

BUK763R6-40C

N-channel TrenchMOS standard level FET Rev. 04 — 16 June 2010

Product data sheet

Product profile

1.1 General description

Standard level gate drive N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using advanced TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in high performance automotive applications.

1.2 Features and benefits

- AEC Q101 compliant
- Avalanche robust

- Suitable for standard level gate drive
- Suitable for thermally demanding environment up to 175°C rating

1.3 Applications

- 12V Motor, lamp and solenoid loads
- High performance automotive power systems
- High performance Pulse Width Modulation (PWM) applications

1.4 Quick reference data

Table 1. Quick reference data

B	O I'll'		B.41 .	_		11.22
Parameter	Conditions		Min	Тур	мах	Unit
drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$		-	-	40	V
drain current	$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C};$ see <u>Figure 1</u> ; see <u>Figure 3</u>	<u>[1]</u>	-	-	100	Α
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	203	W
racteristics						
drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $T_j = 25 \text{ °C};$ see <u>Figure 11</u> ; see <u>Figure 12</u>		-	3	3.6	mΩ
ruggedness						
non-repetitive drain-source avalanche energy	I_D = 100 A; $V_{sup} \le 40$ V; R_{GS} = 50 Ω ; V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; unclamped		-	-	292	mJ
haracteristics						
gate-drain charge	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $V_{DS} = 32 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see Figure 14; see Figure 13		-	35	-	nC
	voltage drain current total power dissipation racteristics drain-source on-state resistance ruggedness non-repetitive drain-source avalanche energy	drain-source voltage $T_{j} \geq 25 \text{ °C}; T_{j} \leq 175 \text{ °C}$ $voltage$ $drain current$ $V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C};$ $see \underline{Figure 1}; see \underline{Figure 3}$ $total power \\ dissipation$ $racteristics$ $drain-source \\ on-state \\ resistance$ $v_{GS} = 10 \text{ V}; I_{D} = 25 \text{ A};$ $T_{j} = 25 \text{ °C};$ $resistance$ $v_{GS} = 10 \text{ V}; I_{D} = 25 \text{ A};$ $T_{j} = 25 \text{ °C};$ $see \underline{Figure 11}; see \underline{Figure 12}$ $ruggedness$ $non-repetitive \\ drain-source \\ avalanche energy$ $I_{D} = 100 \text{ A}; V_{sup} \leq 40 \text{ V};$ $R_{GS} = 50 \Omega; V_{GS} = 10 \text{ V};$ $T_{j(init)} = 25 \text{ °C}; unclamped$ $ruggedness$ $v_{GS} = 10 \text{ V}; I_{D} = 25 \text{ A};$ $v_{DS} = 32 \text{ V}; T_{j} = 25 \text{ °C};$	drain-source voltage $ T_{j} \geq 25 \text{ °C}; T_{j} \leq 175 \text{ °C} $ voltage $ T_{j} \geq 25 \text{ °C}; T_{j} \leq 175 \text{ °C} $ drain current $ V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; $ see Figure 3 $ T_{mb} = 25 \text{ °C}; \text{ see Figure 2} $ total power dissipation $ T_{mb} = 25 \text{ °C}; \text{ see Figure 2} $ drain-source $ T_{mb} = 25 \text{ °C}; \text{ see Figure 2} $ drain-source $ T_{j} = 25 \text{ °C}; \text{ see Figure 12} $ registance $ T_{j} = 25 \text{ °C}; \text{ see Figure 12} $ ruggedness $ T_{j} = 25 \text{ °C}; \text{ see Figure 12} $ ruggedness $ T_{j} = 100 \text{ A}; V_{sup} \leq 40 \text{ V}; \text{ R}_{GS} = 50 \Omega; V_{GS} = 10 \text{ V}; \text{ T}_{j(init)} = 25 \text{ °C}; \text{ unclamped characteristics} $ gate-drain charge $ V_{GS} = 10 \text{ V}; I_{D} = 25 \text{ A}; \text{ V}_{DS} = 32 \text{ V}; T_{j} = 25 \text{ °C}; $	drain-source voltage $T_{j} \geq 25 ^{\circ}\text{C}; T_{j} \leq 175 ^{\circ}\text{C} \qquad -$ voltage $\text{drain current} \qquad V_{GS} = 10 \text{V}; T_{mb} = 25 ^{\circ}\text{C}; \qquad \boxed{11} -$ see $ \frac{\text{Figure 1}}{\text{see Figure 3}}; \text{see Figure 2} \qquad -$ total power dissipation $\text{drain-source} \qquad V_{mb} = 25 ^{\circ}\text{C}; \text{see Figure 2} \qquad -$ drain-source on-state $T_{j} = 25 ^{\circ}\text{C}; \text{see Figure 12} \qquad -$ ruggedness $\text{non-repetitive} \qquad I_{D} = 100 \text{A}; V_{sup} \leq 40 \text{V}; -$ drain-source avalanche energy $\text{R}_{GS} = 50 \Omega; V_{GS} = 10 \text{V}; -$ drain-source avalanche energy $\text{R}_{GS} = 50 \Omega; V_{GS} = 10 \text{V}; -$ drain-source avalanche energy $\text{R}_{GS} = 50 \Omega; V_{GS} = 10 \text{V}; -$ drain-source avalanche energy $\text{R}_{GS} = 50 \Omega; V_{GS} = 10 \text{V}; -$ drain-source avalanche energy $\text{R}_{GS} = 50 \Omega; V_{GS} = 10 \text{V}; V_{GS} = 10 \text{V}; V_{GS} = 10 \text{V}; V_{GS} = 10 \text{V}; V_{GS} = 32 \text{V}; T_{j} = 25 ^{\circ}\text{C}; -$	drain-source voltage $T_{j} \geq 25 ^{\circ}\text{C}; T_{j} \leq 175 ^{\circ}\text{C} \qquad - \qquad $	drain-source voltage $T_{j} \geq 25 ^{\circ}\text{C}; T_{j} \leq 175 ^{\circ}\text{C} \qquad - \qquad 40$ drain current $V_{GS} = 10 \text{V}; T_{mb} = 25 ^{\circ}\text{C}; \qquad 111 \qquad - \qquad 100$ total power dissipation $T_{mb} = 25 ^{\circ}\text{C}; \text{see Figure 2} \qquad - \qquad - \qquad 203$ drain-source drain-source on-state $T_{j} = 25 ^{\circ}\text{C}; \text{see Figure 12}$ drain-source see Figure 11; see Figure 12 $T_{j} = 25 ^{\circ}\text{C}; \text{see Figure 12}$ drain-source $T_{j} = 100 \text{A}; V_{sup} \leq 40 \text{V}; - \qquad 292 \text{C}; \text{con-repetitive drain-source}$ avalanche energy $T_{j(init)} = 25 ^{\circ}\text{C}; \text{unclamped}$ drain-charge $T_{j} = 100 \text{A}; V_{sup} \leq 40 \text{V}; - \qquad 292 \text{C}; \text{unclamped}$

^[1] Continuous current is limited by package.

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		
2	D	drain		D
3	S	source		g (EX)
mb	D	mounting base; connected to drain		mbb076 S
			SOT404 (D2PAK)	

3. Ordering information

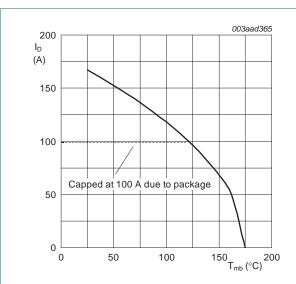
Table 3. Ordering information

Type number	Package		
	Name	Description	Version
BUK763R6-40C	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404

BUK763R6-40C

4. Limiting values

Table 4. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	40	V
V_{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	-	40	V
V_{GS}	gate-source voltage		<u>[1]</u>	-20	-	20	V
I _D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u> ; see <u>Figure 3</u>	[2]	-	-	167	Α
		$T_{mb} = 100 ^{\circ}\text{C}; V_{GS} = 10 \text{V}; \text{see} \frac{\text{Figure 1}}{}$	[3]	-	-	100	Α
		T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u> ; see <u>Figure 3</u>	[3]	-	-	100	Α
I _{DM}	peak drain current	T_{mb} = 25 °C; $t_p \le 10 \mu s$; pulsed; see Figure 3		-	-	668	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	203	W
T _{stg}	storage temperature			-55	-	175	°C
Tj	junction temperature			-55	-	175	°C
Source-drain	diode						
I _S	source current	$T_{mb} = 25 ^{\circ}C$	[3]	-	-	100	Α
			[2]	-	-	167	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	-	668	Α
Avalanche rug	ggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{split} I_D &= 100 \text{ A; } V_{sup} \leq 40 \text{ V; } R_{GS} = 50 \Omega; \\ V_{GS} &= 10 \text{ V; } T_{j(init)} = 25 \text{ °C; } unclamped \end{split}$		-	-	292	mJ

^{[1] -20}V accumulated duration not to exceed 168 hrs.

^[2] Current is limited by power dissipation chip rating.

^[3] Continuous current is limited by package.

 $V_{GS} \ge 10 V(1)$ Capped at 100A due to package

Fig 1. Continuous drain current as a function of mounting base temperature

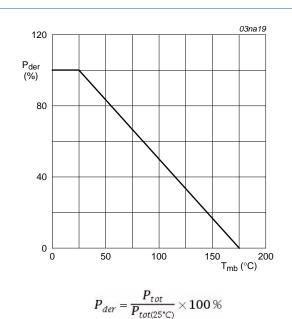
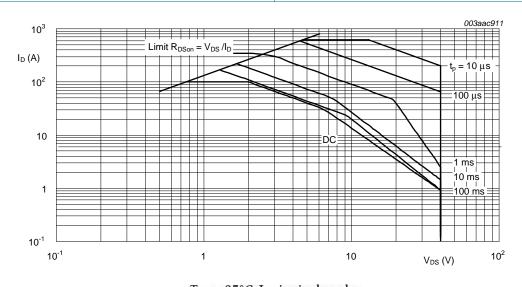



Fig 2. Normalized total power dissipation as a function of mounting base temperature

 $T_{mb} = 25$ °C; I_{DM} is single pulse

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage.

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	0.74	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on printed circuit board; minimum footprint; SOT404 package	-	-	50	K/W

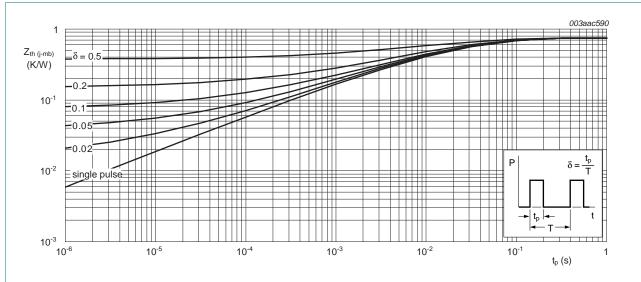


Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Characteristics

Table 6. Characteristics

Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
$V_{(BR)DSS}$	drain-source	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	40	-	-	V
	breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$	36	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C; see <u>Figure 10</u>	2	3	4	V
		$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = 175 \text{ °C}$; see Figure 10	1	-	-	V
		$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = -55$ °C; see Figure 10	-	-	4.4	V
I _{DSS}	drain leakage current	$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μΑ
		$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_i = 25 \text{ °C}$	-	0.02	1	μΑ
I _{GSS}	gate leakage current	V _{DS} = 0 V; V _{GS} = 20 V; T _j = 25 °C	-	2	100	nA
		V _{DS} = 0 V; V _{GS} = -20 V; T _j = 25 °C	-	2	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 175 ^{\circ}\text{C};$ see Figure 11	-	-	7.2	mΩ
		V_{GS} = 10 V; I_D = 25 A; T_j = 25 °C; see Figure 11; see Figure 12	-	3	3.6	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 10 \text{ V};$	-	97	-	nC
Q _{GS}	gate-source charge	T _j = 25 °C; see <u>Figure 13</u> ; see <u>Figure 14</u>	-	21	-	nC
Q_{GD}	gate-drain charge	$I_D = 25 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 10 \text{ V};$ $T_j = 25 ^{\circ}\text{C}; \text{see } \frac{\text{Figure } 14}{\text{Figure } 13}$	-	35	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz};$	-	4391	5708	pF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 15</u>	-	800	1040	pF
C _{rss}	reverse transfer capacitance		-	535	696	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; R_L = 1.2 \Omega; V_{GS} = 10 \text{ V};$	-	40	-	ns
t _r	rise time	$R_{G(ext)} = 10 \Omega; T_j = 25 °C$	-	95	-	ns
t _{d(off)}	turn-off delay time		-	129	-	ns
t _f	fall time		-	92	-	ns
L _D	internal drain inductance	from drain lead 6 mm from package to centre of die; $T_i = 25$ °C	-	4.5	-	nΗ
		from contact screw on mounting base to centre of die; T _j = 25 °C	-	3.5	-	nΗ
L _S	internal source inductance	from source lead to source bond pad ; T _i = 25 °C	-	7.5	-	nΗ
Source-di	rain diode					
V _{SD}	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see Figure 16	-	0.83	1.2	V
t _{rr}	reverse recovery time	$I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s};$	-	44	-	ns
Q _r	recovered charge	$V_{GS} = -10 \text{ V}; V_{DS} = 30 \text{ V}; T_j = 25 \text{ °C}$	-	57	-	nC

003aac584

N-channel TrenchMOS standard level FET

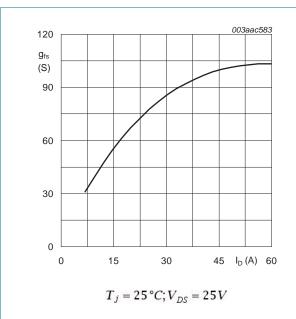
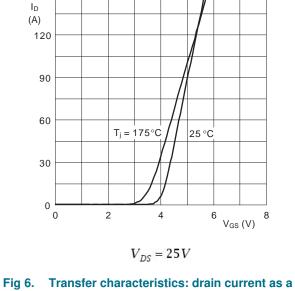



Fig 5. Forward transconductance as a function of drain current; typical values

150

Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values

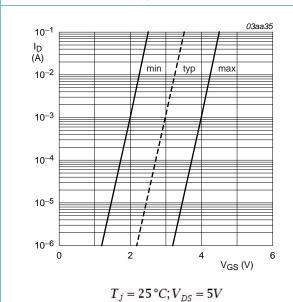
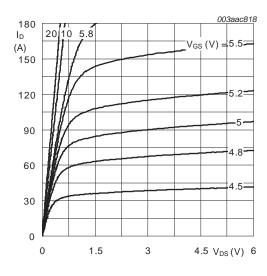
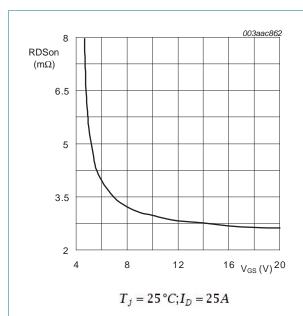
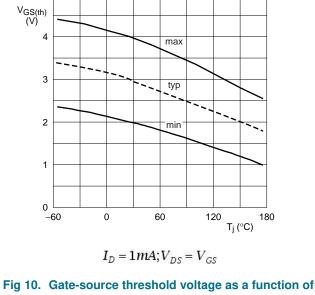




Fig 7. Sub-threshold drain current as a function of gate-source voltage



 $T_j = 25 \,^{\circ}C; t_p = 300 \mu s$

Fig 8. Output characteristics: drain current as a function of drain-source voltage; typical values

Drain-source on-state resistance as a function Fig 9. of gate voltage; typical values

5

junction temperature

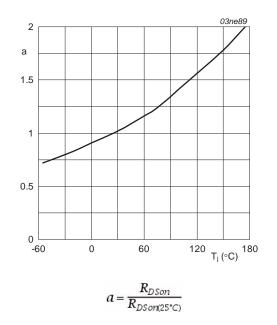


Fig 11. Normalized drain-source on-state resistance factor as a function of junction temperature

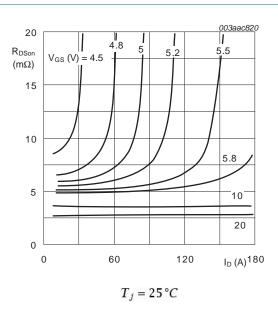
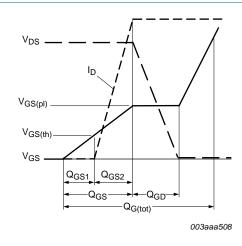
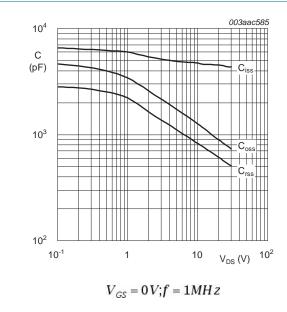



Fig 12. Drain-source on-state resistance as a function of drain current; typical values


N-channel TrenchMOS standard level FET

 $T_j = 25 \,^{\circ}C$

Fig 13. Gate charge waveform definitions

Fig 14. Gate-source voltage as a function of gate charge; typical values

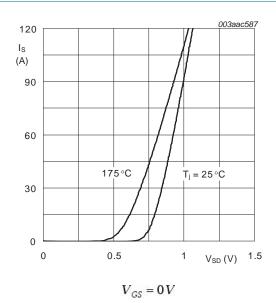


Fig 15. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

Fig 16. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values

7. Package outline

Fig 17. Package outline SOT404 (D2PAK)

N-channel TrenchMOS standard level FET

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK763R6-40C v.4	20100616	Product data sheet	-	BUK763R6-40C v.3
Modifications:	 Various cha 	anges to content.		
BUK763R6-40C v.3	20100602	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nexperia.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the Nexperia product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. Nexperia does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BUK763R6-40C

All information provided in this document is subject to legal disclaimers.

N-channel TrenchMOS standard level FET

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

BUK763R6-40C

Nexperia

N-channel TrenchMOS standard level FET

11. Contents

1	Product profile
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data2
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks13
10	Contact information13