

AON4407L

P-Channel Enhancement Mode Field Effect Transistor

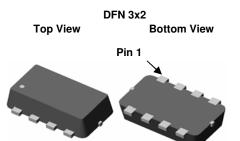
General Description

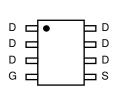
The AON4407L uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch.

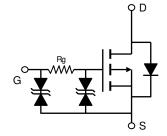
- -RoHS Compliant
- -Halogen Free

Features

 $V_{DS}(V) = -12V$


 $I_D = -9$ A $(V_{GS} = -4.5V)$


 $R_{DS(ON)} < 20m\Omega (V_{GS} = -4.5V)$


 $R_{DS(ON)}$ < 25m Ω (V_{GS} = -2.5V)

 $R_{DS(ON)}$ < 31m Ω (V_{GS} = -1.8V)

ESD Protected!

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V_{DS}	-12	V			
Gate-Source Voltage		V_{GS}	±8	V			
Continuous Drain Current	T _A =25°C		-9				
	T _A =70°C	I _D	-7	A			
Pulsed Drain Current ^C		I _{DM}	-60				
Power Dissipation ^B	T _A =25°C	P_{D}	2.5	l w			
	T _A =70°C	' D	1.6	VV			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C			

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s Steady State		42	50	°C/W			
Maximum Junction-to-Ambient AD			74	90	°C/W			
Maximum Junction-to-Lead Steady S		$R_{ hetaJL}$	25	30	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-12			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-12V, V _{GS} =0V			-1				
		T _J =55°C			-5	μΑ			
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±8V			±10	μΑ			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=-250\mu A$	-0.35	-0.5	-0.85	V			
$I_{D(ON)}$	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-60			Α			
$R_{DS(ON)}$		V _{GS} =-4.5V, I _D =-9A		16.5	20	mΩ			
		T _J =125°C		22	26	1112.2			
	Static Drain-Source On-Resistance	V_{GS} =-2.5V, I_{D} =-8.5A		20	25	mΩ			
		V_{GS} =-1.8V, I_{D} =-7.5A		24	31	mΩ			
		V_{GS} =-1.5V, I_D =-7A		29	38	mΩ			
g _{FS}	Forward Transconductance	V _{DS} =-5V, I _D =-9A		45		S			
V_{SD}	Diode Forward Voltage	I_S =-1A, V_{GS} =0V		-0.53	-1	V			
I_S	Maximum Body-Diode Continuous Current				-2.5	Α			
DYNAMIC	PARAMETERS								
C_{iss}	Input Capacitance			1740	2100	pF			
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-6V, f=1MHz		334		pF			
C_{rss}	Reverse Transfer Capacitance			200		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.3	1.7	kΩ			
SWITCHI	NG PARAMETERS								
Q_g	Total Gate Charge			19	23	nC			
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-6V, I_{D} =-9A		4.5		nC			
Q_{gd}	Gate Drain Charge			5.3		nC			
$t_{D(on)}$	Turn-On DelayTime			240		ns			
t _r	Turn-On Rise Time	V_{GS} =-4.5V, V_{DS} =-6V, R_L =0.67 Ω ,		580		ns			
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		7		μS			
t _f	Turn-Off Fall Time]		4.2		μS			
t _{rr}	Body Diode Reverse Recovery Time	I _F =-9A, dI/dt=100A/μs		22	27	ns			
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =-9A, dI/dt=100A/μs		17		nC			

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating. Rev 0: Aug 2008

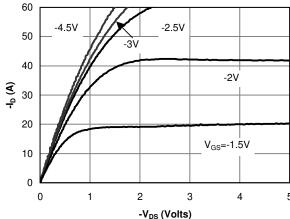
45

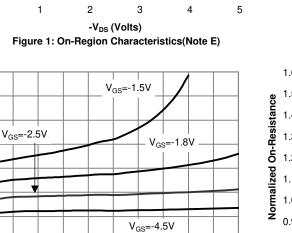
40

35

30

25


20


15

10

0 2

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

16

18 20

-I_D (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage(Note E)

10 12 14

6

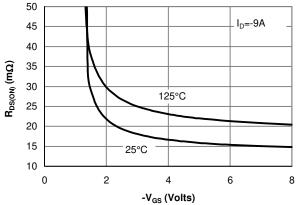


Figure 5: On-Resistance vs. Gate-Source Voltage(Note E)

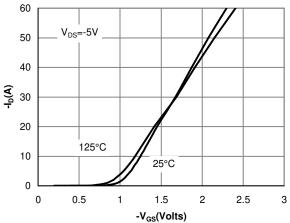


Figure 2: Transfer Characteristics(Note E)

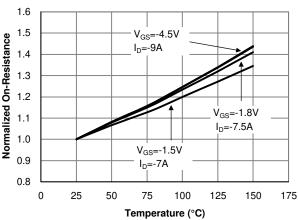


Figure 4: On-Resistance vs. Junction Temperature(Note E)

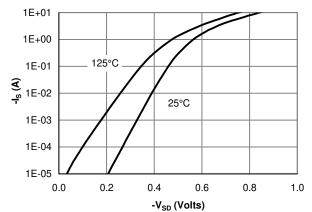


Figure 6: Body-Diode Characteristics(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

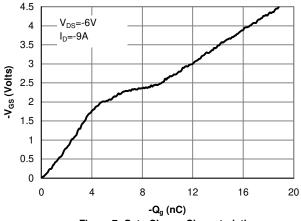


Figure 7: Gate-Charge Characteristics

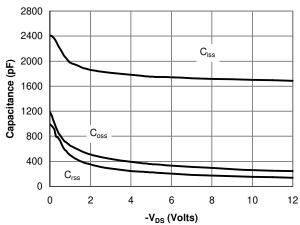


Figure 8: Capacitance Characteristics

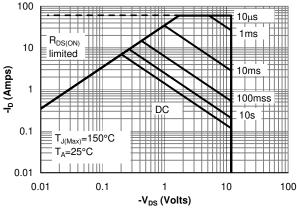
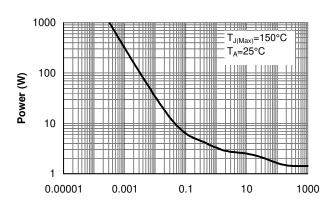
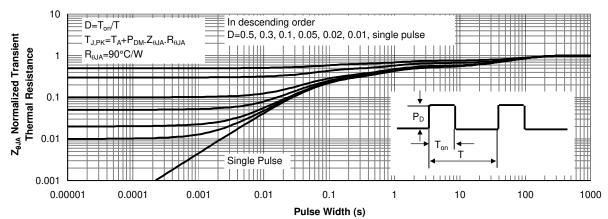
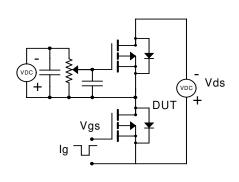
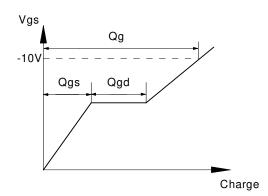
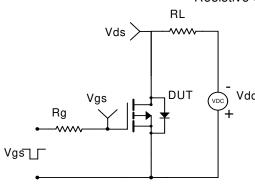
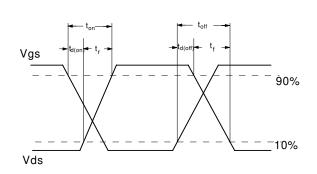



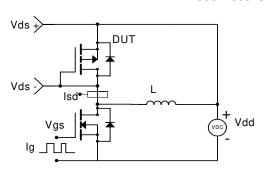
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

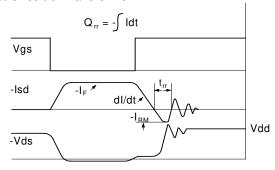
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-to
Ambient (Note F)


Figure 11: Normalized Maximum Transient Thermal Impedance(Note F)


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

