

DME800

800 Watts, 50 Volts Pulsed Avionics 1025 to 1150 MHz

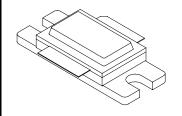
GENERAL DESCRIPTION

The DME800 is a high power COMMON BASE bipolar transistor. It is designed for pulsed DME systems at 1025 to 1150 MHz, with the pulse width and duty required for DME applications. The device has gold thin-film metalization for proven highest MTTF. The transistor includes input and output prematch for broadband capability. Low thermal resistance package reduces junction temperature, extends life.

CASE OUTLINE 55ST-1 (Common Base)

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation


Device Dissipation @25°C¹ 2500 W

Maximum Voltage and Current

Collector to Base Voltage (BV $_{ebo}$) 65 V Emitter to Base Voltage (BV $_{ebo}$) 3 V Collector Current (I $_c$) 50 A

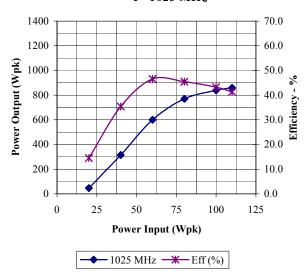
Maximum Temperatures

Storage Temperature -65 to +200 °C Operating Junction Temperature +200 °C

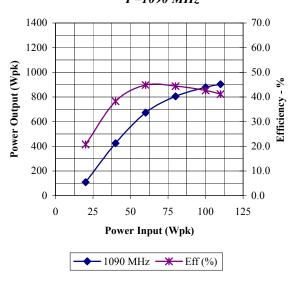
ELECTRICAL CHARACTERISTICS @ 25°C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
P _{out}	Power Out	Pulse Width = 10 μs,	800		1000	W
P_{g}	Power Gain	Pin = 100 Watts	9.0		10.0	dB
η_{c}	Collector Efficiency	Vcc = 50 Volts	40			%
$R_{\rm L}$	Return Loss	F = 1025-1150 MHz	-9			dB
Tr	Rise Time	Long Term Duty Factor = 1%			200	ns
Pd	Pulse Droop				0.7	dB
VSWR	Load Mismatch Tolerance ¹	F = 1025 MHz	3.0:1			

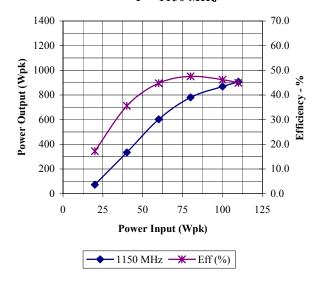
FUNCTIONAL CHARACTERISTICS @ 25°C

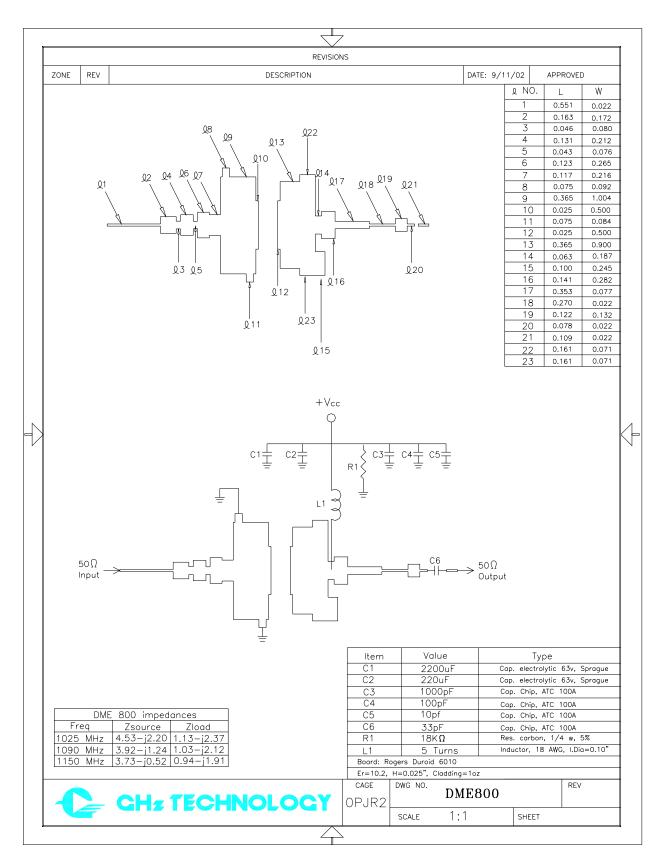

$\mathrm{BV}_{\mathrm{ebo}}$	Emitter to Base Breakdown	$I_e = 20 \text{ mA}$	3.5			V
BV_{ces}	Collector to Emitter Breakdown	$I_c = 50 \text{ mA}$	65			V
h_{FE}	DC – Current Gain	$V_{ce} = 5V, I_c = 600mA$	20			
θjc^2	Thermal Resistance			0.04	0.06	°C/W

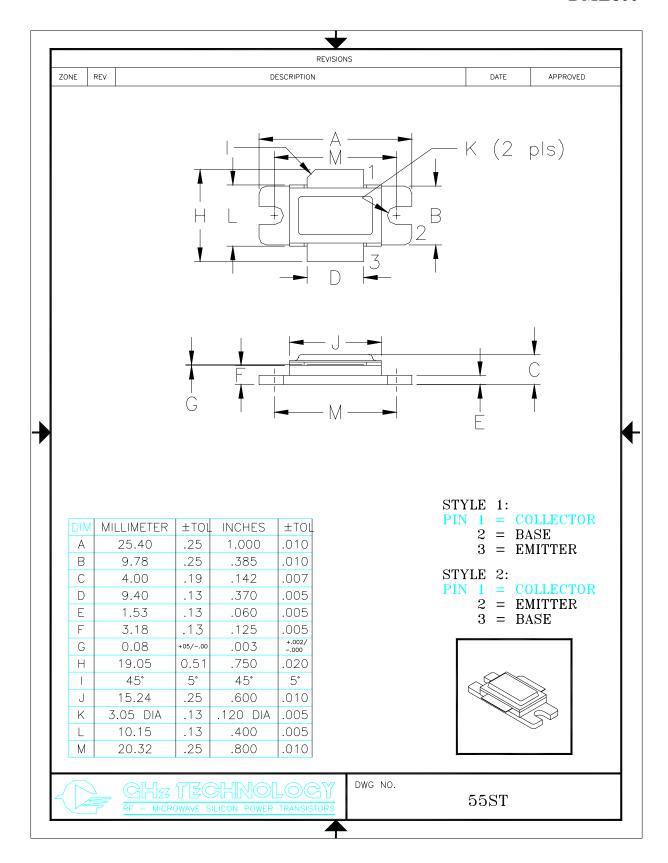
NOTES: 1. At rated output power and pulse conditions


2. At rated pulse conditions

Issued June 2003


Power Output & Efficiency vs. Power Input F=1025 MHz




Power Output & Efficiency vs. Power Input F=1090 MHz

Power Output & Efficiency vs. Power Input F = 1150 MHz

