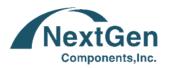


SPECIFICATION SHEET

SPECIFICATION SHEET NO.	Q0622- UT335M050HCHTA
DATE	Jun. 22, 2023
REVISION	A2
DESCRIPITION	SMD Aluminum Electrolytic Capacitors, Wide Temperature Standard Type
	UT series, 2 pads Capacitance: 3.3μF, Tolerance ±20%, Voltage 50V,
	Case size: ØD4.0*L5.40mm, Ripple Current 14mA Max. @+105℃, 120Hz
	Lifetime 2000Hours @105°C, Operating Temp. Range -55°C ~+105°C
	RoHS/RoHS III Compliant & Halogen Free
	Package in Tape/Reel, 2000pcs/Reel
CUSTOMER	
CUSTOMER PART NUMBER	
CROSS REF. PART NUMBER	
ORIGINAL PART NUMBER	Aillen CAE335M1HHUTCE4TR
PART CODE	UT335M050HCHTA

VENDOR APPROVE

Issued/Checked/Approved



DATE: Jun. 22, 2023

CUSTOMER APPROVE

DATE:

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

MAIN FEATURE

- Polar Aluminum Electrolytic Capacitor (Foil Type)
- · High stability and reliability
- Lifetime 2000 Hours @ 105°C
- Designed Capacitor's Quality Meets IEC60384.
- Applicable To Automatic Mounting Machine
- Cross Competitors Parts FN, FKS, MVE UUT SKV, SGV Series and more.
- RoHS Complaint And Halogen Free

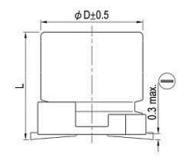
APPLICATION

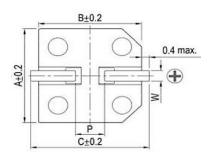
• High-density Patch Assembly General Electronic Circuit Etc.

PART CODE GUIDE

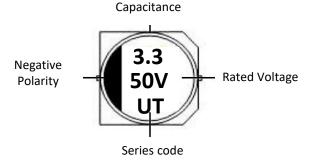
UT	335	М	050	н	С	н	Т	Α
1	2	3	4	5	6	7	8	9

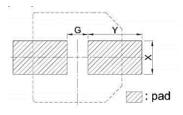
- 1) UT: SMD Aluminum Electrolytic Capacitors, UT series, 2 pads
- 2) **335:** Rated Capacitance Code, 105: 1.0μF; 225: 2.2μF; **335: 3.3μF**; 475: 4.7μF; 106: 10μF; 226: 22μF; 336: 33μF; 476: 47μF 107: 100μF; 227: 220μF; 337: 330μF ; 477: 470μF; 687: 680μF; 108: 1000μF; 158: 1500μF; 228: 2200μF
- 3) M: Capacitance tolerance code, M: ±20%; K: ±10%; V: -10% ~ ±20%,
- 4) 050: Rated Voltage Code, 6V3: 6.3V; ; 010: 10V; 016:16V; 025: 25V; 035: 35V; 050: 50V; 063: 63V; 100: 100V
- 5) H: Environmental Requirements code, R: RoHS Complaint; H: RoHS III Complaint & Halogen Free
- 6) C: Aluminum Case size code, B: ØD3.0mm; C: ØD4.0mm; D: ØD5.0mm; E: ØD6.3mm; F: ØD8.0mm; G: ØD10.0mm; P: ØD12.5mm
- 7) H: Aluminum case Heigh code, H: L5.4mm; I: L6.5mm; J: L7.7mm; K: L10.2mm; L: L11.5mm; M: L12.5mm; N: L13.5mm
- 8) T: Package in Tape/Reel, 2000pcs/Reel
- 9) A: Internal control or Customer's Special Code (A~Z or 1~9)


SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES


Image For Reference

UT Series Case ØD4.0*L5.40mm
Non Explosion Proof Value

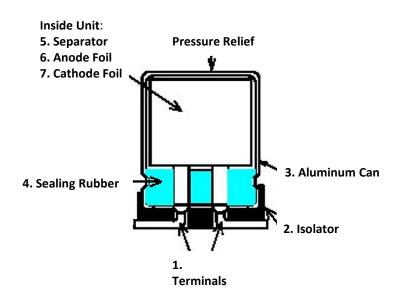




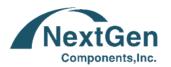
Symbol	Dimension (mm)
Α	4.3
В	4.3
D	Ø4.0
С	5.1 +/-0.2
L	5.4 -0.3/+0.5
р	1.0 +/-0.20
w	0.50~8.0


Marking

Recommended Pad Layout



Symbol	Dimension
G	1.0
х	1.6
Y	2.6



SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

CONSTRUCTION

No.	Parts	Material
1	Terminal	Tinned Copper – Clad Steel Wire (Pb Free)
2	Isolator	Thermo-plastic resin
3	Aluminum Can	Aluminum
4	Sealing Rubber	Synthetic rubber
5	Separator	Manila hemp
6	Anode Foil	High purity aluminum foil
7	Cathode Foil	Aluminum foil

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

CHARACTERISTICS

Standard Atmospheric Conditions

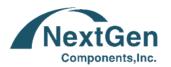
The standard range of atmospheric conditions for making measurements/test as follows:

Ambient temperature: 15°C to 35°C

Relative humidity: 45% to 85%; Air Pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: 20°C ± 2°C


Relative humidity: 60% to 70% Air Pressure: 86kPa to 106kPa

As to the detailed information, please refer to following Table

Operating Temperature Range

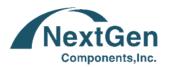
The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

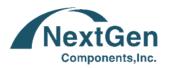
As to the detailed information, please refer to table 1

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

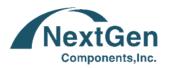
Table 1

ITEM				PEI	RFORMAN	ICE			
Nominal Capacitance	<condition></condition>								
(Tolerance)	Measuring Frequency : 120Hz \pm 12Hz								
	Measuring	Measuring Voltage : Not more than 0.5V							
	Measuring	g Temp	erature	: 20±2℃					
	<criteria></criteria>								
	Shall be w	ithin t	he specif	ied capaci	tance tole	rance			
Leakage Current	<condition></condition>								
	After DC Voltage is applied to capacitors through the							ective	resistor
	(1kΩ±109	Ω) so t	hat term	inal voltag	e may rea	ch the rea	cted use	voltag	e. The
	leakage current when measured in 2 minutes shall not exceed the						he valu	es of th	
	following	equati	on.						
	<criteria></criteria>	>							
	I (μA) ≤ 0.01 CV or 3 (μA), Whichever is greater								
	I: Leakage	Curre	nt (μA)						
	C: Capacit	ance (μF)						
	V: Rated V	Vorkin	g Voltage	e (V)					
tanδ	<condition< td=""><td>1></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></condition<>	1>							
	See Norm	al Cap	acitance	, for meas	uring frequ	uency, volt	tage and	tempe	rature.
	<criteria></criteria>								
	The tange	nt of t	he loss aı	ngle (Tanδ) of the ca	pacitors sl	hall refer	to the	followi
	table. Mea	suren	nents sha	ıll be made	e under th	e same co	nditions	as thos	e given
	for the me	asure	ment of t	the capacit	tance.				
	W.V.		6.3	10	16	25	35	50/	63/100
	Tanδ		0.30	0.24	0.20	0.18	0.16	(0.14
Rated Woking Voltage (WV)	1								1
Surge Voltage (SV)	W.V. (V.DC)	6.3	10	16	25	35	50	63	100
	S.V. (V.DC.)	8	13	20	32	44	63	79	125


NextGen Components, Inc.


ITEM			PE	RFORM	ANCE				
Temperature Characteristic IEC-60384-4 4.12	<condition>.</condition>								
1EC-00384-4 4.12	Step. Te	sting Tempe	rature(°C	<u>:</u>)		Tim	ne		
	1	20±2	2	Т	Time to reach thermal equilibrium				
	2 -55(-25) ±3 3 20±2				ime to re	ach the	rmal equilibrium		
					ime to re	ach the	rmal equilibrium		
	4.	105±	2	Т	ime to re	ach the	rmal equilibrium		
	5	20±2	2	Т	ime to re	ach the	rmal equilibrium		
	measure value at · b. At step 5 shall not c. At-55°C following Rated Volt Z-25°C/ Z+20°C (120Hz) Z-55°C/ Z+20°C (120Hz)	d capacitance $+105^{\circ}$ C shall $= 5$, $= 75^{\circ}$ C, $= 105^{\circ}$ C), imposes table. age (V) $= 105^{\circ}$ C shall $= 105^{\circ}$ C, imposes table. $= 105^{\circ}$ C $= 105^$	e, Tanô sh not more be within he specifi edance (Z	than 8 than 8 the limited value of the second secon	ithin limi times the t of 4.3. T all not ex	specific the leak sceed the scenario the scenar	age current value ne value of the 35/50/63/100 2 2 2 3 3 3		
Sealing Tape Reel Strength	d. Capacitance Tanδ and impedance shall be measured at 120Hz <condition> Peel angle: 165 to 180°C referred to the surface on which the tape is glued. Peel speed: 300mm per minutes The peel strength must be 0.1 ~ 0.7N under these conditions. Peel speed: 300mm/min</condition>								

ITEM	PERFORMANCE							
Load Life Test	<condition></condition>							
IEC-60384- 4 4.13	The capacitor is stored at a temperature of 105 $^{\circ}\text{C}$ ±2 $^{\circ}\text{C}$ with rated voltage							
	applied continuously for 2	000+48/0 hours, Then the product should be tested						
	after 16 hours recovering time at atmospheric conditions. The result should							
	meet the following table:							
	<criteria> The characterist</criteria>	tic shall meet the following requirements.						
	Capacitance Change	\pm 30% of initial measured value.						
	tanδ	200% or less of the specified value						
	Leakage current	Not more than the specified value.						
	Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible						
	Inner construction	No corrosion of tab terminals or electrodes						
		surement of the leakage current, the D.C. rated ross the capacitor and its protective resistance ($1k\Omega$)						
Shelf Life Test	-							
IEC-60384- 4 4.17	<condition></condition>							
	The capacitors are then stored with no voltage applied at a temperature of 105							
		s. Following this period the capacitors shall be removed						
		d be allowed to stabilized at room temperature for 4~8						
	-	connected to a series limiting resistor($1k\pm100\Omega$) with for 30min. After which the capacitors shall be						
	discharged, and then, test	·						
	_	tic shall meet the following requirements.						
	Capacitance Change	±30% of initial measured value.						
	tanδ	200% or less of the specified value						
	Leakage current	Not more than 300% of the specified value						
	Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible						
	Inner construction No corrosion of tab terminals or electrodes							
	Remark:							
	If the capacitors are stored	d more than 1 year, the leakage current may increase.						
6/22/2023	Please apply voltage throu	gh about 1 Kω resistor, if necessary.						
6/22/2023	I	8						


ITEM		PERFORMANCE			
Surge Test IEC-60384- 4 4.9	Condition> Test temperature: $15^{\sim}35^{\circ}C$ Series resistor: $R = \frac{100 \pm 50}{C}$ R: protective resistor (KΩ) C: nominal capacitance (μF) Test voltage: Surge voltage item 4.4 No. of cycles: 1000 cycles Each cycles lasts for 6 ± 0.5 min "ON" for 30 ± 5 s "OFF" for 5 ± 0.5 min. Capacitance Change Within $\pm 15\%$ of initial value. Leakage current Not more than the specified value. Leakage current Not more than the specified value. Appearance There shall be no leakage of electrolyte. Attention: This test simulates over voltage at abnormal situation, and not be hypothesizing that over voltage is always applied.				
Vibration Test IEC-60384- 4 4.8	<condition>Fix it at the point 4 mm or less from body. For ones of 12.5 mm or more diameter or 25 mm or Capacitance; Direction and during of vibration:3 orthogonal directions mutually each for 2 hours(total of 6 hours)Vibration frequency range : 10Hz ~ 55HzPeak to peak amplitude : 1.5mmSweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute<criteria>The characteristic shall meet the following requirements.Capacitance ChangeWithin $\pm 10\%$ of initial value.Leakage currentNot more than the specified value.AppearanceThere shall be no leakage of electrolytes</criteria></condition>				

ITEM	PERFORMANCE						
Solderability Test	<condition></condition>						
IEC-60384-4 4.6	The capacitor shall be tes	ted under the following conditions: Soldering					
	temperature : 245 ± 3 °C						
	Dipping depth : 2mm						
	Dipping speed : 25 \pm 2.5n	nm/s					
	Dipping time: 3 ± 0.5 s						
	<criteria></criteria>						
	The characteristic shall m	eet the following requirements.					
	Coating quality	A minimum of 95% of the surface being immersed					
Resistance To Solder Heat	<condition></condition>						
Test	After reflow soldering . Tl	ne capacitor shall be left at room temperature for					
	before measurement.						
	<criteria></criteria>						
	The characteristic shall m	eet the following requirements.					
	Capacitance Change Within \pm 10% of initial value.						
	tanδ	Not more than the specified value.					
	Leakage current	Not more than the specified value.					
	Appearance	There shall be no leakage of electrolyte.					
Damp Heat Test IEC60384-4 4.12	<condition></condition>						
1200384-4 4.12	Humidity Test: According	to IEC60384-4 No.4.12 methods, capacitor shall be					
	exposed for 1000±8 hour	s in an atmosphere of 90~95% R H .at 60±3°C, the					
	characteristic change sha	ll meet the following requirement.					
	<criteria></criteria>						
	The characteristic shall m	eet the following requirements.					
	Capacitance Change	Within \pm 20% of initial value.					
	tanδ	Not more than 120% of the specified value.					
	Leakage current	Not more than the specified value.					
	Appearance	There shall be no leakage of electrolyte.					

ITEM			PERF	ORMANCE		
Change Of Temperature Test IEC-60384-4 4.7	<condition></condition>		ding to IEC6	0384-4 No.4.7 methods, capacitor shall be		
	placed in an	oven, the con	dition accor	rding as below		
	No.	Temper	ature	Time		
	1	+25°	°C	≤3 Minutes		
	2	-55°	C	30±2 Minutes		
	3	+25°	Č.	≤3 Minutes		
	4	+105	$^{\circ}$ C	30±2 Minutes		
	5	+25°	°C	≤3 Minutes		
		1	to 5 = 1 cyc	le, Total 5 cycles		
		•	-	tted to standard atmospheric conditions for		
	4 hours, after which measurements shall be made.					
	<criteria></criteria>					
	The characteristic shall meet the following requirements.					
	Capacitan	ce Change	Within $\pm 10\%$ of initial value.			
	ta	nδ	Not more than the specified value. Not more than the specified value.			
	Leakage	current				
	Appea	arance		No broken and undamaged.		
Low Temperature Test	<condition></condition>					
	Capacitors a	re placed at -5	55 ± 3°C for	96 ± 4 hours. And then the capacitor shall		
	be subjected	d to standard a	ntmospheric	conditions for 4 hours, after which		
	measuremer	nts shall be ma	ade.			
	<criteria></criteria>					
	The characte	eristic shall me	et the follo	wing requirements.		
	Capacitan	ce Change		Within \pm 10% of initial value.		
	ta	nδ	No	ot more than the specified value.		
	Leakage	current	No	ot more than the specified value.		
	Appea	arance		No broken and undamaged.		
	l .					

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

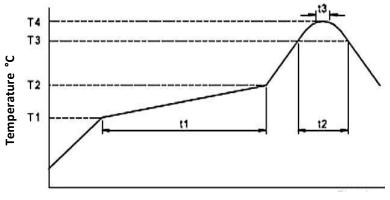
ITEM		PERFORMANCE					
Vent Test IEC-60384-4 4.16	≥ Ф8 with vent. D.C. test	to those products with vent products at diameter with its polarity reversed to a DC power source. The wing table is applied.					
	Diameter (mm) 22.4 or less	DC Current (A)					
	specification. The vent shall	ninutes of the voltage application also meets the operate with no dangerous conditions such as s of the capacitor and/or case.					
Mechanical Characteristics Test	<condition> Bending Test: Apply pressure in the direction of the arrow at a rate of about 0.5 mm / s until bent width reaches 2 mm and hold for 60s. The board shall be the test board "B" as specified in JIS C 0051: 2002. If the land area differs, it she be specified clearly in the next item.</condition>						
	Substrate before test Specimen (of SMD) Substrate during test	1,6 mm ± 0,20 mm Support Radius 2,5 mm Bending tool					
	Radius	Length = actual width of substrate + 5 (minimum) on both sides					
		such as breaks. Electrical characteristics shall be des on both surfaces, above requirements shall be te it may be fixated on.	į				

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

CASE SIZE & MAX RIPPLE CURRENT

Rated	Capacitance	Case Size	Dissipation Factor	Ripple Current	Leakage Current
Voltage	(+/-20%)	ØD*L	@+20°C, 120Hz	@+105°C, 120Hz	@20°C
V	μF	mm	Tanδ Max.	mA rms .	µA Max.
50	3.3	4.0*5.4	0.14	14	

Remark:

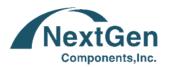

- 2)The sizes in the above table are all general specifications. If you need other specifications, please contact us.
- 3) Frequency Coefficient of Allowable Ripple Current:

Frequency	50Hz	120Hz	300Hz	1KHz	≥10KHz
Coefficient	0.70	1.00	1.17	1.36	1.50

WELDING METHODS AND APPLICABILITY

Welding Method Reflow Soldering		Soldering Iron	Wave Soldering	
The feasibility of	ОК	ОК	No	

Conditions for the use of lead-free reflow soldering:



Time Second

METHODS THE FOLLOWING

Reflow soldering: please follow the temperature condition during welding. If high temperature is used, please measure and inform the capacitor temperature and reflow soldering condition. The product size is larger and its rising temperature is slower. It is not necessary to adjust the temperature of the reflow solder in accordance with the size of the product. For example, the products of 4 and 10 will be installed in the PCB over tin furnace.

¹⁾Specification are subject to change without notice should a safety or technical concern arise regarding the product please be sure to contact our sales offices;

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Precautions For Soldering Tin:

Related factors of reflow soldering temperature:

Product size: The product size is larger and its temperature rises slowly.

Product installation position: The temperature of PCB center is lower than that of PCB.

Reflow soldering

If possible, avoid reflow soldering twice.

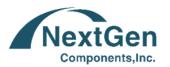
If repeated reflux is unavoidable, measure and inform the first and second reflux temperature,

and the time of reflow soldering.

Please do not 3 times of reflow soldering

Please follow the following conditions when soldering tin soldering:

Soldering iron maximum temperature: $350\pm5^{\circ}$ C


Welding time: 3+1/-0 sec

TEST METHOD AND PEAK TEMPERATURE PERMISSIBLE RANGE

Part Code		UT335M050HCHTA 50 V ØD4.0*L5.40mm	
Rated Voltage (V)			
Case Size			
Preheating Temperature Range (T1~T2)		150~180 ℃	
	Time (t1) Max.	180 Second	
The Duration Of The Temperature Range (T3)		230 °C Max.	
	Time (t2) Max.	60 Second	
The Highest Temperature Temperature Range (T4)		260 °C	
	Time (t3) Max.	5 Second	
Return The Number		≤2 times	

Note

- 1) Please contact us if the condition of use are higher than the
- 2) When performing 2^{nd} reflow Soldering, please make sure the temperature of capacitor have cooled to : $5^{\circ}35^{\circ}C$
- 3) If the reflow condition is based on IPC/JEDEC(J-STD-020), please contact us.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

ATTENTION FOR OP-CAP SOLDERING

Reflow soldering will reduce the rated electrostatic capacity of the product, and it should be confirmed whether reflow soldering condition meets the specification of recommended reflow soldering.

Although the actual reflow condition change is still based on the reflow soldering method, please note that the highest temperature and the electrode terminal at the bottom of the aluminum shell must not exceed the maximum temperature.

Please note: OP - CAP products during the process of reflow heating temperature should increase to more than 200 °C. If the reflow condition temperature or duration is greater than the above table, the OP-CAP product will be damaged. The electrostatic capacity of the product is reduced by about 50%, the leakage current is large (up to mA), and the outside of the capacitor is damaged.

APPLICATION GUIDELINE

Circuit Design

- 1) Please make sure the environmental and mounting conditions to which the capacitor will be exposed are within the conditions specified in catalogue.
- 2) Operating temperature and applied ripple shall be within specification.
- 3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.
- 4) Aluminum electrolytic capacitors are polar. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.
- Note: Even bi-polar capacitors cannot be used for AC voltage application.
- 5) Do not use aluminum electrolytic capacitors in a circuit that requires rapid and very frequent charge/ discharge. In this type of circuit, it is necessary to use a special design capacitor with extended life characteristics.
- 6) Do not apply excess voltage.
- (1) Please pay attention to that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.
- (2) In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage will be applied to each capacitor equally by using a balancing resistor in parallel with the capacitor.
- 7) Aluminum electrolytic capacitors shall not be used under the following environmental conditions:
- (1) (a) Capacitors will be exposed to water (including condensation), brine or oil. (b) Ambient conditions that include toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonium, etc. (c) Ambient conditions that expose the capacitor to ozone, ultraviolet ray and radiation.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

(2) Severe vibration and physical shock conditions that exceed specification.

Vibration test condition: 10-55-10Hz

vibration frequency range : $10\sim55\sim10$ Hz

sweep rate : $10\sim55\sim10$ Hz/minute

sweep method: logarithmic

amplitude or acceleration: 1.5mm (max. acceleration is 10G)

direction of vibration: X, Y, Z direction testing time: 2 hours per each direction

Shock is not applicable normally.

If a particular condition is required, please contact our sales office.

8) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible.

The electrolyte is conductive. When it comes in contact with the PC board, there is a possibility of pattern corrosion or short circuit between the circuit pattern, which could result in smoking or catching fire. Do not locate any circuit pattern beneath the capacitor end seal.

- 9) Do not design a circuit board that the heat generating components are placed near the aluminum electrolytic capacitor or on the reverse side of PC board, if that just under the capacitor.
- 10) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.
- 11) When you install more than 2 capacitors in parallel, please consider the balance of current flowing into the capacitors.
- 12) While mounting capacitors on double-side PC board, the capacitors should be away from those unnecessary base plate holes and connection holes.

Mounting

- 1) Once a capacitor has been assembled in the set and power applied, do not attempt to re-use the capacitor in other circuits or application.
- 2) Leakage current of the capacitors that have been stored for more than 2 years may increase. When leakage current has increased, please perform a voltage treatment using a $1k\Omega$ resistor.
- 3) Please confirm specifications and polarity before installing capacitors on the PC board.
- 4) Do not drop capacitors on the floor, nor use a capacitor that was dropped.
- 5) Do not deform the capacitor during installation.
- 6) Please pay attention to the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker, or by centering mechanism.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Reflow Soldering

- 1) Please follow "Reflow Soldering Conditions" when use the part.
- 2) When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of infrared will vary due to difference in the color and size of the capacitor.
- (1) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the PC board.
- (2) Do not carry the PC board by grasping the soldered capacitor.
- (3) Please do not allow anything to touch the capacitor after soldering. If PC boards are stored in stack, please make sure the PC board or other components away from the capacitor.
- (4) The capacitors shall not be effected by any radiated heat from the soldered PC board or other components after soldering.
- (5) Cleaning:
- (a) Do not clean capacitors with halogenated cleaning agent. However, if it is necessary to clean with halogenated cleaning agent, please contact our sales office.
- (b) Recommended cleaning method, Applicable: Any type, any ratings

Cleaning conditions: Total cleaning time shall be within 2 minutes by immersion, ultrasonic or other methods. Temperature of the cleaning agents shall be 40°C or below. After cleaning, capacitors should be dried by using hot air for the minimum 10 minutes along with the PC board mounted. Hot air temperature should be within the maximum operating temperature of the capacitor. Insufficient dryness after water rinse may cause appearance problems, such as bottom-plate bulge and etc.; Avoid using ozone destructive substances as cleaning agents for protecting global environment.

In The PCB After Mounted

- 1) Do not directly touch terminal by hand.
- 2) Do not link positive terminal and negative terminal by conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.
- 3) Please make sure that the ambient conditions where the set is installed are free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Maintenance and Inspection

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

Appearance: remarkable abnormality such as pressure relief vent opening, electrolyte leaking, etc.

Electrical characteristics: capacitance, dielectric loss tangent, leakage current and etc., which are specified in catalogue or alternate product specification.

In an Emergency

- 1) If you see smoke due to operation of safety vent, please turn off the main switch or pull out the plug from the outlet.
- 2) If you breathe the gas or ingest the electrolyte, please wash out your mouth and throat with water immediately.
- 3) If your skin is exposed to the electrolyte, please wash it away using soap and water.

Storage

1) Do not keep capacitor in high temperature and high humidity atmosphere. Storage conditions should be:

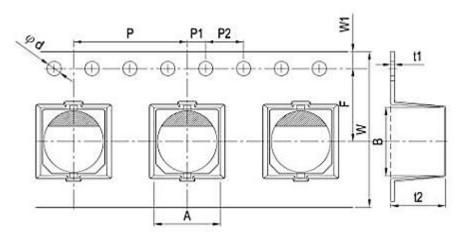
Temperature: $5^{\circ}\text{C} \sim 35^{\circ}\text{C}$ Humidity: lower than 75%

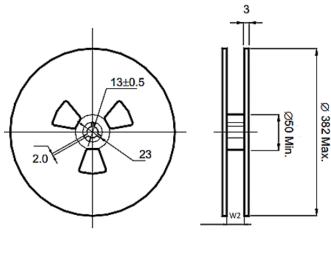
Place: Indoor

- 2) Avoid ambient conditions where capacitors are covered with water, brine or oil.
- 3) Avoid ambient conditions where capacitors are exposed to ozone, ultraviolet ray or radiation.

Disposal

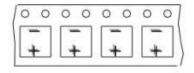
Please take either of the following methods in disposing capacitors.


- 1) Incinerate them after crushing capacitors or making a hole on the capacitor body.
- 2) If incineration is not applicable, hand them over to a waste disposal agent and have them buried in landfills.

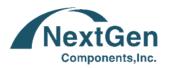

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

TAPE (Unit: mm), 2000pcs/Reel,

Applicable standard JIS C0806 and IEC 60286.



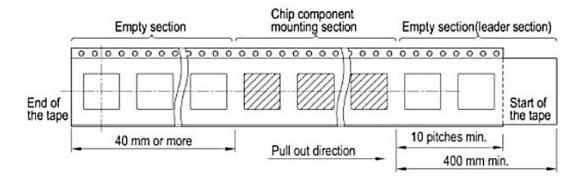
REEL (Unit: mm)



1	Ø 382 Max.		

Pull out direction

Case size: ØD4.0*L5.4mm		
Symbol	Dimension (mm)	
W	12.0	
Р	8.0	
F	5.5	
А	4.7	
В	4.7	
T 2	5.8	
Ø d	1.5	
P 1	2.0	
P 2	4.0	
t 1	0.4	
W 1	1.75	
W 2	14.0 +/-0.3	


SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

PACKING METHOD

Polarity: Anode on the opposite side of the feed hole

The leader length of the tape shall not be less than 400mm including 10 or more embossed sections in which no parts are contained.

The winding core is provided with an over 40mm long empty section

DISCLAIMER

NextGen Component, Inc. reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information