

Ph. 480-503-4295 | NOPP@FocusLCDs.com

TFT | OLED | CHARACTER | GRAPHIC | UWVD | SEGMENT | CUSTOM

TFT Display Module

Part Number E50RA-I-MW490-C

Overview:

- 5.0" IPS TFT (67.56mm x 122.35mm)
- 480x854 pixels
- 2 Lane MIPI Interface
- Operating Temperature: -20C to 70C
- All View

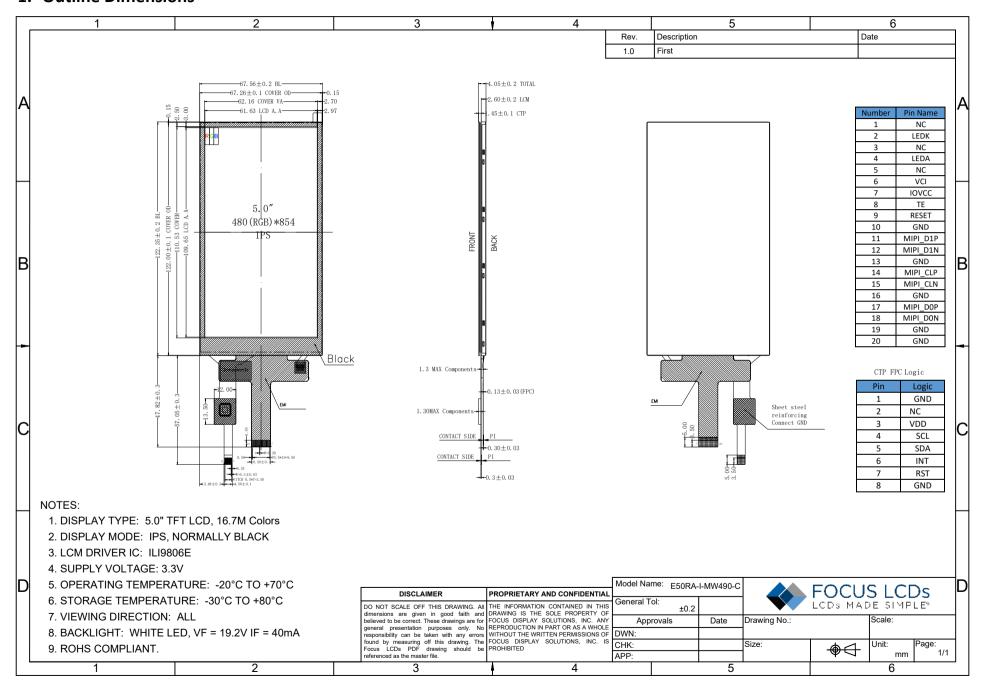
- Transmissive, IPS
- Controller: ILI9806E
- Capacitive Touch Panel
- 490 NITS
- RoHS Compliant

Description

This is a color active matrix TFT (Thin Film Transistor) LCD (Liquid Crystal Display) that uses amorphous silicon TFT as a switching device. This model is composed of a transmissive type TFT LCD Panel, driver circuit, capacitive touch panel and a backlight unit. The resolution of the 5.0" TFT LCD contains 480(RGB)x854 pixels and can display up to 16.7M colors.

TFT Features

Low Input Voltage: 3.3V Display Colors: 16.7M TFT Interface: 2 Lane MIPI


CTP Interface: I2C

General Information Items	Specification Main Panel	Unit	Note
TFT Display Area (AA)	61.63(H) x 109.65(V) (5.0 inch)	mm	-
Driver Element	TFT active matrix	-	-
Display Colors	16.7M	colors	-
Number of pixels	480(RGB)x854	dots	-
TFT Pixel arrangement	RGB vertical stripe	-	-
Pixel Pitch	0.1284(H)x0.1284(V)	mm	-
Viewing angle	All	o'clock	-
Display mode	Transmissive, Normally Black	-	-
TFT Controller	ILI9806E	-	-
Operating temperature	-20C to 70C	°C	-
Storage temperature	-30C to 80C	°C	-

Mechanical Information

	Item	Min	Тур.	Max	Unit	Note
	Horizontal (H)		67.56		mm	-
Module	Vertical (V)		122.35		mm	-
Size	Depth (D)		4.05		mm	-
	Weight				g	

1. Outline Dimensions

2. Input Terminal Pin Assignment

Recommended TFT Connector: Part # FH19C-20S-0.5SH(10)

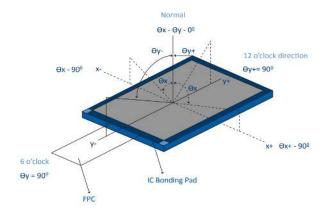
NO.	Symbol	Description	I/O
1	NC	Not connected	
2	LEDK	Cathode pin of backlight	Р
3	NC	Not connected	
4	LEDA	Anode pin of backlight	Р
5	NC	Not connected	
6	VCI	Supply Voltage (3.3V)	Р
7	IOVCC	I/O power supply voltage	Р
8	TE	-Tearing effect output. Leave the pin to open when not in use.	0
9	RESET	 The external reset input. Initializes the chip with a low input. Be sure to execute a power-on reset after supplying power. 	1
10	GND	Ground	Р
11	MIPI_D1P	MIPI DSI differential data pair (DSI-Dn+/-)	I/O
12	MIPI_D1N	If not used, they should be connected to DGND	I/O
13	GND	Ground	Р
14	MIPI_CLP	MIPI DSI differential clock pair (DSI-CLK+/-)	1
15	MIPI_CLN	If not used, they should be connected to DGND	1
16	GND	Ground	Р
17	MIPI_D0P	MIPI DSI differential data pair (DSI-Dn+/-)	I/O
18	MIPI_D0N	If not used, they should be connected to DGND	I/O
19	GND	Ground	Р
20	GND	Ground	Р

CTP Pin Assignment

Recommended CTP Connector: Part # FH12-8S-0.5SH(55)

NO.	Symbol	Description	I/O
1	GND	Ground	Р
2	NC	Not connected	
3	VDD	Supply Voltage	Р
4	SCL	I2C clock input	1
5	SDA	I2C data input and output	I/O
6	INT	External interrupt to the host	1
7	RST	External Reset, Low is active	I
8	GND	Ground	Р

3. LCD Optical Characteristics


3.1 Optical Specifications

Item		Symbol	Condition	Min	Тур.	Max	Unit	Note
Contrast R	atio	CR		640	800			(2)
	Rising	TR			16	21	ms	
Response Time	Falling	TF			19	24	ms	
	White	W _X		0.250	0.290	0.330		
	white	W _Y	θ=0	0.282	0.322	0.362		
	Red	R _X	Normal viewing angle	0.602	0.642	0.682	-	
Color Filter	Red	Ry		0.306	0.346	0.386		(5)(6)
Chromaticity	Cunan	Gx		0.280	0.320	0.360		
	Green	Gy		0.576	0.616	0.656		
	Blue	Bx		0.102	0.142	0.182		
	Blue	B _Y		0.039	0.079	0.119		
		ΘL			80			
\	Hor.	ΘR			80			
Viewing Angle	.,	ΘТ	CR≥10		80		degree	(1)(6)
	Ver.	ΘВ			80			
Option View D	irection			ALL				(1)

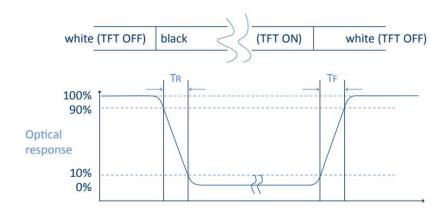
Optical Specification Reference Notes:

(1) Definition of Viewing Angle: The viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3,9 o'clock direction and the vertical or 6,12 o'clock direction with respect to the optical axis which is normal to the LCD surface.

(2) Definition of Contrast Ratio (Cr): measured at the center point of panel. The contrast ratio (Cr) measured on a module, is the ratio between the luminance (Lw) in a full white area (R=G=B=1) and the luminance (Ld) in a dark area (R=G=B=0).

$$Cr = \frac{Lw}{Ld}$$

(3) Definition of transmittance (T%): The transmittance of the panel including the polarizers is measured with electrical driving. The equation for transmittance Tr is:


$$Tr = \frac{It}{100\%}$$

Io = the brightness of the light source.

It = the brightness after panel transmission

(4) Definition of Response Time (Tr, Tf): The rise time 'Tr' is defined as the time for luminance to change from 90% to 10% as a result of a change of the electrical condition. The fall time 'Tf' is defined as the time for luminance to change from 10% to 90% as a result of a change of the electrical condition.

(5) Definition of Color Gamut:

Measuring machine CFT-01. NTSC's Primaries: R(x,y,Y),G(x,y,Y), B(x,y,Y). FPM520 of Westar Display Technologies, INC., which utilized SR-3 for Chromaticity and BM-5A for other optical characteristics. The color chromaticity shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.

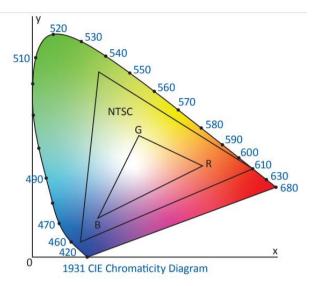
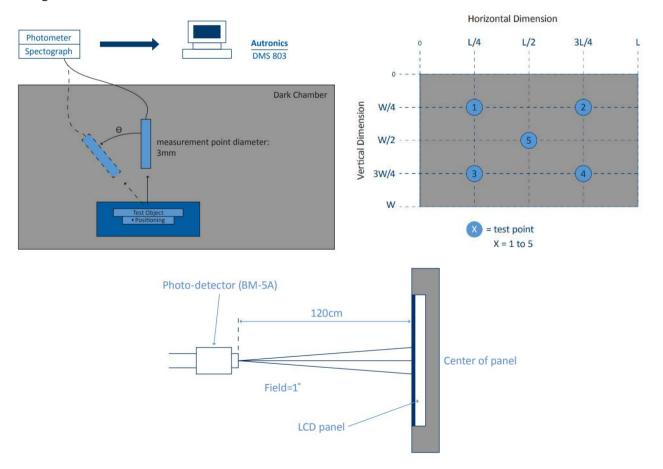



Fig. 1931 CIE chromacity diagram

Color gamut: $S = \frac{\text{Area of RGB triangle}}{\text{Area of NTSC triangle}} \times 100\%$

(6) Definition of Optical Measurement Setup:

The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 20 minutes.

4. TFT Electrical Characteristics

4.1 Absolute Maximum Rating (Ta=25 °C, VSS=0V)

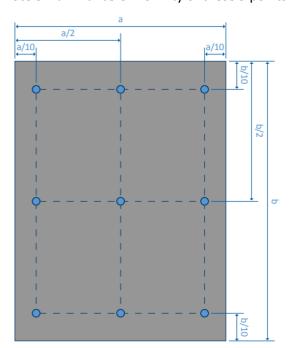
Characteristics	Symbol	Min	Max	Unit
Digital Supply Voltage	VCI	-0.3	4.6	V
Digital Interface Supply Voltage	IOVCC	-0.3	4.6	V
Operating Temperature	TOP	-20	+70	°C
Storage Temperature	TST	-30	+80	°C

NOTE: If the absolute maximum rating of the above parameters is exceeded, even momentarily, the quality of the product may be degraded. Absolute maximum ratings specify the values which the product may be physically damaged if exceeded. Be sure to use the product within the range of the absolute maximum ratings.

4.2 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур.	Max	Unit	Note
Analog power supply voltage	VCI	2.5	3.3	3.6	V	
Digital Interface Supply Voltage	IOVCC	1.65	1.8	3.6	V	
Normal Mode Current Consumption	IDD		30		mA	

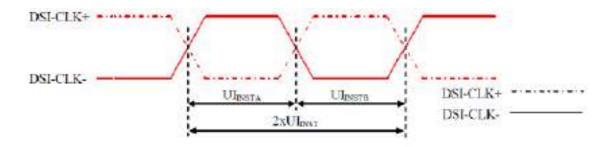
4.3 LED Backlight Characteristics


The backlight system is edge lighting type with 30 chips LED

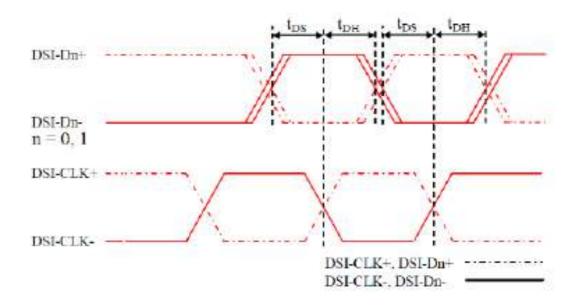
ltem	Symbol	Min	Тур.	Max	Unit	Note
Forward Current	lf	30	40		mA	
Forward Voltage	VF		19.2		V	
LCM Luminance	LV	490			cd/m2	Note 3
LED lifetime	Hr	50000			hour	Note1 & 2
Uniformity	Avg	80			%	Note 3

Note 1: LED lifetime (Hr) can be defined as the time in which it continues to operate under the condition: $Ta=25\pm3$ °C, typical IL value indicated in the above table until the brightness becomes less than 50%.

Note 2: The "LED lifetime" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL = 40mA. The LED lifetime could be decreased if operating IL is larger than 40 mA. The constant current driving method is suggested.

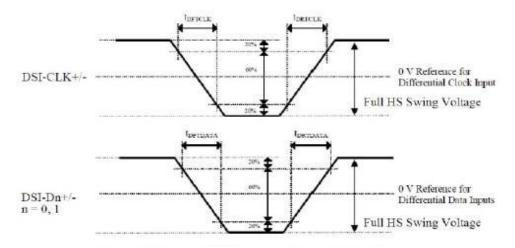

Note 3: Luminance Uniformity of these 9 points is defined as below:

5 MIPI Interface Characteristics


5.1 High Speed Mode - Clock Channel Timing

Signal	Symbol	Parameter	Min	Max	Unit
DSI-CLK +/-	2xUIINST	Double UI Instantaneous	4	25	ns
DSI-CLK +/-	UIINSTA UIINSTB	UI Instantaneous Half	2	12.5	ns

Note: UI = UIINSTA = UIINSTB


5.2 High Speed Mode – Data Clock Channel Timing

Signal	Symbol	Parameter	Min	Max
DSI-Dn+/- , n=0	tDS	Data To Clock Setup Time	4	25
and 1	tрн	Clock to Data Hold Time	2	12.5

5.3 High Speed Mode – Rise and Fall Timings

Parameter	Symbol	Condition	Specification	
r drameter	Symbol	Condition	Min	Тур
Differential Rise Time For Clock	tDRTCLK	DSI-CLK +/-	-	-
Differential Rise Time For Data	tDRTDATA	DSI-Dn+/- , n=0 and 1	-	-
Differential Fall Time For Clock	tDFTCLK	DSI-CLK +/-	-	-
Differential Fall Time For Data	tDFTDATA	DSI-Dn+/- , n=0 and 1	-	-

10

5.4 Low Speed Mode – Bus Turn Around

Lower Power Mode and its State Periods are illustrated for reference purposes on the Bus Turnaround (BTA) from the MPU to the Display Module (ILI9806E) sequence below.

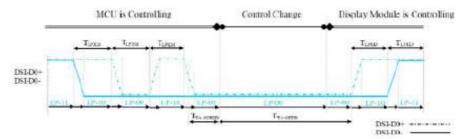


Figure 117 BTA from the MPU to the Display Module

Lower Power Mode and its State Periods are illustrated for reference purposes on the Bus Turnaround (BTA) from the Display Module (ILI9806E) to the MPU sequence below.

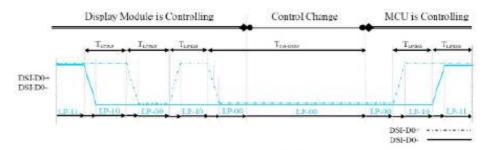


Figure 118 BTA from the Display Module to the MPU

Signal	Symbol	Parameter	Min	Max	Unit
		Length of LP-00,LP-01,LP-10 or LP-			
DSI-D0+/-	TLPXM	11 MPU	50	75	ns
		Length of LP-00,LP-01,LP-10 or LP-			
DSI-D0+/-	Tlpxd	11 MPU	50	75	ns
		Time out before display			
DSI-D0+/-	T _{TA-SURED}	module starts driving	TLPXD	2XTLPXD	ns

Signal	Symbol	Parameter	Min	Max	Unit
		Time to drive LP-00 by			
DSI-D0+/-	TTA-GETD	Display Module (ILI9806E)	4	25	ns
		Time to Drive LP-00 after			
DSI-D0+/-	TTA-OOD	turnaround request - MPU	2	12.5	ns

5.5 Data Lanes from Low Power Mode to High Speed Mode

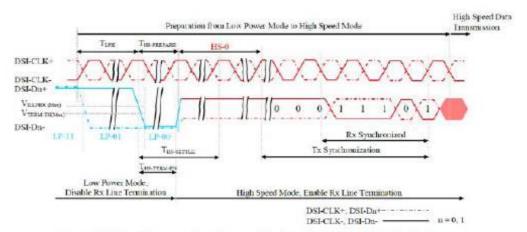


Figure 119 Data Lanes - Low Power Mode to High Speed Mode Timings

Signal	Symbol	Description	Min	Max	Unit
DSI-Dn+/- , n=0		Length of low power state			
and 1	TLPX	period	50	-	ns
DSI-Dn+/- , n=0		Time to drive LP-00 to			
and 1	THS-Prepare	prepare for hs transmission	40+4XUI	85+6xUI	ns
		Time to enable data lane			
		receiver line termination			
DSI-Dn+/- , n=0		measured from when Dn			
and 1	Ths-term-en	crosses VILMAX	-	35+4xUI	ns

5.6 Data Lanes from High Speed Mode to Low Power Mode

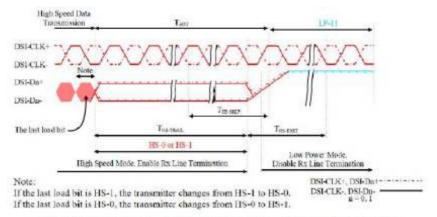


Figure 120 Data Lanes - High Speed Mode to Low Power Mode Timings

Signal	Symbol	Description	Min	Max	Unit
DSI-Dn+/- , n=0 and 1	THS-SKIP	Time-Out at display module (ILI9806E) to ignore transition period of EoT	40	55+4xUI	ns
DSI-Dn+/- , n=0 and 1	THS-EXIT	Time to driver LP-11 after HS burst	100	-	ns

5.7 DSI Clock Burst – High Speed Mode to/from Low Power Mode

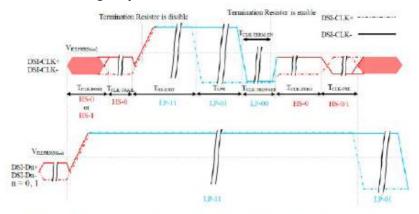


Figure 121 Clock Lanes – High Speed Mode to/from Low Power Mode Timings

Signal	Symbol	Parameter	Min	
		Time that the mpu shall continue		
DSI-CLK +/-	TCLK-POST	sending HS clock after the last	60+52UI	
		associated Data Lanes has		
		transitioned to LP mode		
		Time To drive HA differential state	60	
DSI-CLK +/-	TCLK-TRAIL	after last payload clock bit of a HS	60	
		transmission burst		
DSI-CLK +/-	THS-EXIT	Time to drive LP-11 after HS burst	100	
DCI CIV 1/	TCLK-PREPARE	Time to drive LP-00 to prepare for HS	38	
DSI-CLK +/-	TOLK THEFT IN	transmission	30	
DSI-CLK +/-	TCLK-TERM-EN	Time-out at Clock Lane to enable HS		
DOI CER 17	TOER TERMINET	termination	-	
	TCLK-PREPARE	Minimum lead HS-0 drive period		
DSI-CLK +/-	TOLK-I NEI ANE	before starting clock	300	
		Time that the HS clock shall be driven		
DSI-CLK +/-	TCLK-PRE	prior to any associated data lane begin	8xUI	
		the transition from LP to HS mode.	0.01	

13

www.FocusLCDs.com

5.8 Reset input timing

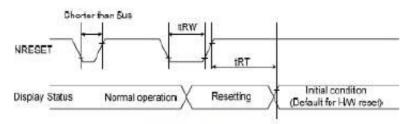


Figure 102 Reset Timing

Table 41 Reset Timing

Signal	Symbol	Parameter	Min	Max	Unit
COMP CARC	tRW	Reset pulse duration	10	© 1755628	US
RESX	ADT :	Daniel March		5(note 1,5)	ms
	tRT	Reset cancel		120 (note 1,6,7)	ms

Note:

- The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from OTP to registers. This loading is done every time when there is H/W reset cancel time (tRT) within 5 ms after a rising edge of RESX.
- Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the Table 43.

Table 42 Reset Descript

RESX Pulse	Action
Shorter than 5ue	Reset Rejected
Longer than 9us	Reset
Between Sus and 9us	Reset starts

- During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out mode. The display remains the blank state in Sleep in mode.) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

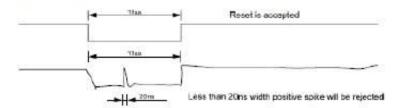


Figure 103 Positive Noise Pulse during Reset Low

- 5. When Reset applied during Sleep In Mode.
- When Reset applied during Sleep Out Mode.
- It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

6. CTP Specifications

6.1 Electrical Characteristics

6.1.1 Absolute Maximum Rating

ITEM	SYMBOL	MIN	MAX	UNIT	NOTE
POWER SUPPLY VOLTAGE	VDD	2.66	3.47	٧	-
OPERATING TEMPERATURE	Тор	-20	70	С	-
STORAGE TEMPERATURE	Tst	-30	-80	С	-

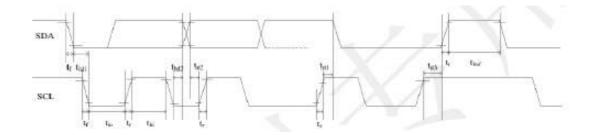
6.1.2 DC Electrical Characteristics (Ta=25°C)

(Ambient temperature:25℃, AVDD=2.8V, VDDIO=1.8V or VDDIO=AVDD)

ITEM	MIN	TYP	MAX	UNIT	NOTE
NORMAL MODE OPERATING CURRENT	-	8	14.5	mA	-
GREEN MODE OPERATING CURRENT	-	3.3	-	mA	-
SLEEP MODE OPERATING CURRENT	70	-	120	uA	-
DOZE MODE OPERATING CURRENT	-	0.78	-	mA	-
DIGITAL INPUT LOW VOLTAGE/VIL	-0.03	-	0.25*VDDIO	V	-
DIGITAL INPUT HIGH VOLTAGE/VIH	0.75*VDDIO	1	VDDIO+0.3	٧	-
DIGITAL OUTPUT LOW VOLTAGE / VOL	-	-	0.15*VDDIO	V	-
DIGITAL OUTPUT HIGH VOLTAGE / VOH	0.85*VDDIO	-	-	٧	-

15

www.FocusLCDs.com


6.1.3 AC Characteristics

(Ambient temperature:25°C, AVDD=2.8V, VDDIO=1.8V)

Parameter	Min	Тур	Max	Unit
OSC Oscillation Frequency	59	60	61	Mhz
I/O output rise time, low to high	-	14	-	ns
I/O Output fall time, high to low	-	14	-	ns

6.2 I2C Timing

GT911 provides a standard I2C interface for SCL and SDA to communicate with the host. GT911 always serves as slave device in the system with all communication being initialized by the host. It is strongly recommended that transmission rate be kept at or below 400Kbps. The I2C timing is shown below:

Test Condition 1: 1.8v host interface voltage, 400 Kbps transmission rate, 2k pull-up resistor

Parameter	Symbol	Min	Max	Unit
SCL low Period	tio	1.3	-	us
SCL high period	tнı	0.6	=	us
SCL setup time for start condition	tsT1	0.6	=	us
SCL setup time for stop condition	tsT3	0.6	=	us
SCL hold time for start condition	thd1	0.6	=	us
SDA setup time	tst2	0.1	=	us
SDA hold time	tnd2	0	-	us

Test Condition 2: 3.3v host interface voltage, 400 Kbps transmission rate, 2k pull-up resistor

Parameter	Symbol	Min	Max	Unit
SCL low Period	tio	1.3	-	us
SCL high period	tHI	0.6	-	us
SCL setup time for start condition	tsT1	0.6	-	us
SCL setup time for stop condition	tsT3	0.6	-	us
SCL hold time for start condition	thd1	0.6	-	us
SDA setup time	tst2	0.1	-	us
SDA hold time	tnd2	0	-	us

16

7. Cautions and Handling Precautions

7.1 Handling and Operating the Module

- 1. When the module is assembled, it should be attached to the system firmly. Do not warp or twist the module during assemblywork.
- 2. Protect the module from physical shock or any force. In addition to damage, this may cause improper operation or damage to the module and back-light unit.
- 3. Note that polarizer is very fragile and could be easily damaged. Do not press or scratch thesurface.
- 4. Do not allow drops of water or chemicals to remain on the display surface. If you have the droplets for a long time, staining and discoloration may occur.
- 5. If the surface of the polarizer is dirty, clean it using some absorbent cotton or softcloth.
- 6. The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use ketene type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- 7. If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs, or clothes, it must be washed away thoroughly with soap.
- 8. Protect the module from static; it may cause damage to the CMOSICs.
- 9. Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- 10. Do not disassemble the module.
- 11. Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- 12. Pins of I/F connector shall not be touched directly with bare hands.
- 13. Do not connect, disconnect the module in the "Power ON" condition.
- 14. Power supply should always be turned on/off by the item Power On Sequence & Power Off Sequence.

7.2 Storage and Transportation.

- 1. Do not leave the panel in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70%
- 2. Do not store the TFT-LCD module in direct sunlight.
- 3. The module shall be stored in a dark place. When storing the modules for a long time, be sure to adopt effective measures for protecting the modules from strong ultraviolet radiation, sunlight, or fluorescent light.
- 4. It is recommended that the modules should be stored under a condition where no condensation is allowed. Formation of dewdrops may cause an abnormal operation or a failure of the module. In particular, the greatest possible care should be taken to prevent any module from being operated where condensation has occurred inside.
- 5. This panel has its circuitry FPC on the bottom side and should be handled carefully in order not to be stressed.