				

During the time a command is executed, it occupies the Register (0x7E) CMD. All new writes to this register are dropped during this time with the exception of the softreset command. If a write to the Register (0x7E) CMD is dropped, drop cmd err in Register (0x02) ERR REG is set.

Page 86

Table 24: Typical and max. execution times for which the CMD register is occupied

Description	Command code	Typ. time³ in ms	Max. time ⁴ in ms
Set PMU mode of accelerometer to normal or low power	0x11-0x12	3.2	3.8
Set PMU mode of gyroscope to normal or fast start-up from suspend mode	0x15; 0x17	55	80
Set PMU mode of magnetometer interface to suspend, normal, or low-power	0x18-0x1B	0.35	0.5

The time it takes to perform a soft reset in conjunction with re-starting a sensor is essentially given by the corresponding PMU command execution time in Table 24 (to be more exact, a system start-up time of 300 µs has to be added to the times given for PMU switching).

cmd:

start foc: 0x03

Starts Fast Offset Calibration for the accel and gyro as configured in Register (0x69) FOC CONF and stores the result into the Register (0x71-0x77) OFFSET register.

acc_set_pmu_mode: 0b0001 00nn

Sets the PMU mode for the accelerometer. The encoding for 'nn' is identical to acc pmu status in Register (0x03) PMU STATUS.

gyr_set_pmu_mode: 0b0001 01nn

Sets the PMU mode for the gyroscope. The encoding for 'nn' is identical to gyr pmu status in Register (0x03) PMU STATUS

mag_set_pmu_mode: 0b0001 10nn

Sets the PMU mode for the mag interface. The encoding for 'nn' is identical to mag pmu status in Register (0x03) PMU STATUS.

prog nvm: 0xA0

Writes the NVM backed registers into NVM.

fifo_flush: 0xB0

clears all data in the FIFO, does not change the Register (0x46-0x47) FIFO CONFIG and Register (0x45) FIFO DOWNS registers.

³ When accelerometer, gyroscope, and magnetometer interface are all in suspend or low power mode, another 0.3 ms need to be added.

⁴ When accelerometer, gyroscope, and magnetometer interface are all in suspend or low power mode, another 0.3 ms need to be added.

Page 87

int_reset: 0xB1

resets the interrupt engine, the Register (0x1C-0x1F) INT_STATUS and the interrupt pin.

softreset: 0xB6

triggers a reset including a reboot. Other values are ignored. Following a delay, all user configuration settings are overwritten with their default state or the setting stored in the NVM, wherever applicable. This register is functional in all operation modes.

step_cnt_clr: 0xB2

triggers a reset of the step counter. This register is functional in all operation modes.

3. Digital interfaces

3.1 Interfaces

Beside the standard primary interface (I²C and SPI configurable), where sensor acts as a slave to the application processor, BMI160 supports a secondary interface. The secondary interface can be configured either as MAG-Interface (I²C) or as a OIS-Interface (SPI). See picture below.

If the secondary interface is configured as MAG-Interface, the BMI160 can be connected to an external sensor (e.g. a magnetometer) in order to build a 9-DoF solution. Then the BMI160 will act as a master to the external sensor, reading the sensor data automatically and providing it to the application processor via the primary interface.

Alternatively, the secondary interface can be used as an OIS-Interface to be connected to an external OIS-Control unit, where the OIS controller will act as a master and the BMI160 as a slave.

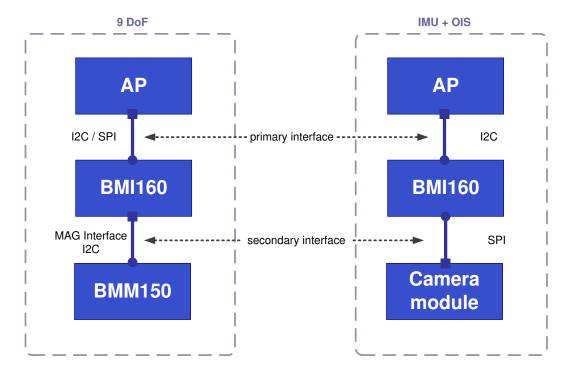


Figure 21: Examples for secondary interface usage

3.2 Primary Interface

By default, the BMI160 operates in I2C mode. The BMI160 interface can also be configured to operate in a SPI 4-wire configuration. It can be re-configured by software to work in 3-wire mode instead of 4-wire mode.

All 3 possible digital interfaces share partly the same pins (see Chapter 4). The mapping for the primary interface of the BMI160 is given in the following table:

Page 89

Table 25: Mapping of the primary interface pins

				Conne	ct to (Pri	mary IF)
Pin#	Name	I/O Type	Description	in SPI4W	in SPI3 W	in I2C
1	SDO	Digital I/O	Serial data output in SPI Address select in I2C mode	MISO	DNC (float)	SA0 (GND for default addr.)
4	INT1	Digital I/O	Interrupt pin 1 *)	INT1	INT1	INT1
9	INT2	Digital I/O	Interrupt pin 2 *)	INT2	INT2	INT2
12	CSB	Digital in	Chip select for SPI mode / Protocol selection pin	CSB	CSB	VDDIO
13	SCx	Digital in	SCK for SPI serial clock SCL for I ² C serial clock	SCK	SCK	SCL
14	SDx	Digital I/O	SDA serial data I/O in I2C SDI serial data input in SPI 4W SDA serial data I/O in SPI 3W	MOSI	SISO	SDA

The following table shows the electrical specifications of the interface pins:

Table 26: Electrical specification of the interface pins

Parameter	Symbol	Condition	Min	Тур	Max	Units
Pull-up Resistance, CSB pin	R_{up}	Internal Pull-up Resistance to VDDIO	75	100	150	kΩ
Input Capacitance	Cin				5	pF
I ² C Bus Load Capacitance (max. drive capability)	C_{12C_Load}				400	pF

3.2.1 Primary Interface I2C/SPI Protocol Selection

The protocol is automatically selected based on the chip select CSB pin behavior after power-up.

At reset / power-up, BMI160 is in I2C mode. If CSB is connected to V_{DDIO} during power-up and not changed the sensor interface works in I2C mode. For using I²C, it is recommended to hardwire the CSB line to V_{DDIO} . Since power-on-reset is only executed when, both V_{DD} and V_{DDIO} are established, there is no risk of incorrect protocol detection due to power-up sequence.

If CSB sees a rising edge after power-up, the BMI160 interface switches to SPI until a reset or the next power-up occurs. Therefore, a CSB rising edge is needed before starting the SPI

Page 90

communication. Hence, it is recommended to perform a SPI single read access to the ADDRESS 0x7F before the actual communication in order to use the SPI interface.

If toggling of the CSB bit is not possible without data communication, there is in addition the *spi_en* bit in Register (0x70) NV_CONF, which can be used to permanently set the primary interface to SPI without the need to toggle the CSB pin at every power-up or reset.

3.2.2 Primary SPI Interface

The timing specification for SPI of the BMI160 is given in the following table:

Table 27: SPI timing, valid at V_{DDIO} ≥ 1.71V

Parameter	Symbol	Condition	Min	Max	Units
Clock Frequency	f _{SPI}	Max. Load on SDI or SDO = 25pF, V _{DDIO} ≥ 1.71 V		10	MHz
		$V_{DDIO} < 1.71V$		7.5	MHz
SCK Low Pulse	t sckl		48		ns
SCK High Pulse	t _{sckh}		48		ns
SDI Setup Time	t _{SDI_setup}		20		ns
SDI Hold Time	t _{SDI_hold}		20		ns
SDO Output Delay	t _{SDO_OD}	Load = 30pF, $V_{DDIO} \ge 1.62V$		30	ns
CSB Setup Time	t _{CSB_setup}		20		ns
CSB Hold Time	$t_{\text{CSB_hold}}$		40		ns
Idle time between write accesses, suspend mode, low-power mode 1	$t_{IDLE_wacc_sum}$		450		μs

Page 91

The following figure shows the definition of the SPI timings:

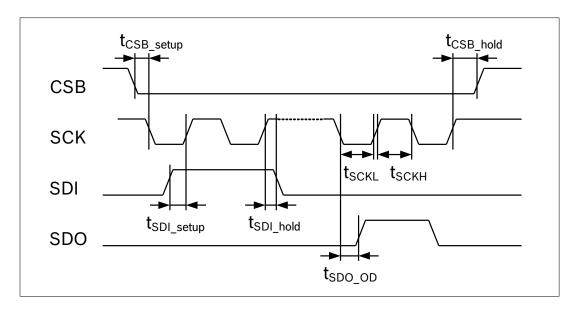


Figure 22: SPI timing diagram

The SPI interface of the BMI160 is compatible with two modes, '00' [CPOL = '0' and CPHA = '0'] and '11' [CPOL = '1' and CPHA = '1']. The automatic selection between '00' and '11' is controlled based on the value of SCK after a falling edge of CSB.

Two configurations of the SPI interface are supported by the BMI160: 4-wire and 3-wire. The same protocol is used by both configurations. The device operates in 4-wire configuration by default. It can be switched to 3-wire configuration by writing '1' to Register (0x6B) IF_CONF *spi3*. Pin SDI is used as the common data pin in 3-wire configuration.

For single byte read as well as write operations, 16-bit protocols are used. The BMI160 also supports multiple-byte read and write operations.

In SPI 4-wire configuration CSB (chip select low active), SCK (serial clock), SDI (serial data input), and SDO (serial data output) pins are used. The communication starts when the CSB is pulled low by the SPI master and stops when CSB is pulled high. SCK is also controlled by SPI master. SDI and SDO are driven at the falling edge of SCK and should be captured at the rising edge of SCK.

The basic write operation waveform for 4-wire configuration is depicted in the following figure. During the entire write cycle SDO remains in high-impedance state.

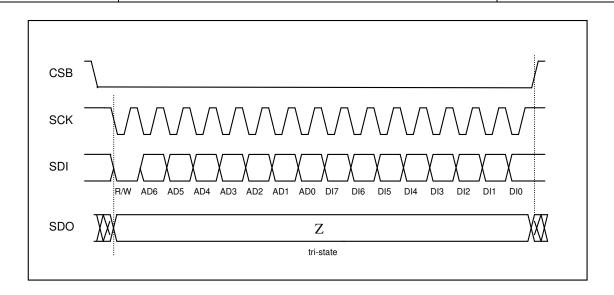


Figure 23: 4-wire basic SPI write sequence (mode '11')

The basic read operation waveform for 4-wire configuration is depicted in the figure below:

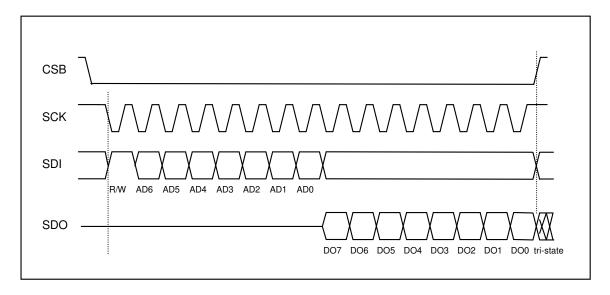


Figure 24: 4-wire basic SPI read sequence (mode '11')

The data bits are used as follows:

Bit0: Read/Write bit. When 0, the data SDI is written into the chip. When 1, the data SDO from the chip is read.

Bit1-7: Address AD(6:0).

Page 93

Bit8-15: when in write mode, these are the data SDI, which will be written into the address. When in read mode, these are the data SDO, which are read from the address.

Multiple read operations are possible by keeping CSB low and continuing the data transfer. Only the first register address has to be written. Addresses are automatically incremented after each read access as long as CSB stays active low.

The principle of multiple read is shown in figure below:

		Control byte	Data byte	Data byte	Data byte	1
Start	RW	Register adress (02h)	Data register - adress 02h	Data register - adress 03h	Data register - adress 04h	Stop
CSB = 0	1	0 0 0 0 0 1 0				CSB = 1

Figure 25: SPI multiple read

In SPI 3-wire configuration CSB (chip select low active), SCK (serial clock), and SDI (serial data input and output) pins are used. While SCK is high, the communication starts when the CSB is pulled low by the SPI master and stops when CSB is pulled high. SCK is also controlled by SPI master. SDI is driven (when used as input of the device) at the falling edge of SCK and should be captured (when used as the output of the device) at the rising edge of SCK.

The protocol as such is the same in 3-wire configuration as it is in 4-wire configuration. The basic operation wave-form (read or write access) for 3-wire configuration is depicted in the figure below:

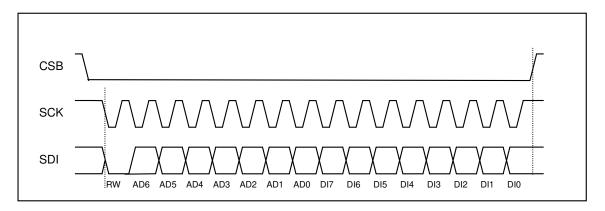


Figure 26: 3-wire basic SPI read or write sequence (mode '11')

3.2.3 Primary I2C Interface

The I²C bus uses SCL (= SCx pin, serial clock) and SDA (= SDx pin, serial data input and output) signal lines. Both lines are connected to V_{DDIO} externally via pull-up resistors so that they are pulled high when the bus is free.

The I²C addresses are identical to BMG160. The default I²C address of the device is 0b1101000 (0x68). It is used if the SDO pin is pulled to 'GND'. The alternative address 0b1101001 (0x69) is selected by pulling the SDO pin to 'VDDIO'.

Page 94

The I²C interface of the BMI160 is compatible with the I²C Specification UM10204 Rev. 03 (19 June 2007), available at http://www.nxp.com. The BMI160 supports I²C standard mode and fast mode, only 7-bit address mode is supported. For $V_{DDIO} = 1.2V$ to 1.62 V the guaranteed voltage output levels are slightly relaxed as described in Table 1 of the electrical specification section.

BMI160 also supports an **extended I²C mode** that allows using clock frequencies up to 1 MHz. In this mode all timings of the fast mode apply and it additionally supports clock frequencies up to 1MHz.

The timing specification for I²C of the BMI160 is given in the following table:

Table 28: Primary I²C timings

Parameter	Symbol	Condition	Min	Max	Units
Clock Frequency	f_{SCL}			1000	kHz
SCL Low Period	t_{LOW}		1.3		
SCL High Period	t _{HIGH}		0.6		
SDA Setup Time	t SUDAT		0.1		
SDA Hold Time	t _{HDDAT}		0.0		
Setup Time for a repeated Start Condition	t _{SUSTA}		0.6		
Hold Time for a Start Condition	t _{HDSTA}		0.6		
Setup Time for a Stop Condition	t _{susто}		0.6		
Time before a new Transmission can	t _{BUF}	low power mode	400		μs
start		normal mode	1.3		
Idle time between write accesses,	t _{ipi} s	low power mode	400		
normal mode, standby mode, low-power mode	t _{IDLE_wacc_n} m	normal mode	1.3		
Idle time between write accesses, suspend mode, low-power mode	t _{IDLE_wacc_s}		400		

Page 95

The figure below shows the definition of the I²C timings given in Table 28:

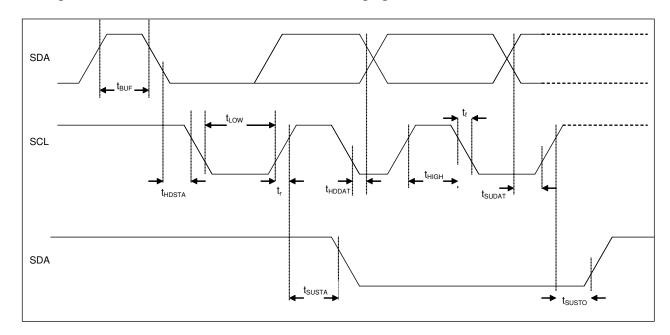


Figure 27: I2C timing diagram

The I²C protocol works as follows:

START: Data transmission on the bus begins with a high to low transition on the SDA line while SCL is held high (start condition (S) indicated by I²C bus master). Once the START signal is transferred by the master, the bus is considered busy.

STOP: Each data transfer should be terminated by a Stop signal (P) generated by master. The STOP condition is a low to HIGH transition on SDA line while SCL is held high.

ACKS: Each byte of data transferred must be acknowledged. It is indicated by an acknowledge bit sent by the receiver. The transmitter must release the SDA line (no pull down) during the acknowledge pulse while the receiver must then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

In the following diagrams these abbreviations are used:

S Start P Stop

ACKS Acknowledge by slave
ACKM Acknowledge by master
NACKM Not acknowledge by master

RW Read / Write

A START immediately followed by a STOP (without SCL toggling from 'VDDIO' to 'GND') is not supported. If such a combination occurs, the STOP is not recognized by the device.

Page 96

I²C write access:

I²C write access can be used to write a data byte in one sequence.

The sequence begins with start condition generated by the master, followed by 7 bits slave address and a write bit (RW = 0). The slave sends an acknowledge bit (ACKS = 0) and releases the bus. Then the master sends the one byte register address. The slave again acknowledges the transmission and waits for the 8 bits of data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Example of an I2C write access:

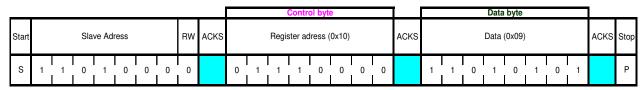


Figure 28: I2C write

I²C read access:

I²C read access also can be used to read one or multiple data bytes in one sequence.

A read sequence consists of a one-byte I²C write phase followed by the I²C read phase. The two parts of the transmission must be separated by a repeated start condition (S). The I²C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (RW = 1). Then the master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACKS = 0) to enable further data transfer. A NACKM (ACKS = 1) from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

The register address is automatically incremented and, therefore, more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified since the latest I²C write command. By default the start address is set at 0x00. In this way repetitive multi-bytes reads from the same starting address are possible.

In order to prevent the I²C slave of the device to lock-up the I²C bus, a watchdog timer (WDT) is implemented. The WDT observes internal I²C signals and resets the I²C interface if the bus is locked-up by the BMI160. The activity and the timer period of the WDT can be configured through the bits *i*2c_wdt_en and *i*2c_wdt_sel at Register (0x70) NV_CONF.

Writing '1' ('0') to Register (0x70) NV_CONF *i2c_wdt_en* activates (de-activates) the WDT. Writing '0' ('1') to Register (0x70) NV_CONF *i2c_wdt_en* selects a timer period of 1 ms (50 ms).

Page 97

Example of an I2C read access (reading gyro data):

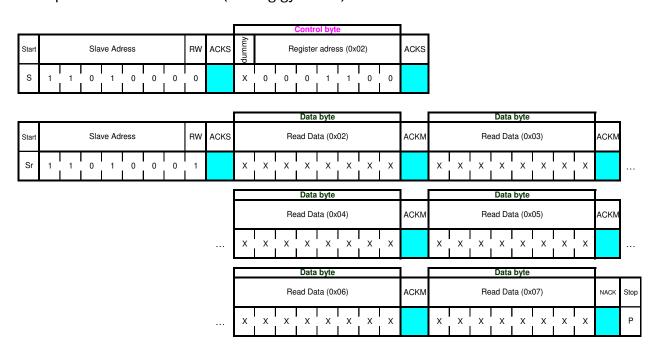


Figure 29: I2C multiple read

3.2.4 SPI and I²C Access Restrictions

In order to allow for the correct internal synchronization of data written to the BMI160, certain access restrictions apply for consecutive write accesses or a write/read sequence through the SPI as well as I^2C interface. The required waiting period depends on whether the device is operating in normal mode or other modes.

As illustrated in the figure below, an interface idle time of at least 2 µs is required following a write operation when the device operates in normal mode. In suspend mode an interface idle time of least 450 µs is required⁵.

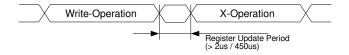


Figure 30: Post-Write Access Timing Constraints

⁵ The times are preliminary and need to be verified.

Page 98

3.3 Secondary Interface

The secondary interface can be used in two different classes of use cases:

- Magnetometer Interface (I²C) for connecting to a MAG-sensor In this case the secondary interface is used as a two-wire interface where an external sensor (MAG-sensor) would be connected as a slave to BMI160. The typical application is connecting a Bosch Sensortec geomagnetic sensor (BMM150).
- OIS Interface (SPI) for connecting to a OIS control unit In this case the secondary interface is used as a SPI interface where an external control unit is connected as a master to BMI160. External control unit can be e.g. OIS controllers.

The mapping for the secondary interface of the BMI160 is given in the following table:

Table 29: Mapping of the secondary interface pins

Pin#	Name	I/O Type	Description	Connect	to (second	lary IF)
				in SPI4W	in SPI3W	in I2C
2	ASDx	Digital I/O	Secondary Magnetometer interface	MOSI	SISO	SDA
3	ASCx	Digital I/O	Secondary Magnetometer interface	SCK	SCK	SCL
10	OCSB	Digital in	Secondary OIS interface	CSB	CSB	DNC
11	OSDO	Digital out	Secondary OIS interface	MISO	DNC	DNC

3.3.1 Magnetometer connected to secondary interface

The BMI160 allows attaching an external sensor (MAG-sensor) to a BMI160 via the secondary interface (magnetometer interface), as shown in Figure 21. The connection diagrams for the magnetometer interface are depicted in the chapter 4. The timings of the secondary I²C interface are the same as for the primary I²C interface, see chapter 3.2.3.

BMI160 acts as a master of the secondary interface, controls the data acquisition of the MAGsensor (slave of the secondary interface) and presents the data to the application processor (AP) in the user registers of the BMI160 through the primary interface. External pull-up resistors need to be connected and no additional I²C master or slave devices must be attached to the magnetometer interfaces.

The BMI160 autonomously reads out the sensor data from BMM150 without intervention of the AP and stores the data in its data registers (per default) and FIFO (see Register (0x46-0x47) FIFO_CONFIG). The initial setup of the BMM150 after power-on is done through indirect addressing in the BMI160. From a system perspective the initialization for BMM150 when attached to BMI160 should be possible within 100ms.

The main benefits of the magnetometer interface are:

- 1. to synchronize sensor data from the magnetometer and the IMU; this improves the quality of sensor data fusion
- 2. to use the IMU-FIFO for storing the magnetometer data; this can be important for monitoring applications.

Page 99

3.3.1.1 Configuration options of the secondary interface as magnetometer interface

The secondary interface configured as a magnetometer interface is a I²C master interface supporting Fast-Mode I²C communication.

In this mode the ASCx pad is output only, since both master and slave don't support clock stretching and only master can drive the clock. ASCx is configured as push-pull output when magnetometer interface is enabled. The ASDx pad is used for data transfer between master and slave devices and is bidirectional.

There are two basis configurations of the magnetometer interface that can be configured using the Register (0x4B-0x4F) MAG_IF: Setup mode and Data mode.

 Setup mode (also manual mode): In this mode, the application processor can access every register of the sensor attached to the secondary interface through indirect addressing. This mode is usually used to configure the MAG-sensor and the way the secondary interface reads the data. The Setup mode has to be executed after each POR (power on reset) previous to the first data acquisition in Data mode (see below).

The Setup mode is enabled by setting the MAG_IF[1]<7> = 1. The magnetometer may be accessed through the primary interface using indirect addressing. The data for the I^2C write to magnetometer is stored in MAG_IF[4]. MAG_IF[2] defines the first address of the register to read (MAG_IF[3] define the address for write access) in the magnetometer register map and triggers the operation itself, when the magnetometer interface is in normal mode.

For reads, the number of data bytes defined in mag_rd_burst in register MAG_IF[1]<0:1> are read from the magnetometer and written into the MAG_[X-Z] and RHALL fields of the register DATA. For write accesses, no burst write is supported, independent of the settings in mag_rd_burst in Register (0x4B-0x4F) MAG_IF.

When a read or write operation is triggered by writing to MAG_IF[2] or MAG_IF[3], a bit indicator mag_man_op in

Register (0x1B) STATUS is set and when the operation is completed it is automatically reset. In case a measurement trigger is necessary (i.e. BMM150), the MAG-sensor register address and data should be specified by writing the appropriate value (i.e. 0x06) in the required external sensor register address (i.e. 0x44) through the last indirect write access in setup mode before changing to Data mode.

The time delay between triggering a magnetometer measurement and reading the measured data is specified in mag_offset in MAG_IF[1].

The data rate used for the autonomous reading of the MAG-sensor data in Data mode should be first specified by configuring the mag_odr in Register (0x44) MAG_CONF<0:3>.

2. **Data mode**: When collecting sensor data in Data mode, the BMI160 autonomously triggers the measurement of the magnetometer, reads the data from the magnetometer and copies it into the BMI160 user register. Once the data mode is running, the application processor can access the data of the secondary sensor simply by reading from the BMI160 user Register (0x04-0x17) DATA_0 Register (0x04-0x17) DATA_7 0x0b. In case of BMM150, the data read is the magnetometer data MAG_[X-Z] and Hall resistance RHALL.

The data mode mode is enabled by setting the MAG IF 1<7>=0.

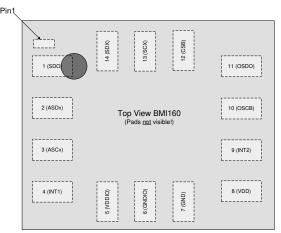
MAG_IF[2] defines the lowest address of the register data bytes to read from the MAG-sensor and the data will be stored in the BMI160 register MAG-DATA. The data ready status is set via drdy_mag in

Page 100

Register (0x1B) STATUS, but this operation never clears drdy_mag, it is typically cleared through reading the Register (0x04-0x17) DATA. If DRDY is not active the error bit mag_drdy_err in Register (0x02) ERR_REG is set. MAG_IF[3] defines the register address of the magnetometer to start a measurement in forced mode in the magnetometer register map. Reading of the data is done in a single I2C read operation with a burst length of 8 bytes.

3.3.2 Camera module connected to secondary interface for OIS

BMI160 supports specific optical image stabilization (OIS) applications with a dedicated interface. This interface is used for direct access to pre-filtered gyroscope data with minimum latency. Pre-filtered gyroscope data is available at output data rate (ODR) of 6.4 kHz and can be read out via OIS fast mode SPI interface at 10MHz maximum speed.


The OIS SPI interface supports 3-wire SPI as well as 4-wire SPI.

The timings of the secondary SPI interface are the same as for the primary SPI interface, see chapter 3.2.2. The connection diagrams are depicted in chapter 4.3.

4. Pin-out and Connection diagrams

4.1 Pin-out

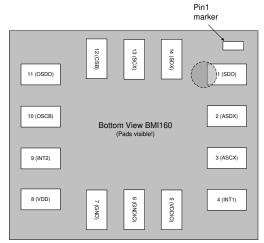


Figure 31: Pin-out top view

Figure 32: Pin-out bottom view

Table 30: BMI160 Pin-out and pin connections are described in the table below

Pin#	Name	I/O Type	Interface	Description	
1	SDO	Digital I/O	Primary	Serial data output in SPI Address select in I2C mode	
2	ASDx	Digital I/O	Secondary	Magnetometer interface**)	
3	ASCx	Digital I/O	Secondary	Magnetometer interface**)	
4	INT1	Digital I/O	Primary	Interrupt pin 1 *)	
5	VDDIO	Supply	-	Digital I/O supply voltage (1.2 3.6V)	
6	GNDIO	Ground	-	Ground for I/O	
7	GND	Ground	-	Ground for digital & analog	
8	VDD	Supply	-	Power supply analog & digital domain (1.71V – 3.6V)	
9	INT2	Digital I/O	Primary	Interrupt pin 2 *)	
10	OCSB	Digital in	Secondary	OIS interface**)	
11	OSDO	Digital out	Secondary	OIS interface**)	
12	CSB	Digital in	Primary	Chip select for SPI mode / Protocol selection pin	
13	SCx	Digital in	Primary	SCK for SPI serial clock SCL for I ² C serial clock	
14	SDx	Digital I/O	Primary	SDA serial data I/O in I2C MOSI serial data input in SPI 4W SISO serial data I/O in SPI 3W	

^{*)} If INT1 and/or INT2 are not used, please do not connect them (DNC)

^{**)} If pins ASDX, ASCX, OCSB, OSDO are not used, they will be high impedance status

4.2 Connection diagrams to use primary interface only

4.2.1 I²C as primary interface

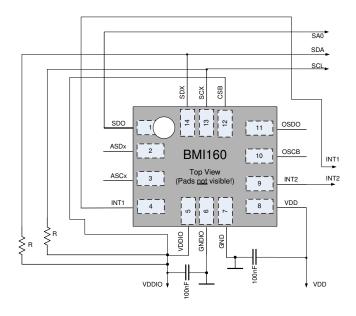


Figure 33: Only I2C as primary interface

4.2.2 SPI 3-wire as primary interface

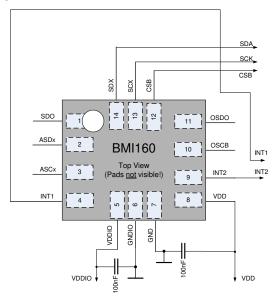


Figure 34: Only SPI 3-wire as primary interface

4.2.3 SPI 4-wire as primary interface

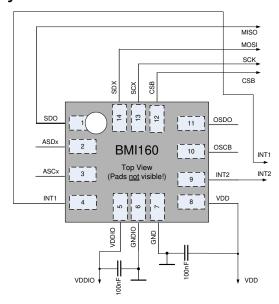


Figure 35: Only SPI 4-wire as primary interface

4.3 Connection diagrams to use additional secondary interface

4.3.1 Primary SPI 4-wire and secondary magnetometer interface (I²C)

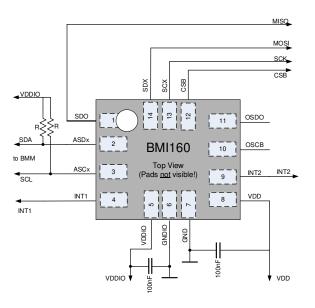


Figure 36: Using SPI 4-wire and the magnetometer interface

4.3.2 Primary SPI 3-wire and secondary magnetometer interface (I²C)

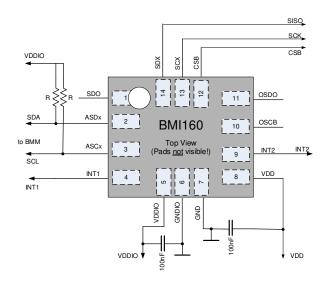


Figure 37: Using SPI 3-wire and the magnetometer interface

4.3.3 Primary I²C and secondary magnetometer interface (I²C)

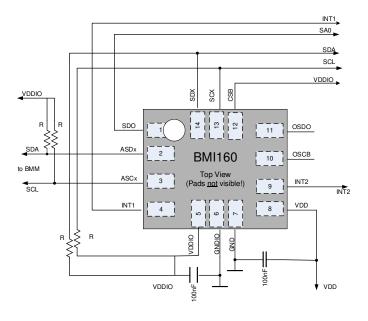


Figure 38: Using I²C and the magnetometer interface

4.3.4 Primary I²C and secondary 4-wire SPI as OIS interface

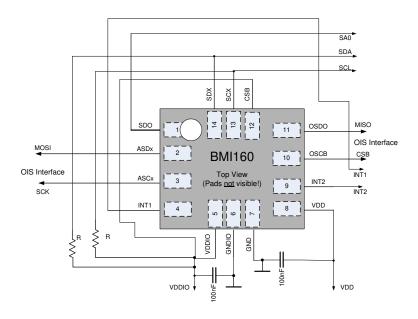


Figure 39: Using I²C and 4-wire SPI as OIS interface

4.3.5 Primary I²C and secondary 3-wire SPI as OIS interface

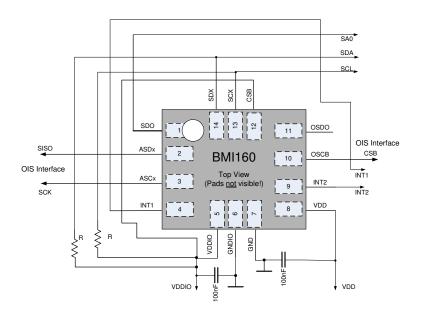


Figure 40: Using I²C and 3-wire SPI as OIS interface

5. Package

5.1 Outline Dimensions

The package dimension is LGA 2.5mm x 3.0mm x 0.83mm. Unit of the following drawing is mm. Note: Unless otherwise specified tolerance = decimal ± 0.05 mm.

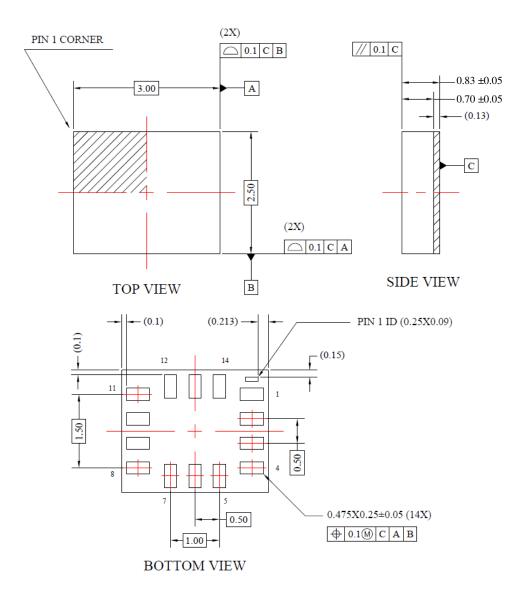


Figure 41: Packaging outline dimensions

Note: Pin1 marker is internally connected to Pin1. It must not be connected to a different signal than Pin1.

5.2 Sensing axes orientation

If the sensor is accelerated and/or rotated in the indicated directions, the corresponding channels of the device will deliver a positive acceleration and/or yaw rate signal (dynamic acceleration). If the sensor is at rest without any rotation and the force of gravity is acting contrary to the indicated directions, the output of the corresponding acceleration channel will be positive and the corresponding gyroscope channel will be "zero" (static acceleration).

Example: If the sensor is at rest or at uniform motion in a gravity field according to the figure given below, the output signals are:

 \pm 0g for the X ACC channel and \pm 0°/sec for the Ω_X GYR channel \pm 0g for the Y ACC channel \pm 1g for the Z ACC channel and \pm 0°/sec for the Ω_X GYR channel and \pm 0°/sec for the Ω_X GYR channel

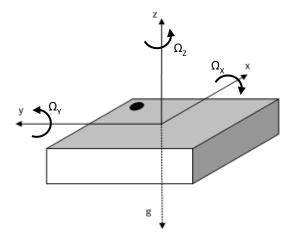


Figure 42: definition of sensing axes orientation

For reference the figure below shows the Android device orientation with an integrated BMI160.

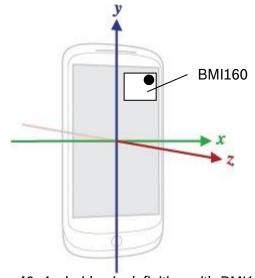


Figure 43: Android axis definition with BMI160

5.3 Landing pattern recommendation

The following landing pad recommendation is given for maximum stability of the solder connections.

Figure 44: Landing pattern recommendation for BMI160

Note: Pin1 marker is internally connected to Pin1. It must not be connected to a different signal than Pin1.

The size of the landing pads may be further reduced in order to minimize solder-stress induced effects if sufficient control over the soldering process is given. Please contact your sales representative for further details.

5.4 Marking

5.4.1 Mass production marking

Table 31: Marking of mass samples

Labeling	Name	Symbol	Remark
	Counter ID	CCC	3 alphanumeric digits, variable to generate trace-code
CCC	First letter of second row	V	Product identifier V = "T" denoting BMI160
VL VL	Second letter of second row	L	Internal use
	Pin 1 identifier	•	

5.4.2 Engineering samples

Table 32: Marking of engineering samples

Labeling	Name	Symbol	Remark
VLE	Internal ID	VLE	Product identifier V = "T" denoting BMI160 and "E" denotes engineering status L – internal use
CC	Second row	CC	-C - internal revision ID
	Pin 1 identifier	•	

5.5 Soldering guidelines

The moisture sensitivity level of the BMI160 sensors corresponds to JEDEC Level 1, see also

- IPC/JEDEC J-STD-020E "Joint Industry Standard: Moisture/Reflow Sensitivity Classification for non-hermetic Solid State Surface Mount Devices"
- IPC/JEDEC J-STD-033D "Joint Industry Standard: Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices"

The sensor fulfils the lead-free soldering requirements of the above-mentioned IPC/JEDEC standard, i.e. reflow soldering with a peak temperature up to 260°C.

Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (Ts _{max} to Tp)	3° C/second max.
Preheat - Temperature Min (Ts _{min}) - Temperature Max (Ts _{max}) - Time (ts _{min} to ts _{max})	150 °C 200 °C 60-180 seconds
Time maintained above: - Temperature (T _L) - Time (t _L)	217 °C 60-150 seconds
Peak/Classification Temperature (Tp)	260 °C
Time within 5 °C of actual Peak Temperature (tp)	20-40 seconds
Ramp-Down Rate	6 °C/second max.
Time 25 °C to Peak Temperature	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

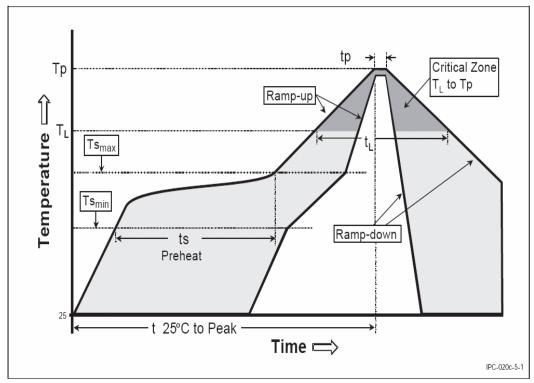


Figure 45: Soldering profile

5.6 Handling instructions

Micromechanical sensors are designed to sense acceleration with high accuracy even at low amplitudes and contain highly sensitive structures inside the sensor element. The MEMS sensor can tolerate mechanical shocks up to several thousand g's. However, these limits might be exceeded in conditions with extreme shock loads such as e.g. hammer blow on or next to the sensor, dropping of the sensor onto hard surfaces etc.

We recommend to avoid g-forces beyond the specified limits during transport, handling and mounting of the sensors in a defined and qualified installation process.

This device has built-in protections against high electrostatic discharges or electric fields (e.g. 2kV HBM); however, anti-static precautions should be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range. Unused inputs must always be tied to a defined logic voltage level.

5.7 Tape and reel specification

The BMI160 is shipped in a standard cardboard box. The box dimension for 1 reel is: $L \times W \times H = 35 \text{ cm} \times 35 \text{ cm} \times 6 \text{ cm}$. BMI160 quantity: 5,000pcs per reel, please handle with care.

 $A_0 = 3.30$, $B_0 = 2.80$, $K_0 = 1.10$

Note:

- Tolerances unless noted: ±0.1
- Sprocket hole pitch cumulative tolerance ±0.1
- Camber in compliance with EIA481
- Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole
- A0 and B0 are calculated on a plane at a distance "R" above the bottom of the pocket

Figure 46: Tape and reel dimensions in mm

Page 112

5.7.1 Orientation within the reel

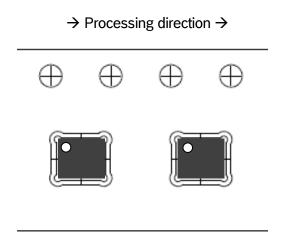


Figure 47: Orientation of the BMI160 devices relative to the tape

5.8 Environmental safety

The BMI160 sensor meets the requirements of the EC restriction of hazardous substances (RoHS) directive, see also:

RoHS – Directive 2011/65/EU and its amendments, including the amendment 2015/863/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

5.8.1 Halogen content

The BMI160 is halogen-free. For more details on the analysis results please contact your Bosch Sensortec representative.

5.8.2 Multiple sourcing

Within the scope of Bosch Sensortec's ambition to improve its products and secure the mass product supply, Bosch Sensortec employs multiple sources in the supply chain.

While Bosch Sensortec takes care that all of technical parameters are described above are 100% identical for all sources, there can be differences in device marking and bar code labeling.

However, as secured by the extensive product qualification process of Bosch Sensortec, this has no impact to the usage or to the quality of the product.

Page 113

6. Legal disclaimer

6.1 Engineering samples

Engineering Samples are marked with an asterisk (*), (E) or (e). Samples may vary from the valid technical specifications of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

6.2 Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-critical systems are those for which a malfunction is expected to lead to bodily harm, death or severe property damage. In addition, they shall not be used directly or indirectly for military purposes (including but not limited to nuclear, chemical or biological proliferation of weapons or development of missile technology), nuclear power, deep sea or space applications (including but not limited to satellite technology).

Bosch Sensortec products are released on the basis of the legal and normative requirements relevant to the Bosch Sensortec product for use in the following geographical target market: BE, BG, DK, DE, EE, FI, FR, GR, IE, IT, HR, LV, LT, LU, MT, NL, AT, PL, PT, RO, SE, SK, SI, ES, CZ, HU, CY, US, CN, JP, KR, TW. If you need further information or have further requirements, please contact your local sales contact.

The resale and/or use of Bosch Sensortec products are at the purchaser's own risk and his own responsibility. The examination of fitness for the intended use is the sole responsibility of the purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all costs in connection with such claims.

The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to product safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

6.3 Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding functionality, performance or error has been made.

7. Document history and modifications

Rev. No	Chapter	Description of modification/changes	Date
	2.2.4	Table 8 updated	16 th Oct 2018
	2.5.1.5 2.5.2.4	Explanation updated how to configure external interrupt tags, Description of FIFO config frame updated	
	2.7	Description of Step Counter updated Updated hyperlink	
	2.11 2.11.37	Register description updated	
	2.5.1.5	Description updated	
	2.4.1	Table 13 updated	
	2.6.2	Flow diagram updated	
	3.2.2	SDO output delay time added	
	3.3.2	Max. speed of OIS I/F updated	
0.9	2.2.4	Current consumption in Table 8 corrected	
	1.1 Current consumption in Table 1 corrected		1
		Current consumption in General Description corrected	
	3.3.1	External pull-up resistors need to be connected	
	3.3.1.1	Updated content	
	2.11.15	Updated ODR formula	
	4.3.1 4.3.2 4.3.3	Updated pull-ups in the recommended connection diagrams	
	5.3	Updated landing pattern	
	2.6.7	Updated low-g feature description	
	2.11.24	Updated register description	
	4.1 Updated comments in Table 30		
	1, 2.2, 2.4	Updated Table 1, 9 and 13	
	2.11.25	Updated description Updated typos in tables 29 and 30 25 th Nov 2020	
1.0	3.3, 4.1		
	5.5, 5.8	· ·	
	6	Disclaimer update	

Bosch Sensortec GmbH Gerhard-Kindler-Strasse 8 72770 Reutlingen / Germany

contact@bosch-sensortec.com www.bosch-sensortec.com

Modifications reserved | Printed in Germany Subject to change without notice Document number: BST-BMI160-DS000-09 Revision_1.0_112020