

STL115N10F7AG

Automotive-grade N-channel 100 V, 5 mΩ typ., 107 A, STripFET™ F7 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

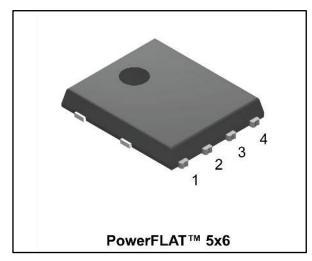
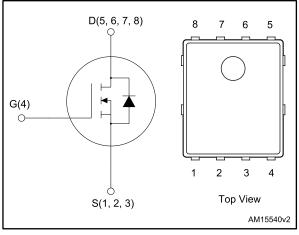



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	V _{DS} R _{DS(on)} max		Ртот	
STL115N10F7AG	100 V	6 mΩ	107 A	136 W	

- AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging
STL115N10F7AG	115N10F7	PowerFLAT™ 5x6	Tape and reel

Contents STL115N10F7AG

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 WF type C package information	9
	4.2	PowerFLAT™ 5x6 packing information	12
5	Revisio	n history	14

STL115N10F7AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	100	V	
V_{GS}	Gate-source voltage	±20	V	
I _D	Drain current (continuous) at T _C = 25 °C	Drain current (continuous) at T _C = 25 °C 107		
I _D	Drain current (continuous) at T _C = 100 °C		Α	
I _{DM} ⁽¹⁾	Drain current (pulsed)	428	Α	
Ртот	Total dissipation at $T_C = 25$ °C 136		W	
E _{AS} ⁽²⁾	Single pulse avalanche energy	490	mJ	
TJ	Operating junction temperature range	EE to 17E	°C	
T _{stg}	-55 to 175 Storage temperature range			

Notes:

Table 3: Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.1	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb	31.3	°C/W

Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}Starting~T_j$ = 25 °C, I_D = 18 A, V_{DD} = 50 V

 $^{^{(1)}\!}When$ mounted on FR-4 board of 1inch², 2oz Cu, t < 10 s

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100			V
	Zara gata valtaga drain	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			10	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 53 A		5	6	mΩ

Notes:

4/15

Table 5: Dynamic

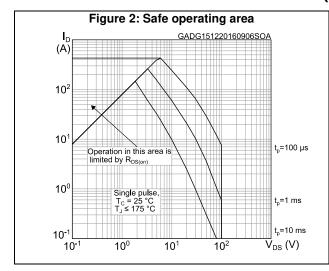
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		1	5600	ı	pF
Coss	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$	ı	1200	1	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	50	-	pF
Q_g	Total gate charge	$V_{DD} = 50 \text{ V}, I_D = 107 \text{ A},$	ı	72.5	1	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for	ı	35.5	1	nC
Q_{gd}	Gate-drain charge	gate charge behavior")	-	15	-	nC

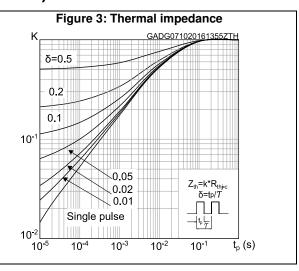
Table 6: Switching times

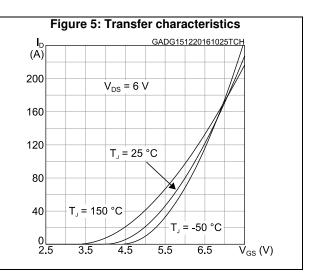
Table of Contouring times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 50 \text{ V}, I_D = 53 \text{ A},$	-	33	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for		38	1	ns
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	48	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	-	20	-	ns

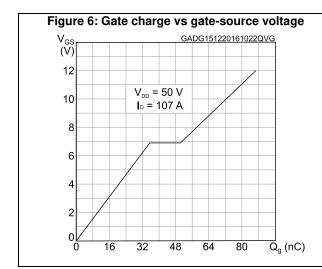
 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

Table 7: Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		107	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		1		428	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 53 \text{ A}, V_{GS} = 0 \text{ V}$	ı		1.2	V
t _{rr}	Reverse recovery time			60		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 80 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 15: "Test circuit for	1	96		nC
IRRM	Reverse recovery current	inductive load switching and diode recovery times")	-	3.2		Α


Notes:


⁽¹⁾Pulse width limited by safe operating area


 $^{^{(2)}\}text{Pulsed:}$ pulse duration=300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

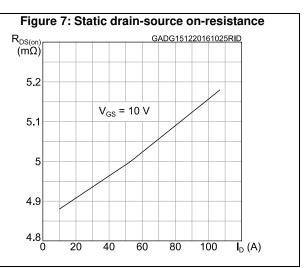
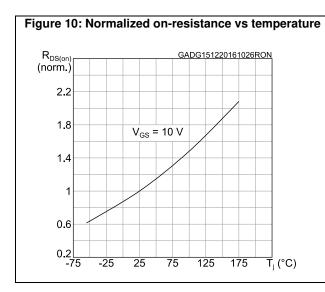
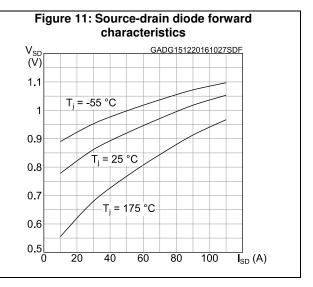
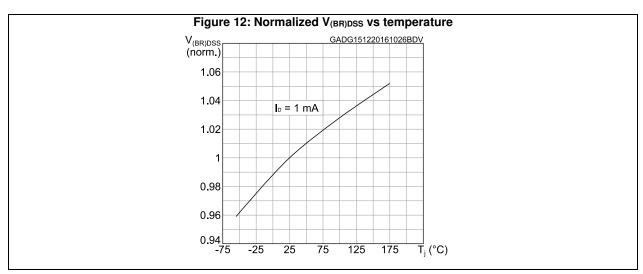
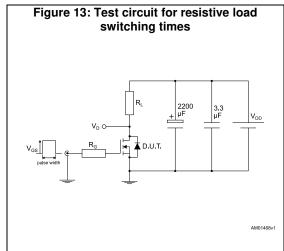
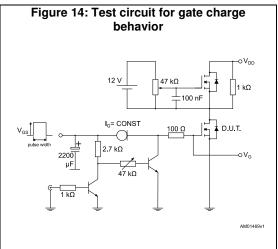
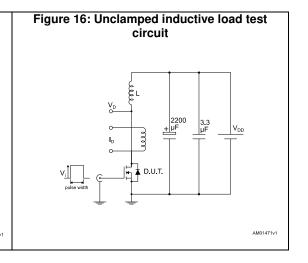





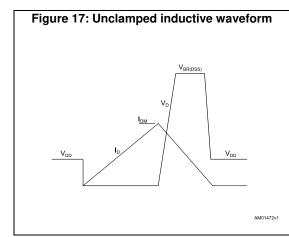
Figure 8: Capacitance variations C (pF) GADG151220161023CVR C_{ISS} 10^{3} Coss f = 1 MHz10² $\mathsf{C}_{\mathsf{RSS}}$ 10¹L 0 20 40 80 100 $\vec{V}_{DS}(V)$ 60

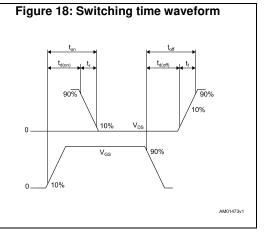
Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GADG151220161026VTH 1.2 I_D = 250 μA 8.0 0.6 0.4 0.2 0 -75 -25 25 75 175 T_i (°C) 125








Test circuits STL115N10F7AG


3 Test circuits

577

STL115N10F7AG Package information

4 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x6 WF type C package information

BOTTOM VIEW D6 D3 5 6 E7 E3 E2 Detail A E3 Scale 3:1 80.0 D5(x4) L(x4) b(x8) e(x6) D4 SIDE VIEW Ā Detail ŏ TOP VIFW 8231817_WF_typeC_r14

Figure 19: PowerFLAT™ 5x6 WF type C package outline

577

Table 8: PowerFLAT™ 5x6 WF type C mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
Е	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
K	1.05		1.35
L	0.90	1.00	1.10
L1	0.175	0.275	0.375
θ	0°		12°

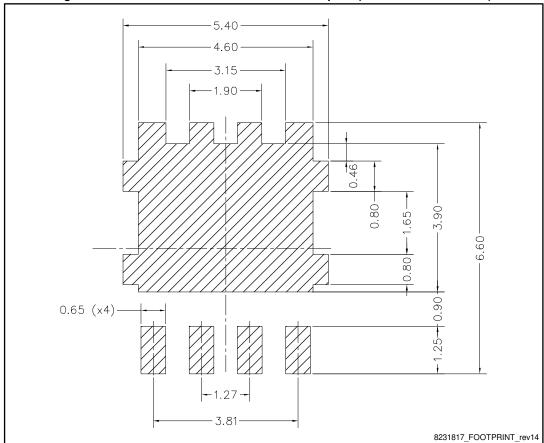


Figure 20: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

4.2 PowerFLAT™ 5x6 packing information

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm)

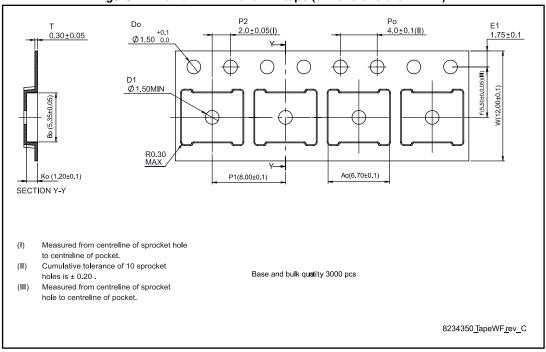
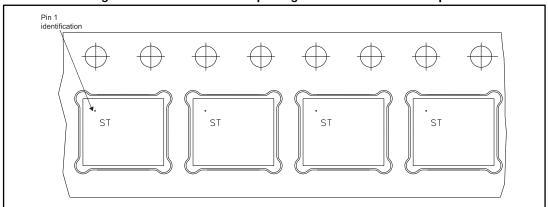



Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

STL115N10F7AG Package information

R0.60

R25.00

R25.00

R25.00

R25.00

R1.10

R21.20

R330 (+01-4.0)

Figure 23: PowerFLAT™ 5x6 reel (dimensions are in mm)

Revision history STL115N10F7AG

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
07-Oct-2016	1	First release.
15-Dec-2016	2	Datasheet status promoted from preliminary to production data. Updated features list on cover page. Updated Section 2: "Electrical characteristics".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

