
PHOTONIC Silicon Photodiode, Blue Enhanced Solderable Chips

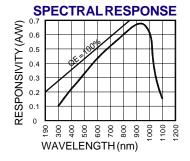
Photoconductive Type PDB-C601 Photovoltaic Type PDB-V601

FEATURES

- Blue enhanced
- Photovoltaic type
- Photoconductive type
- High quantum efficiency

DESCRIPTION: Low cost blue enhanced planar diffused

silicon solderable photodiode. The PDB-V601 cell is designed for low noise, photovoltaic applications. The PDB-C601 cell is designed for low capacitance, high speed, photoconductive


operation. They are available bare, PVC or buss wire leads.

APPLICATIONS

- Optical encoder
- Position sensor
- Industrial controls
- Instrumentation

ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted)

SYMBOL	PARAMETER .	PDB-C601		PDB-	V601	UNITS	
		MIN	MAX	MIN	MAX	011110	
VBR	Reverse Voltage		75		25	V	
T _{STG}	Storage Temperature	-40	+125	-40	+125	°C	
To	Operating Temperature Range	-40	+100	-40	+100	°C	
Ts	Soldering Temperature		+224		+224	°C	
I _L	Light Current		500		500	mA	

ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

SYMBOL	CHARACTERISTIC	TESTCONDITIONS	PDB-C601			PDB-V601			LINITO
			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Isc	Short Circuit Current	H = 100 fc, 2850 K	15	17		10	13		μ A
ΙD	Dark Current	H = 0, V _R = 5 V*		.5	2		3	7	nA
Rsн	Shunt Resistance	H = 0, V _R = 10 mV	60	150		100	250		$M\Omega$
TC RsH	RsH Temp. Coefficient	H = 0, V _R = 10 mV		-8			-8		%/°C
C₁	Junction Capacitance	H = 0, V _R = 5 V**		10			250		pF
λrange	Spectral Application Range	Spot Scan	350		1100	350		1100	nm
λр	Spectral Response - Peak	Spot Scan		940			940		nm
VBR	Breakdown Voltage	I = 10 μA	25	50		5	15		V
NEP	Noise Equivalent Power	V _R = 0 V @ Peak	1 x 10 ⁻¹⁴ TYP		2 x 10 ⁻¹⁴ TYP			W/ √Hz	
tr	Response Time	RL = 1 KΩ V _R = 5 V**		10			300		nS

^{*}VR = 100 mV on Photovoltaic type **VR = 0 V on Photovoltaic type