
User’s Guide
Code Composer Studio™ IDE v10.x for
MSP430™ MCUs

ABSTRACT

This manual describes the use of TI Code Composer Studio™ IDE v10.x (CCS v10.x) with the MSP430™ ultra-
low-power microcontrollers. This document applies only for the Windows version of the Code Composer Studio
IDE. The Linux® version is similar and, therefore, is not described separately.
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1 Read This First
1.1 How to Use This Manual
Read and follow the instructions in Section 2. This section includes instructions on installing the software and
describes how to run the demonstration programs. After you see how quick and easy it is to use the
development tools, TI recommends that you read all of this manual.

This manual describes only the setup and basic operation of the software development environment but does
not fully describe the MSP430 microcontrollers or the complete development software and hardware systems.
For details on these items, see the appropriate TI documents listed in Section 2.3, Important MSP430
Documents on the Web, and in Section 1.3.

This manual applies to the use of CCS with the TI MSP-FET, MSP-FET430UIF, eZ-FET, and eZ430 development
tools series.

These tools contain the most up-to-date materials available at the time of packaging. For the latest materials
(including data sheets, user's guides, software, and application information), visit the TI MSP430 website at
www.ti.com/msp430 or contact your local TI sales office.

1.2 Information About Cautions and Warnings
This document may contain cautions and warnings.

CAUTION

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your software or equipment.

Warning

This is an example of a warning statement.

A warning statement describes a situation that could potentially cause harm to you.

The information in a caution or a warning is provided for your protection. Read each caution and warning
carefully.

www.ti.com Read This First
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1.3 Related Documentation From Texas Instruments
CCS documentation

MSP430™ Assembly Language Tools User's Guide

MSP430™ Optimizing C/C++ Compiler User's Guide

MSP430 development tools documentation

MSP Debuggers User's Guide

MSP430™ Hardware Tools User's Guide

eZ430-F2013 Development Tool User's Guide

eZ430-RF2480 User's Guide

eZ430-RF2500 Development Tool User's Guide

eZ430-RF2500-SEH Development Tool User's Guide

eZ430-Chronos™ Development Tool User's Guide

MSP-EXP430G2 LaunchPad™ Experimenter Board User's Guide

Advanced Debugging Using the Enhanced Emulation Module (EEM) With Code Composer Studio IDE

MSP430 device Family User's Guides

MSP430F1xx Family User's Guide

MSP430F2xx Family User's Guide

MSP430F3xx Family User's Guide

MSP430F4xx Family User's Guide

MSP430F5xx and MSP430x6xx Family User's Guide

MSP430FR4xx and MSP430FR2xx Family User's Guide

MSP430FR57xx Family User's Guide

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide

CC430 device Family User's Guide

CC430 Family User's Guide

1.4 If You Need Assistance
Support for the MSP430 microcontrollers and the FET development tools is provided by the TI Product
Information Center (PIC). Contact information for the PIC can be found on the TI website at www.ti.com/support.
A Code Composer Studio specific Wiki page (FAQ) is available, and the TI E2E™ support forums for the
MSP430 microcontrollers and the Code Composer Studio IDE provide open interaction with peer engineers, TI
engineers, and other experts. Additional device-specific information can be found on the MSP430 website.
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2 Get Started Now!
This section provides instructions on installing the software, and shows how to run the demonstration programs.

2.1 Software Installation
To install Code Composer Studio™ IDE (CCS), download the corresponding CCS package to the HostOS
platform, and extract the full zip archive before running ccs_setup_x.x.x.x. The user can select to use the offline
or online installer (TI recommends the offline installer for slow and unreliable connections). Follow the
instructions shown on the screen. The hardware drivers for the USB JTAG emulators (MSP-FET,
MSPFET430UIF, eZ-FET, and eZ430 series) are installed automatically when installing CCS. The parallel-port
FET (MSP-FET430PIF) legacy debug interface is no longer supported in this version of CCS.

Note

The legacy MSP-FET430PIF (parallel port emulator) is not supported by this version of CCS.

Note

Fully extract the zip archive (CCSx.x.x.x_y.zip) before running ccs_setup_x.x.x.x.

Note

If the MSP-FET or eZ-FET debugger driver install fails:

Under certain conditions (depending on the hardware and operating system that is used), the MSP-
FET or eZ-FET driver install may fail on the first attempt. This can lead to unresponsive behavior on
IDEs. To resolve this issue, disconnect the MSP-FET or eZ-FET and then plug it again, or plug it in to
a different USB port, and restart the IDE.

Table 2-1. System Requirements
Recommended System Requirements Minimum System Requirements

Processor Dual Core x86 compatible processor 1.0-GHz x86 compatible processor

RAM 6GB 2GB

Free Disk Space 2GB average (1 or 2 device families); 3.5GB all
features

900MB (depends on features selected during
installation)

Operating System

• Windows®: Windows 7 (SP1 or later), Windows 8.x and Windows 10
• Linux: Details on the Linux distributions supported is available here: http://software-dl.ti.com/ccs/esd/

documents/ccsv10_linux_host_support.html
• Mac: The most current and the previous versions are supported at the time of CCS release.

2.2 Flashing the LED
This section demonstrates on the FET the equivalent of the C-language "Hello world!" introductory program.
CCS includes C code template files that allow flashing the LED in no time. To get started:

1. Start Code Composer Studio by clicking Start → All Programs → Texas Instruments → Code Composer
Studio → Code Composer Studio.

2. Create a new Project by clicking File → New → CCS Project.
3. Enter a project name.
4. Set the Device Family to MSP430 and select the Device Variant to use (for example, MSP430F2274).
5. Select "Blink The LED" in the "Project templates and example" section.
6. Click Finish.

www.ti.com Get Started Now!
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Note

The predefined examples work with most MSP430 boards. Specific examples are automatically
selected for MSP430G221x, MSP430L092, and MSP430FR59xx devices. Certain MSP430F4xx
boards use Port P5.0 for the LED connection, which must be changed manually in the code.

7. To compile the code and download the application to the target device, click Run → Debug (F11).

CAUTION

Never disconnect the JTAG or emulator USB cable during an active debug session. Always
terminate a running debug session properly (by clicking on the "Terminate" icon) before
disconnecting the target device.

8. To start the application, click Run → Resume (F8) or click the Play button on the toolbar.

See FAQ 1 if the CCS debugger is unable to communicate with the device.

Congratulations, you have just built and tested an MSP430 application!

2.3 Important MSP430™ Documents
The primary sources of MSP430 and CCS information are the device-specific data sheets and user's guides.
The MSP430 website (www.ti.com/msp430) contains the latest version of these documents.

Documents describing the Code Composer Studio tools (Code Composer Studio IDE, assembler, C compiler,
linker, and librarian) can be found at www.ti.com/tool/ccstudio. A Code Composer Studio specific Wiki page
(FAQ) is available at processors.wiki.ti.com/index.php/Category:CCS, and the TI E2E support forums at
e2e.ti.com provide additional help. Documentation for third party tools, such as IAR Embedded Workbench for
MSP430, can usually be found on the respective third-party website.

Get Started Now! www.ti.com
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3 Development Flow
This section describes how to use Code Composer Studio IDE (CCS) to develop application software and how to
debug that software.

3.1 Using Code Composer Studio™ IDE (CCS)
The following sections are an overview of how to use CCS. For a full description of the software development
flow with CCS in assembly or C, see the MSP430 Assembly Language Tools User's Guide and the MSP430
Optimizing C/C++ Compiler User's Guide.

3.1.1 Creating a Project From Scratch

This section presents step-by-step instructions to create an assembly or C project from scratch and to download
and run an application on the MSP430 (see Section 3.1.2). Also, the MSP430 Code Composer Studio Help
presents a more comprehensive overview of the process.

1. Start CCS (Start → All Programs → Texas Instruments → Code Composer Studio → Code Composer
Studio).

2. Create new project (File → New → CCS Project). Enter the name for the project, click next and set Device
Family to MSP430.

3. Select the appropriate device variant. For assembly only projects, select Empty Assembly-only Project in
the Project template and examples section.

4. If using a USB Flash Emulation Tool such as the MSP-FET, MSP-FET430UIF, eZ-FET, or the eZ430
Development Tool, they should be already configured by default.

5. For C projects the setup is complete now, main.c is shown, and code can be entered. For Assembly only
projects the main.asm is shown. If, instead, you want to use an existing source file for your project, click
Project → Add Files... and browse to the file of interest. Single click on the file and click Open or double-
click on the file name to complete the addition of it into the project folder.

6. Click Finish.
7. Enter the program text into the file.

Note

Use MSP430 headers (*.h files) to simplify code development.

CCS is supplied with files for each device that define the device registers and the bit names. TI
recommends using these files, which and can greatly simplify the task of developing a program. To
include the .h file corresponding to the target device, add the line #include <msp430xyyy.h> for C
and .cdecls C,LIST,"msp430xyyy.h" for assembly code, where xyyy specifies the MSP430 part
number.

8. Build the project (Project → Build Project).
9. Debug the application (Run → Debug (F11)). This starts the debugger, which gains control of the target,

erases the target memory, programs the target memory with the application, and resets the target.

See FAQ 1 if the debugger is unable to communicate with the device.
10.Click Run → Resume (F8) to start the application.
11.Click Run → Terminate to stop the application and to exit the debugger. CCS returns to the C/C++ view

(code editor) automatically.

CAUTION

Never disconnect the JTAG or emulator USB cable during an active debug session. Always
terminate a running debug session properly (by clicking on the "Terminate" icon) before
disconnecting the target device.

12.Click File → Exit to exit CCS.

www.ti.com Development Flow
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3.1.2 Project Settings

The settings required to configure the CCS are numerous and detailed. Most projects can be compiled and
debugged with default factory settings. The project settings are accessed by clicking Project → Properties for
the active project. The following project settings are recommended or required:

• Specify the target device for debug session (Project → Properties → General → Device → Variant). The
corresponding Linker Command File and Runtime Support Library are selected automatically.

• To more easily debug a C project, disable optimization (Project → Properties → Build → MSP430
Compiler → Optimization → Optimization level).

• Specify the search path for the C preprocessor (Project → Properties → Build → MSP430 Compiler →
Include Options).

• Specify the search path for any libraries being used (Project → Properties → Build → MSP430 Compiler
→ File Search Path).

• Specify the debugger interface (Project → Properties → General → Device → Connection). Select TI
MSP430 LPTx for the parallel FET interface or TI MSP430 USBx for the USB interface.

• Enable the erasure of the Main and Information memories before object code download (Project →
Properties → Debug → MSP430 Properties → Download Options → Erase Main and Information
Memory).

• To ensure proper stand-alone operation, select Hardware Breakpoints (Project → Properties → Debug →
MSP430 Properties). If Software Breakpoints are enabled (Project → Properties → Debug → Misc/Other
Options → Allow software breakpoints to be used), ensure proper termination of each debug session
while the target is connected; otherwise, the target may not be operational stand-alone as the application on
the device still contains the software breakpoint instructions.

3.1.3 Using Math Library for MSP430 (MSPMathlib) in CCS v5.5 and Newer

TI's MSPMathlib is part of CCSv5.5 and newer releases. This optimized library provides up to 26x better
performance in applications that use floating point scalar math. For details, see the MSPMathlib web page
(www.ti.com/tool/mspmathlib).

MSPMathlib is active by default in CCSv5.5+ for all new projects on all supported devices. For imported projects,
it is used only if the project already uses MSPMathlib or if it has been manually enabled.

To disable MSPMathlib: Remove libmath.a under Project → Properties → Build → MSP430 Linker → File
Search Path in the "Include library file or command file as input (--library, -l)" field.

To enable MSPMathlib: Add libmath.a under Project → Properties → Build → MSP430 Linker → File Search
Path in the "Include library file or command file as input (--library, -l)" field. Important: Put libmath.a before other
libraries that may be listed here.

3.1.4 Using an Existing CCE v2.x, CCE v3.x, CCS v4.x, CCS v5.x, CCS v6.x, CCS v7.x, CCS v8.x, or CCS
v9.x Project

CCS v10.x supports the conversion of workspaces and projects created in version CCE v2.x, CCE v3.x, CCS
v4.x, CCS v5.x, CCS v6.x, CCS v7.x, CCS v8.x, or CCS v9.x to the CCS v10.x format (File → Import →
General → Existing Projects into Workspace → Next). Browse to legacy CCE or CCS workspace that
contains the project to be imported. The Import Wizard lists all of the projects in the given workspace. Specific
Projects can then be selected and converted. CCEv2 and CCEv3 projects may require manual changes to the
target configuration file (*.ccxml) after import.

CCS may return a warning that an imported project was built with another version of Code Generation Tools
(CGT) depending on the previous CGT version.

While the support for assembly projects has not changed, the header files for C code have been modified slightly
to improve compatibility with the IAR Embedded Workbench® IDE (interrupt vector definitions). The definitions
used in CCE 2.x are still given but have been commented out in all header files. To support CCE 2.x C code,
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remove the "//" in front of the #define statements that are located at the end of each .h file in the section
"Interrupt Vectors".

3.1.5 Stack Management

The reserved stack size can be configured through the project options (Project → Properties → Build →
MSP430 Linker → Basic Options → Set C System Stack Size). Stack size is defined to extend from the last
location of RAM for 50 to 80 bytes (that is, the stack extends downwards through RAM for 50 to 80 bytes,
depending on the RAM size of the selected device).

The stack can overflow due to small size or application errors. See Section 3.2.2.1 for a method of tracking the
stack size.

3.1.6 How to Generate Binary Format Files (TI-TXT and INTEL-HEX)

The CCS installation includes the hex430.exe conversion tool. It can be configured to generate output objects in
TI-TXT format for use with the MSP-GANG as well as INTEL-HEX format files for TI factory device programming.
The tool can be used either stand-alone in a command line (located in <Installation Root>\ccsv6\tools
\compiler\ti-cgt-msp430_x.x.x\bin ) or directly within CCS. To generate the file automatically after
every build, use the MSP430 Hex Utility menu (Project → Properties → Build → MSP430 Hex Utility) and
select the options there for generating the binary files. The generated file is stored in the <Workspace>
\<Project>\Debug\ directory.

3.2 Using the Integrated Debugger
See Section 10 for a description of FET-specific menus within CCS.

3.2.1 Breakpoint Types

The debugger breakpoint mechanism uses a limited number of on-chip debugging resources (specifically, N
breakpoint registers, see Table 3-1). When N or fewer breakpoints are set, the application runs at full device
speed (or "realtime"). When greater than N breakpoints are set and Use Software Breakpoints is enabled
(Project → Properties → Debug → Misc/Other Options → Allow software breakpoints to be used), an
unlimited number of software breakpoints can be set while still meeting realtime constraints.

Note

A software breakpoint replaces the instruction at the breakpoint address with a call to interrupt the
code execution. Therefore, there is a small delay when setting a software breakpoint. In addition, the
use of software breakpoints always requires proper termination of each debug session; otherwise, the
application may not be operational stand-alone, because the application on the device would still
contain the software breakpoint instructions.

Both address (code) and data (value) breakpoints are supported. Data breakpoints and range breakpoints each
require two MSP430 hardware breakpoints.
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Table 3-1. Device Architecture, Breakpoints, and Other Emulation Features

Device MSP430
Architecture

4-Wire
JTAG

2-Wire
JTAG(1)

Break-
points (N)

Range
Break-
points

Clock
Control

State
Sequencer

Trace
Buffer

LPMx.5
Debugging

Support
CC430F512x MSP430Xv2 ✓ ✓ 3 ✓ ✓
CC430F513x MSP430Xv2 ✓ ✓ 3 ✓ ✓
CC430F514x MSP430Xv2 ✓ ✓ 3 ✓ ✓
CC430F612x MSP430Xv2 ✓ ✓ 3 ✓ ✓
CC430F613x MSP430Xv2 ✓ ✓ 3 ✓ ✓
CC430F614x MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430AFE2xx MSP430 ✓ ✓ 2 ✓
MSP430BT5190 MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F11x1 MSP430 ✓ 2

MSP430F11x2 MSP430 ✓ 2

MSP430F12x MSP430 ✓ 2

MSP430F12x2 MSP430 ✓ 2

MSP430F13x MSP430 ✓ 3 ✓
MSP430F14x MSP430 ✓ 3 ✓
MSP430F15x MSP430 ✓ 8 ✓ ✓ ✓ ✓
MSP430F161x MSP430 ✓ 8 ✓ ✓ ✓ ✓
MSP430F16x MSP430 ✓ 8 ✓ ✓ ✓ ✓
MSP430F20xx MSP430 ✓ ✓ 2 ✓
MSP430F21x1 MSP430 ✓ 2 ✓
MSP430F21x2 MSP430 ✓ ✓ 2 ✓
MSP430F22x2 MSP430 ✓ ✓ 2 ✓
MSP430F22x4 MSP430 ✓ ✓ 2 ✓
MSP430F23x MSP430 ✓ 3 ✓ ✓
MSP430F23x0 MSP430 ✓ 2 ✓
MSP430F2410 MSP430 ✓ 3 ✓ ✓
MSP430F241x MSP430X ✓ 8 ✓ ✓ ✓ ✓
MSP430F24x MSP430 ✓ 3 ✓ ✓
MSP430F261x MSP430X ✓ 8 ✓ ✓ ✓ ✓
MSP430F41x MSP430 ✓ 2 ✓
MSP430F41x2 MSP430 ✓ ✓ 2 ✓
MSP430F42x MSP430 ✓ 2 ✓
MSP430F42x0 MSP430 ✓ 2 ✓
MSP430F43x MSP430 ✓ 8 ✓ ✓ ✓ ✓
MSP430F43x1 MSP430 ✓ 2 ✓
MSP430F44x MSP430 ✓ 8 ✓ ✓ ✓ ✓
MSP430F44x1 MSP430 ✓ 8 ✓ ✓ ✓ ✓
MSP430F461x MSP430X ✓ 8 ✓ ✓ ✓ ✓
MSP430F461x1 MSP430X ✓ 8 ✓ ✓ ✓ ✓
MSP430F471xx MSP430X ✓ 8 ✓ ✓ ✓ ✓
MSP430F47x MSP430 ✓ 2 ✓
MSP430F47x3 MSP430 ✓ 2 ✓
MSP430F47x4 MSP430 ✓ 2 ✓
MSP430F51x1 MSP430Xv2 ✓ ✓ 3 ✓ ✓
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Device MSP430
Architecture

4-Wire
JTAG

2-Wire
JTAG(1)

Break-
points (N)

Range
Break-
points

Clock
Control

State
Sequencer

Trace
Buffer

LPMx.5
Debugging

Support
MSP430F51x2 MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F52xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F530x MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F5310 MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F532x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F533x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F534x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F535x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F54xx MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F54xxA MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F550x MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F5510 MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F552x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F563x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F565x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F643x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F645x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F663x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F665x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430F67xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F67xx1 MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F67xx1A MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430F67xxA MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FE42x MSP430 ✓ 2 ✓
MSP430FE42x2 MSP430 ✓ 2 ✓
MSP430FG42x0 MSP430 ✓ 2 ✓
MSP430FG43x MSP430 ✓ 2 ✓
MSP430FG461x MSP430X ✓ 8 ✓ ✓ ✓ ✓
MSP430FG47x MSP430 ✓ 2 ✓
MSP430FG642x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430FG662x MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430FR20xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FR21xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FR23xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FR24xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FR25xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FR26xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FR41xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FR57xx MSP430Xv2 ✓ ✓ 3 ✓ ✓
MSP430FR58xx MSP430Xv2 ✓ ✓ 3 ✓ ✓ ✓
MSP430FR59xx MSP430Xv2 ✓ ✓ 3 ✓ ✓ ✓
MSP430FR60xx MSP430Xv2 ✓ ✓ 3 ✓ ✓ ✓
MSP430FR68xx MSP430Xv2 ✓ ✓ 3 ✓ ✓ ✓
MSP430FR69xx MSP430Xv2 ✓ ✓ 3 ✓ ✓ ✓
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Device MSP430
Architecture

4-Wire
JTAG

2-Wire
JTAG(1)

Break-
points (N)

Range
Break-
points

Clock
Control

State
Sequencer

Trace
Buffer

LPMx.5
Debugging

Support
MSP430FW42x MSP430 ✓ 2 ✓
MSP430G2xxx MSP430 ✓ ✓ 2 ✓
MSP430i20xx MSP430 ✓ ✓ 2 ✓
MSP430L092 MSP430Xv2 ✓ 2 ✓
MSP430SL54xxA MSP430Xv2 ✓ ✓ 8 ✓ ✓ ✓ ✓
MSP430TCH5E MSP430 ✓ ✓ 2 ✓
RF430FRL15xH MSP430Xv2 ✓ ✓ 2 ✓

(1) The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire (SBW) interface. This interface is supported only by the USB
emulators (eZ430-xxxx, eZ-FET, and MSP-FET430UIF USB JTAG emulator) and the MSP-GANG430 production programming tool.

(2) Support is limited to Spy-Bi-Wire (SBW) on MSP-FET430UIF. No limitations on MSP-FET.

3.2.2 Using Breakpoints

If the debugger is started with greater than N breakpoints set and software breakpoints are disabled (Project →
Properties → Debug → Misc/Other Options → Allow software breakpoints to be used option is
unchecked), a message is shown that informs the user that not all breakpoints can be enabled. CCS permits any
number of breakpoints to be set, regardless of the Use Software Breakpoints setting of CCS. If software
breakpoints are disabled, a maximum of N breakpoints can be set within the debugger.

Resetting a program requires a breakpoint, which is set on the address defined in Project → Properties →
Debug → Auto Run and Launch Options → Auto Run Options → Run to symbol.

The Run To Cursor operation temporarily requires a breakpoint.

Console I/O (CIO) functions, such as printf, require the use of a breakpoint. If these functions are compiled in,
but you do not wish to use a breakpoint, disable CIO functionality by changing the option in Project →
Properties → Debug → Program/Memory Load Options → Program/Memory Load Options → Enable CIO
function use (requires setting a breakpoint).

Note

Do not set a breakpoint on a RETI instruction if the previous instruction modifies the stack pointer.
Program execution will not work properly after reaching the break point.
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3.2.2.1 Breakpoints in CCS

CCS supports a number of predefined breakpoint types that can be selected by opening a menu found next to
the Breakpoints icon in the Breakpoint window (Window → Show View → Breakpoints). In addition to
traditional breakpoints, CCS allows setting watchpoints to break on a data address access instead of an address
access. The properties of breakpoints and watchpoints can be changed in the debugger by right clicking on the
breakpoint and selecting Properties (see Figure 3-1 and Figure 3-2).

Figure 3-1. Breakpoints

Figure 3-2. Breakpoint Properties
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• Break after program address

Stops code execution when the program attempts to execute code after a specific address.
• Break before program address

Stops code execution when the program attempts to execute code before a specific address.
• Break in program range

Stops code execution when the program attempts to execute code in a specific range.
• Break on DMA transfer
• Break on DMA transfer in range

Breaks when a DMA access within a specified address range occurs.
• Break on stack overflow

It is possible to debug the applications that caused the stack overflow. Set Break on Stack Overflow (right
click in Breakpoints window and then select "Break on Stack Overflow" in the context menu). The program
execution stops on the instruction that caused the stack overflow. The size of the stack can be adjusted in
Project → Properties → C/C++ Build → MSP430 Linker → Basic Options.

• Breakpoint

Sets a breakpoint.
• Hardware breakpoint

Forces a hardware breakpoint if software breakpoints are not disabled.
• Watch on data address range

Stops code execution when data access to an address in a specific range occurs.
• Watchpoint

Stops code execution if a specific data access to a specific address is made.
• Watchpoint (Read or Write)

Stops code execution if a read or write data access to a specific address is made.
• Watchpoint with data

Stops code execution if a specific data access to a specific address is made with a specific value.

Restriction 1: Watchpoints are applicable to global variables and non-register local variables. In the latter
case, set a breakpoint (BP) to halt execution in the function where observation of the variable is desired (set
code breakpoint there). Then set the watchpoint and delete (or disable) the code breakpoint in the function
and run or restart the application.

Restriction 2: Watchpoints are applicable to variables 8 bits and 16 bits wide.

Note

Not all options are available on every MSP430 derivative (see Table 3-1). Therefore, the number of
predefined breakpoint types in the breakpoint menu varies depending on the selected device.

For more information on advanced debugging with CCS, see Advanced Debugging Using the Enhanced
Emulation Module (EEM) With Code Composer Studio IDE.
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3.2.3 Download Options for MSP430 Devices

By default, CCS Debugger downloads the application to RAM or flash when a debug session starts. The
Download options (see Figure 3-3) let you modify the behavior of the download.

• Copy application to external SPI memory after program load

Saves user code to external SPI memory.
• Allow Read/Write/Erase access to BSL memory

Enables erase and write access to BSL flash memory.
• Erase main memory only

Erases only the main flash memory before download. The Information memory is not erased.
• Erase main and Information memory

Erases the main and Information flash memories before download.
• Erase main, information and protected information memory

Erases the main and Information flash memories, including the IP protected area, before download.
• Erase and download necessary segments only (Differential Download)

Keeps track of changes in the program image and only writes the portions that have changed between
program loads. Theoretically, this should improve load performance for small changes. It can make
performance worse for larger changes. It relies on the compiler and linker to radically change the binary
image for a small source code change.

• Replace written memory locations, retain unwritten memory locations

Writes only the flash segments that are being written to. This does not track differences in the loaded image
and always writes a segment included in the loaded image.

• By Address Range (specify below)

Erases only the flash memory specified segments before download.

Figure 3-3. Download Options
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4 EnergyTrace™ Technology
4.1 Introduction
EnergyTrace™ Technology is an energy-based code analysis tool that measures and displays the application’s
energy profile and helps to optimize it for ultra-low power consumption.

MSP430 devices with built-in EnergyTrace+[CPU State]+[Peripheral States] (or in short EnergyTrace++)
technology allow real-time monitoring of many internal device states while user program code executes.
EnergyTrace++ technology is supported on selected MSP430 devices and debuggers.

EnergyTrace mode (without the "++") is the base of EnergyTrace Technology and enables analog energy
measurement to determine the energy consumption of an application but does not correlate it to internal device
information. The EnergyTrace mode is available for all MSP430 devices with selected debuggers, including
CCS.

4.2 Energy Measurement
Debuggers with EnergyTrace Technology support include a new and unique way of continuously measuring the
energy supplied to a target microcontroller that differs considerably from the well-known method of amplifying
and sampling the voltage drop over a shunt resistor at discrete times. A software-controlled dc-dc converter is
used to generate the target power supply. The time density of the dc-dc converter charge pulses equals the
energy consumption of the target microcontroller. A built-in on-the-fly calibration circuit defines the energy
equivalent of a single dc-dc charge pulse.

Figure 4-1 shows the energy measurement principle. Periods with a small number of charge pulses per time unit
indicate low energy consumption and thus low current flow. Periods with a high number of charge pulses per
time unit indicate high energy consumption and also a high current consumption. Each charge pulse leads to a
rise of the output voltage VOUT, which results in an unavoidable voltage ripple common to all dc-dc converters.

Figure 4-1. Pulse Density and Current Flow

The benefit of sampling continuously is evident: even the shortest device activity that consumes energy
contributes to the overall recorded energy. No shunt-based measurement system can achieve this.

4.3 Code Composer Studio™ Integration
EnergyTrace Technology is available as part of Texas Instrument's Code Composer Studio IDE for MSP430
microcontrollers. Additional controls and windows are available if the hardware supports EnergyTrace
Technology.

EnergyTrace can be used while debugging an application (debug session) or only to measure the current
consumption of standalone running application (without a debug session). Using EnergyTrace without a debug
session measures the current consumption of the running application without changing the code content or the
CPU states.

During a debugging session, the EnergyTrace and EnergyTrace++ modes are available, depending on the
supported hardware features on the target device. Only EnergyTrace mode is available with stand-alone running
applications (see Table 4-1).
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Table 4-1. Availability of EnergyTrace and EnergyTrace++ Modes
EnergyTrace EnergyTrace++

Debugging session x x

Stand-alone application x

To use EnergyTrace Technology without debugging session

1. Connect your target board embedding the firmware
2. Press the EnergyTrace Technology button in the toolbar menu (see Figure 4-2). You don't need to build or

start debug session.

Figure 4-2. EnergyTrace Button in the Toolbar Menu
3. Click the start trace collection button ( ) to start the EnergyTrace Technology measurement.
4. Click the stop trace collection button ( ) to stop the EnergyTrace Technology measurement.
5. Refer to Section 4.3.4 for more details.

To exit this mode, click the  in the EnergyTrace™ Technology window (see Figure 4-3).

Figure 4-3. Exit EnergyTrace Mode

To use EnergyTrace mode or EnergyTrace++ mode in a debugging session

1. Connect your target board.
2. Select and build your project
3. Start the debug session.
4. The EnergyTrace window is displayed if it has been already selected. If not, click the EnergyTrace button in

the toolbar menu.
5. Refer to Section 4.3.3 and Section 4.3.4 for more details.
4.3.1 EnergyTrace Technology Settings

EnergyTrace settings are available in the Code Composer Studio Preferences. Go to Window → Preferences
→ Code Composer Studio → Advanced Tools → EnergyTrace™ Technology (see Figure 4-4).
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Figure 4-4. EnergyTrace™ Technology Preferences

• Enable Auto-Launch on target connect: check this box to enable the EnergyTrace modes when entering a
debug session.

• Two capture modes are supported:
– The full-featured EnergyTrace+[CPU State]+[Peripheral States] mode that delivers real-time device

state information together with energy measurement data
– The EnergyTrace mode that delivers only energy measurement data
– Use the radio button to select the mode to enable when a debug session is launched. If an MSP430

device does not support device state capturing, the selection is ignored and Code Composer Studio starts
in the EnergyTrace mode.

While a debug session is active, click the  icon in the Profile window to switch between the modes.

To use the EnergyTrace+[CPU State]+[Peripheral States] mode to capture real-time device state information
while an application is executing, the default Debug Properties of the project must also be modified. Right click
on the active project in the Project Explorer and click on Properties (see Figure 4-5).

In the Debug section, enable the Enable Ultra Low Power debug / Debug LPMx.5 option in the Low Power
Mode Settings (see Figure 4-6). If this option is not enabled, the EnergyTrace+[CPU State]+[Peripheral
States] mode cannot capture data from the device.
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Figure 4-5. Project Properties
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Figure 4-6. Debug Properties

Note

If the EnergyTrace Technology windows are not opened when a debug session starts, verify the
following items:
• Does the hardware (debugger and device) support EnergyTrace Technology? To determine if your

selected device supports EnergyTrace technology, refer to the device-specific data sheet, the
MSP430 Hardware Tools User’s Guide, or the user guide that came with the evaluation board.

• Is EnergyTrace Technology globally enabled in Window → Preferences → Code Composer
Studio → Advanced Tools → EnergyTrace™ Technology?

• Is the "Enable Ultra Low Power debug / Debug LPMx.5" option enabled in Project → Properties
→ Debug → Low Power Mode Settings (required only when selecting EnergyTrace mode)?

• Battery Selection (see Figure 4-7): The window is used to select one of the available standard batteries or
define a customized battery. The EnergyTrace will use the battery characteristics to calculate the estimated
selected battery lifetime for the current application depending on the measured current consumption.
Available standard batteries are CR2032, 2xAAA or 2xAA.
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Figure 4-7. Battery Selection

A custom battery can also be selected, and its characteristics can be entered (see Figure 4-8).
– Cell voltage (V)
– Cell capacity (mAh)
– Peak current - continuous (mA)
– Peak current - pulse (mA)
– Target lifetime (days)

Figure 4-8. Custom Battery Type
• Target Connection (see Figure 4-9): The menu is used to select which debug probe is used for EnergyTrace

measurement. The voltage can be also adjusted.

Figure 4-9. Target Connection
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4.3.2 Controlling EnergyTrace Technology

EnergyTrace Technology can be controlled using the control bar icons in the Profile window (see Figure 4-10).
Table 4-2 describes the function of each of these buttons.

Figure 4-10. EnergyTrace™ Technology Control Bar

Table 4-2. EnergyTrace™ Technology Control Bar Icons

Enable or disable EnergyTrace Technology. When disabled, icon turns gray.

Starts trace collection.

Stops trace collection.

Set capture period: 5 sec, 10 sec, 30 sec, 1 min, or 5 min. Data collection stops after time has elapsed. However, the
program continues to execute until the Pause button in the debug control window is clicked.

Save profile to project directory. When saving an EnergyTrace++ profile, the default filename will start with "MSP430_D"
followed by a timestamp. When saving an EnergyTrace profile, the default filename will start with "MSP430" followed by a
timestamp.

Load previously saved profile for comparison.

Restore graphs or open Preferences window.

Switch between EnergyTrace++ mode and EnergyTrace mode

4.3.3 EnergyTrace++ Mode

When debugging devices with built-in EnergyTrace++ support, the EnergyTrace++ mode gives information
about both energy consumption and the internal state of the target microcontroller. The following windows are
opened during the start-up of a debug session (also see Figure 4-11):

• Profile
• States
• Power
• Energy
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Figure 4-11. Debug Session With EnergyTrace++ Graphs

The Profile window (see Figure 4-12) is the control interface for EnergyTrace++. It can be used to set the
capturing time or to save the captured data for later reference. The Profile window also displays a compressed
view of the captured data and allows comparison with previous data.
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Figure 4-12. Profile Window

The Profile window enables a quick overview of the resource use of the profiled application. The resources are
split into three categories:

• CPU: Shows information about program execution
– Low Power Mode: Shows a summary of low-power mode use. Valid low-power modes are LPM0, LPM1,

LPM2, LPM3, LPM4, LPM3.5, and LPM4.5. If the low-power mode cannot be properly determined, a line
labeled as <Undetermined> is displayed to indicate the time spent in that mode.

– Active Mode: Shows which functions have been executed during active mode. Functions in the run-time
library are listed separately under the _RTS_ subcategory. If the device supports IP Encapsulation, a line
labeled as <Protected> is displayed to indicate the time executing out of IP encapsulated memory.

• Peripherals: Shows relative on time of the device peripherals
• System Clocks: Shows relative on time of the system clocks
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The States window (see Figure 4-13) shows the real-time trace of the target microcontroller's internal states
during the captured session. State information includes the Power Modes, on and off state of peripheral modules
and the state of the system clocks.

Figure 4-13 shows a device wakeup from low-power mode LPM2 to Active Mode, with the FRAM memory
enabled during the active period. It can be clearly seen that the device high-speed clocks MCLK and SMCLK, as
well as the MODOSC, are only active while the device is in active mode. The States window allows a direct
verification of whether or not the application exhibits the expected behavior; for example, that a peripheral is
disabled after a certain activity.

Figure 4-13. States Window

The Power window (see Figure 4-14) shows the dynamic power consumption of the target over time. The
current profile is plotted in light blue color, while a previously recorded profile that has been reloaded for
comparison is plotted in yellow color.
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Figure 4-14. Power Window

The Energy window (see Figure 4-15) shows the accumulated energy consumption of the target over time. The
current profile is plotted in light blue color, while a previously recorded profile that has been reloaded for
comparison is plotted in yellow color.

Figure 4-15. Energy Window

Note

During the capture of the internal states, the target microcontroller is constantly accessed by the JTAG
or Spy-Bi-Wire debug logic. These debug accesses consume energy; therefore, no absolute power
numbers are shown on the Power and Energy graph vertical axis. To see absolute power numbers of
the application, TI recommends using the EnergyTrace mode in combination with the Free Run
option. In this mode, the debug logic of the target microcontroller is not accessed while measuring
energy consumption.
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4.3.4 EnergyTrace Mode

This mode allows a stand-alone use of the energy measurement feature with MSP430 microcontrollers that do
not have built-in EnergyTrace++ support. It can also be used to verify the energy consumption of the application
without debugger activity. If the EnergyTrace mode is selected in the Preferences window, the following
windows open when a debug session starts (also see Figure 4-16):

• Profile
• Power
• Energy

Figure 4-16. Debug Session With EnergyTrace Graphs

In the EnergyTrace mode, the Profile window shows statistical data about the application that has been profiled
(see Figure 4-17). The following parameters are shown:

• Captured time
• Total energy consumed by the application (in mJ)
• Minimum, mean, and maximum power (in mW)
• Mean voltage (in V)
• Minimum, mean, and maximum current (in mA)
• Estimated life time of the selected battery (in days) for the captured energy profile
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Note

The formula to calculate the battery life time assumes an ideal 3-V battery and does not account for
temperature, aging, peak current, and other factors that could negatively affect battery capacity. It
should also be noted that changing the target voltage (for example, from 3.6 V to 3 V) might cause the
analog circuitry to behave differently and operate in a more or less efficient state, hence reducing or
increasing energy consumption. The value shown in the Profile window cannot substitute
measurements on real hardware.

Figure 4-17. EnergyTrace Profile Window

The Power window (see Figure 4-18) shows the dynamic power consumption of the target over time. The
current profile is plotted in light blue color, while a previously recorded profile that has been reloaded for
comparison is plotted in yellow color.

Figure 4-18. Zoom Into Power Window

The Energy window (see Figure 4-19) shows the accumulated energy consumption of the target over time. The
current profile is plotted in light blue color, while a previously recorded profile that has been reloaded for
comparison is plotted in yellow color.
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Figure 4-19. Zoom Into Energy Window

Note

During program execution through the debugger's view Resume button, the target microcontroller is
constantly accessed by the JTAG or Spy-Bi-Wire protocol to detect when a breakpoint has been hit.
Inevitably, these debug accesses consume energy in the target domain and change the result shown
in both Energy and Power graphs. To see the absolute power consumption of an application, TI
recommends using the Free Run mode. In Free Run mode, the debug logic of the target
microcontroller is not accessed. See Figure 4-20 for an example of the effect of energy consumption
coming from debug accesses. The yellow profile was recorded in Resume mode, and the green
profile was recorded in Free Run mode.

Figure 4-20. Energy Profile of the Same Program in Resume (Yellow Line) and Free Run (Green Line)
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4.3.5 Comparing Captured Data With Reference Data

The EnergyTrace Technology can be used in various ways. One is to check the device's internal states over time
against the expected behavior and correct any misbehavior; for example, due to a peripheral not being disabled
after periodic usage. Another way is to compare the captured data against previously captured data. The
previously captured data is called the reference data in the following discussion.

After the reference data has been loaded, a yellow reference graph is plotted in the Power and Energy windows.
The Power window shows the power profiles of both data sets over time and is useful to determine any changes
in static power consumption; for example, due to use of a deeper low-power mode or disabling of unused
peripherals. It also shows how the dynamic power consumption has changed from one measurement to the
other; for example, due to ULP Advisor hints being implemented. The Energy window shows the accumulated
energy consumption over time and gives an indication which profile is more energy efficient.

In the EnergyTrace++ mode, the condensed view of both captured and reference data is displayed in the Profile
window (see Figure 4-21). You can quickly see how the overall energy consumption and use of power modes,
peripherals, and clocks changed between both capture sessions. In general, parameters that have become
better are shown with a green bar, and parameters that have become worse are shown with a red bar. For
example, time spent in Active Mode is generally seen as negative. Hence, if a code change makes the
application spend less time in active mode, the negative delta is shown as a green bar, and the additional time
spent in a low-power mode is shown as a green bar.

Figure 4-21. Comparing Profiles in EnergyTrace++ Mode

In the EnergyTrace mode, no States information is available to generate an exhaustive report. However, the
overall energy consumed during the measurement is compared and, with it, the Min, Mean, and Max values of
power and current. Parameters that have become better are shown with a green bar, and parameters that have
become worse are shown with a red bar (see Figure 4-22).
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Figure 4-22. Comparing Profiles in EnergyTrace Mode

The delta bars are drawn linearly from 0% to 50%. Deltas larger than 50% do not result in a larger delta bar.

4.4 EnergyTrace Technology FAQs
Q: What is the sampling frequency of EnergyTrace++ technology?

A: The sampling frequency depends on the debugger and the selected debug protocol and its speed setting. It
typically ranges from 1 kHz (for example, when using the Spy-Bi-Wire interface set to SLOW) up to 3.2 kHz (for
example, when using the JTAG interface set to FAST). The debugger polls the state information of EnergyTrace
++ from the device status information. Depending on the sampling frequency, a short or fast duty cycle active
peripheral state may not be captured on the State graph. In addition, the higher sampling frequency affects the
device energy consumption under EnergyTrace.

Q: What is the sampling frequency of EnergyTrace technology?

A: The sampling frequency to measure the energy consumption is the same independent of which debug
protocol or speed and is approximately 4.2 kHz in Free Run mode.

Q: My Power graph seems to include noise. Is my board defective?

A: The power values shown in the Power graph are derived (that is, calculated) from the accumulated energy
counted by the measurement system. When the target is consuming little energy, a small number of energy
packets over time are supplied to the target, and the software needs to accumulate the dc-dc charge pulses over
time before a new current value can be calculated. For currents under 1 µA, this can take up to one second,
while for currents in the milliamp range, a current can be calculated every millisecond. Additional filtering is not
applied so that detail information is not lost. Another factor that affects the energy (and with it, the current) that is
consumed by the target is periodic background debug access during normal code execution, either through
capturing of States information or through breakpoint polling. Try recording in Free Run mode to see a much
smoother Power graph.
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Q: I have a code that repeatedly calls functions that have the same size. I would expect the function
profile to show an equal distribution of the run time. In reality, I see some functions having slightly more
run time than expected, and some functions slightly less.

A: During program counter trace, various factors affect the number of times a function is detected by the profiler
over time. The microcontroller code could benefit from the internal cache, thus executing some functions faster
than others. Another influencing factor is memory wait states and CPU pipeline stalls, which add time variance to
the code execution. An outside factor is the sampling frequency of the debugger itself, which normally runs
asynchronous to the microcontroller's code execution speed, but in some cases shows overlapping behavior,
which also results in an unequal function run time distribution.

Q: My power mode profile sometimes shows short periods of power modes that I haven't used anywhere
in my code. For example, I'm expecting a transition from active mode to LPM3, but I see a LPM2 during
the transition.

A: When capturing in EnergyTrace++ mode, digital information is continuously collected from the target device.
One piece of this information is the power mode control signals. Activation of low-power modes requires
stepping through a number of intermediate states. Usually this happens too quickly to be captured by the trace
function, but sometimes intermediate states can be captured and are displayed for a short period of time as valid
low-power modes.

Q: My profile sometimes includes an <Undetermined> low-power mode, and there are gaps in the States
graph Power Mode section. Where does the <Undetermined> low-power mode originate from?

A: During transitions from active mode to low-power mode, internal device clocks are switched off, and
occasionally the state information is not updated completely. This state is displayed as <Undetermined> in the
Profile window, and the States graph shows a gap during the time that the <Undetermined> low-power mode
persists. The <Undetermined> state is an indication that your application has entered a low-power mode, but
which mode cannot be accurately determined. If your application is frequently entering low-power modes, the
<Undetermined> state will probably be shown more often than if your application only rarely uses low-power
modes.

Q: When capturing in EnergyTrace mode, the min and max values for power and current show deviation,
even though my program is the same. I would expect absolutely the same values.

A: The energy measurement method used on the hardware counts dc-dc charge pulses over time. Energy and
power are calculated from the energy over time. Due to statistical sampling effects and charge and discharge
effects of the output voltage buffer capacitors, it is possible that minimum and maximum values of currents vary
by some percent, even though the program is identical. The captured energy, however, should be almost equal
(in the given accuracy range).

Q: What are the influencing factors for the accuracy of the energy measurement?

A: The energy measurement circuit is directly supplied from the USB bus voltage, and thus it is sensitive to USB
bus voltage variations. During calibration, the energy equivalent of a single dc-dc charge pulse is defined, and
this energy equivalent depends on the USB voltage level. To ensure a good repeatability and accuracy, power
the debugger directly from an active USB port, and avoid using bus-powered hubs and long USB cables that can
lead to voltage drops, especially when other consumers are connected to the USB hub. Furthermore the LDO
and resistors used for reference voltage generation and those in the calibration circuit come with a certain
tolerance and ppm rate over temperature, which also influences accuracy of the energy measurement.

Q: I am trying to capture in EnergyTrace++ mode or EnergyTrace mode with a MSP430 device that is
externally powered, but there is no data shown in the Profile, Energy, Power and States window.

A: Both EnergyTrace++ mode and EnergyTrace mode require the target to be supplied from the debugger. No
data can be captured when the target microcontroller is externally powered.
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Q: I cannot measure LPM currents when I am capturing in EnergyTrace++ mode. I am expecting a few
microamps but measure more than 150 µA.

A: Reading digital data from the target microcontroller consumes energy in the JTAG domain of the
microcontroller. Hence, an average current of approximately 150 µA is measured when connecting an ampere
meter to the device power supply pins. If you want to eliminate energy consumption through debug
communication, switch to EnergyTrace mode, and let the target microcontroller execute in Free Run mode.

Q: My LPM currents seem to be wrong. I am expecting a few microamps, but measure more, even in Free
Run mode or when letting the device execute without debug control from an independent power supply.

A: The most likely cause of this extra current is improper GPIO termination, as floating pins can lead to extra
current flow. Also check the JTAG pins again, especially when the debugger is still connected (but idle), as the
debugger output signal levels in idle state might not match how the JTAG pins have been configured by the
application code. This could also lead to extra current flow.

Q: When I start the EnergyTrace++ windows through View → Other → MSP430-EnergyTrace before
launching the debug session, data capture sometimes does not start.

A: Enable EnergyTrace through Window → Preferences → Code Composer Studio → Advanced Tools →
EnergyTrace™ Technology. When launching a debug session, the EnergyTrace++ windows automatically
open, and data capture starts when the device executes. If you accidentally close all EnergyTrace++ windows
during a debug session, you can reopen them through View → Other → MSP430-EnergyTrace.
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5 MSP430 FRAM Memory Protection Mechanisms
The available memory of an FRAM-based microcontroller can be seen as unified memory, which means the
memory can be arbitrarily divided between code and data sections. As a consequence, a single FRAM-based
microcontroller can be customized for a wide range of application use cases. MSP430 devices support two
memory protection methods:

• Memory Protection Unit (MPU) and Intellectual Property Encapsulation (IPE)
• FRAM Memory Write Protection (FRWP). The protection granularity (1k) can be configured on some devices.

See the device-specific data sheet to determine which method a particular device supports. For instructions on
the efficient use of this technology, see MSP430™ FRAM Technology – How To and Best Practices.

5.1 Memory Protection Unit (MPU)
To prevent accidental overwrites of the program by application data or other forms of data corruption, the
Memory Protection Unit allows partitioning of the available memory and defining access rights for each of the
partitions. Thus it is possible to prevent accidental writes to memory sections that contain application code or
prevent the microcontroller from executing instructions that are located in the data section of the application.

Figure 5-1 shows the MPU configuration dialog, which is available for FRAM devices that have the MPU feature.
To access this dialog, select the menu Project → Properties → General → MPU. This dialog lets you enable or
disable the MPU and choose between an automatic and manual configuration mode. For the automatic
configuration, the compiler tool chain generates two memory segments (read-write memory and executable
memory). The segment borders of these two segments and their respective access bits are placed into the
according control registers during device start-up. The automatic mode also sets the bit for read access of the
MPU Info Memory segment. The MPUSEGxVS bit, which selects if a PUC must be executed on illegal access to
a segment, is also set by default for each of the segments.

Figure 5-1. MPU Configuration Dialog
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As shown in Figure 5-1, the MPU dialog also allows for a complete manual configuration of the Memory
Protected Area. As the beginning of Segment 1 is fixed to the start address of FRAM memory and the end of
Segment 3 is fixed to the end address of FRAM memory, only the start and end addresses of Segment 2 need to
be adjusted. As these addresses are equal to the end address and start addresses of Segment 1 and
Segment 3 respectively, these are adjusted automatically by the GUI. The memory and its associated access
rights can be configured completely independently in the manual configuration. It is therefore the user's
responsibility to place code and data segments into the correct memory locations. Additional configuration of the
linking process might be necessary to achieve the correct placement of code and data in the desired memory
locations.

5.2 Intellectual Property Encapsulation (IPE)
The memory of many microcontroller applications contains information that should not be accessible by the
public. This may include both the application code itself as well as configuration settings for certain peripherals.
The IPE module allows the protection of memory that contains this kind of sensitive information. The IPE
ensures that only program code that is itself placed in the IPE protected area has access to this memory
segment. The access rights are evaluated with each code access, and even JTAG or DMA transfers cannot
access the IPE segment. The IPE module is initialized by the boot code before the start of the application code
to ensure that the encapsulation is active before any user-controlled access to the memory can be performed.

Figure 5-2 shows the dialog for configuration of IPE memory, which is accessible through the menu Project →
Properties → General → IPE. The IPE dialog also provides selections for manual and automatic configuration.
In the automatic mode, a memory segment ".ipe" is generated by the compiler tool chain and placed in the
output file. Placing a variable into this section can be performed directly from the source code:

#pragma DATA_SECTION(primeNumbers, ".ipe")
const unsigned int primeNumbers[5] = {2, 3, 5, 7, 11};

For a more detailed description on how to allocate space for certain code or data symbols inside sections, see
the MSP430™ Optimizing C/C++ Compiler User's Guide.

Figure 5-2. IPE Configuration Dialog
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The Manual IPE mode lets you configure the IPE segment borders and the control settings. Consequently,
additional configuration of the compiler or linker stage may also necessary to achieve the correct placement of
code and data in memory. To prevent the IPE from being modified, place the section ".ipestruct" inside the IP
encapsulated memory area. This section contains the section borders and control settings that are used to
initialize the IPE related registers during device start-up.

5.2.1 IPE Debug Settings

Because it is possible to lock out the debugger from accessing certain memory regions (including downloading
new software to the device), it is advisable to enable the option for erasing the IP protected area while the target
is under debugger control. The corresponding option can be found under Project Properties → Debug →
MSP430 Properties (see Figure 5-3).

Figure 5-3. IPE Debug Settings
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5.3 FRAM Write Protection (FRWP)
The FRWP prevents unintended programming of the FRAM code section. For MSP430FR2xx and
MSP430FR4xx MCUs, the FRAM memory is protected by setting the bits control in SYSCFG0 register. Some
MSP430 devices can protect and unprotect the whole memory at once, and some devices such as
MSP430FR2355, MSP430FR2353, MSP430FR2155 and MSP430FR2153 can unprotect some region and
protect the rest of the memory.

CCS 8.1 and newer versions provide a GUI to configure the FRAM write protection. By default, a new CCS
project has the Enable FRAM Write Protection (FRWP) option selected.

When the Enable FRAM Write Protection (FRWP) option is selected, you can protect or unprotect the
information memory. When the application code uses persistent data type, the size of persistent data is
automatically calculated and aligned with 1kB size. These data are then placed in the unprotected program main
memory section. The code is placed after the unprotected program main memory.

Figure 5-4 shows the FRWP configuration dialog, which is available for FRAM devices that have the feature. To
access this dialog, select the menu Project → Properties → General → FRWP.

Figure 5-4. FRWP Configuration Dialog
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6 Frequently Asked Questions
This appendix presents solutions to frequently asked questions regarding hardware, program development and
debugging tools.

6.1 Hardware
For a complete list of hardware related FAQs, see the MSP430 Hardware Tools User's Guide.

6.2 Program Development (Assembler, C-Compiler, Linker, IDE)

Note

Consider the CCS Release Notes

For the case of unexpected behavior, see the CCS Release Notes document for known bugs and
limitations of the current CCS version. This information can be accessed through the menu item Start
→ All Programs → Texas Instruments → Code Composer Studio → Release Notes.

1. A common MSP430 "mistake" is to fail to disable the watchdog mechanism. The watchdog is enabled
by default, and it resets the device if not disabled or properly managed by the application. Use
WDTCL = WDTPW + WDTHOLD; to explicitly disable the Watchdog. This statement is best placed in the
_system_pre_init() function that is executed prior to main(). If the Watchdog timer is not disabled, and the
Watchdog triggers and resets the device during CSTARTUP, the source screen goes blank, as the
debugger is not able to locate the source code for CSTARTUP. Be aware that CSTARTUP can take a
significant amount of time to execute if a large number of initialized global variables are used.

       int _system_pre_init(void)
       {
       /* Insert your low-level initializations here */
       WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog timer
       /*==================================*/
       /* Choose if segment initialization */
       /* should be done or not.           */
       /* Return: 0 to omit initialization */
       /*         1 to run initialization  */
       /*==================================*/
       return (1);
       }

2. Within the C libraries, GIE (Global Interrupt Enable) is disabled before (and restored after) the hardware
multiplier is used.

3. It is possible to mix assembly and C programs within CCS. See the "Interfacing C/C++ With Assembly
Language" chapter of the MSP430 Optimizing C/C++ Compiler User's Guide.

4. Constant definitions (#define) used within the .h files are effectively reserved and include, for example,
C, Z, N, and V. Do not create program variables with these names.

5. Compiler optimization can remove unused variables and statements that have no effect and can affect
debugging. To prevent this, these variables can be declared volatile ; for example:

   volatile int i;.

Note

The Tools Insider blog gives useful tips and tricks about the TI MSP430 compiler and linker. For
details, visit the Tools Insider blog and read the From the Experts series.

Some useful posts:

From the Experts: Executing code from RAM using TI compilers

From the Experts: Accessing files and libraries from a linker command file (LCF)
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6.3 Debugging
The debugger is part of CCS and can be used as a stand-alone application. This section is applicable when
using the debugger both stand-alone and from the CCS IDE.

Note

Consider the CCS release notes

In case of unexpected behavior, see the CCS Release Notes document for known bugs and
limitations of the current CCS version. To access this information, click Start → All Programs →
Texas Instruments → Code Composer Studio → Release Notes.

1. The debugger reports that it cannot communicate with the device. Possible solutions to this problem
include:
• Make sure that the correct debug interface and corresponding port number have been selected in Project

→ Properties → General → Device → Connection.
• Make sure that the jumper settings are configured correctly on the target hardware.
• Make sure that no other software application (for example, a printer driver) has reserved or taken control

of the COM or parallel port, which would prevent the debug server from communicating with the device.
• Open the Device Manager and determine if the driver for the FET tool has been correctly installed and if

the COM or parallel port is successfully recognized by the Windows OS. Check the PC BIOS for the
parallel port settings (see FAQ 5). For users of IBM or Lenovo ThinkPad® computers, try port setting LPT2
and LPT3, even if operating system reports that the parallel port is located at LPT1.

• Restart the computer.

Make sure that the MSP430 device is securely seated in the socket (so that the "fingers" of the socket
completely engage the pins of the device), and that its pin 1 (indicated with a circular indentation on the top
surface) aligns with the "1" mark on the PCB.

CAUTION

Possible Damage To Device

Always handle MSP430 devices with a vacuum pick-up tool only; do not use your fingers, as you
can easily bend the device pins and render the device useless. Also, always observe and follow
proper ESD precautions.

2. The debugger can debug applications that use interrupts and low-power modes. See FAQ 17).
3. The debugger cannot access the device registers and memory while the device is running. The user

must stop the device to access device registers and memory.
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4. The debugger reports that the device JTAG security fuse is blown. With current MSP430-FET430UIF
JTAG interface tools, there is a weakness when adapting target boards that are powered externally. This
leads to an accidental fuse check in the MSP430 and results in the JTAG security fuse being recognized as
blown although it is not.

Workarounds:
• Connect the device RST/NMI pin to JTAG header (pin 11), MSP-FET430UIF interface tools are able to pull

the RST line, this also resets the device internal fuse logic.
• Do not connect both VCC Tool (pin 2) and VCC Target (pin 4) of the JTAG header. Specify a value for VCC

in the debugger that is equal to the external supply voltage.

Note

When the VCC voltage is not high enough when trying to erase or write flash memory, the following
message displays in the console: "Target device supply voltage is too low for Flash erase/
programming." If this occurs, try to change your supply voltage.

5. The parallel port designators (LPTx) have the following physical addresses: LPT1 = 378h,
LPT2 = 278h, LPT3 = 3BCh. The configuration of the parallel port (ECP, Compatible, Bidirectional, Normal)
is not significant; ECP seems to work well. See FAQ 1 for additional hints on solving communication
problems between the debugger and the device.

6. The debugger asserts RST/NMI to reset the device when the debugger is started and when the device is
programmed. The device is also reset by the debugger Reset button, and when the device is manually
reprogrammed (using Reload), and when the JTAG is resynchronized (using Resynchronize JTAG). When
RST/NMI is not asserted (low), the debugger sets the logic driving RST/NMI to high impedance, and
RST/NMI is pulled high through a resistor on the PCB.

The RST/NMI signal is asserted and negated after power is applied when the debugger is started. RST/NMI
is then asserted and negated a second time after device initialization is complete.

7. The debugger can debug a device whose program reconfigures the function of the RST/NMI pin to
NMI.

8. The level of the XOUT/TCLK pin is undefined when the debugger resets the device. The logic driving
XOUT/TCLK is set to high impedance at all other times.

9. When making current measurements of the device, ensure that the JTAG control signals are released,
otherwise the device is powered by the signals on the JTAG pins and the measurements are erroneous. See
FAQ 10.

10.When the debugger has control of the device, the CPU is on (that is, it is not in low-power mode)
regardless of the settings of the low-power mode bits in the status register. Any low-power mode condition is
restored prior to STEP or GO. Consequently, do not measure the power consumed by the device while the
debugger has control of the device. Instead, run the application using Release JTAG on run.

11.The MEMORY window correctly displays the contents of memory where it is present. However, the MEMORY
window incorrectly displays the contents of memory where there is none present. Memory should be
used only in the address ranges as specified by the device data sheet.

12.The debugger uses the system clock to control the device during debugging. Therefore, device counters
and other components that are clocked by the Main System Clock (MCLK) are affected when the
debugger has control of the device. Special precautions are taken to minimize the effect upon the
watchdog timer. The CPU core registers are preserved. All other clock sources (SMCLK and ACLK) and
peripherals continue to operate normally during emulation. In other words, the Flash Emulation Tool is a
partially intrusive tool.

Devices that support clock control can further minimize these effects by stopping the clock(s) during
debugging (Project → Properties → CCS Debug Settings → Target → Clock Control).
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13.When programming the flash, do not set a breakpoint on the instruction immediately following the write
to flash operation. A simple work-around to this limitation is to follow the write to flash operation with a NOP
and to set a breakpoint on the instruction following the NOP.

14.Multiple internal machine cycles are required to clear and program the flash memory. When single stepping
over instructions that manipulate the flash, control is given back to the debugger before these operations
are complete. Consequently, the debugger updates its memory window with erroneous information. A
workaround for this behavior is to follow the flash access instruction with a NOP and then step past the NOP
before reviewing the effects of the flash access instruction.

15.Bits that are cleared when read during normal program execution (that is, interrupt flags) are cleared
when read while being debugged (that is, memory dump, peripheral registers).

Using certain MSP430 devices with enhanced emulation logic such as MSP430F43x and MSP430F44x
devices, bits do not behave this way (that is, the bits are not cleared by the debugger read operations).

16.The debugger cannot be used to debug programs that execute in the RAM of F12x and F41x devices.
A workaround for this limitation is to debug programs in flash.

17.While single stepping with active and enabled interrupts, it can appear that only the interrupt service
routine (ISR) is active (that is, the non-ISR code never appears to execute, and the single step operation
stops on the first line of the ISR). However, this behavior is correct because the device processes an active
and enabled interrupt before processing non-ISR (that is, mainline) code. A workaround for this behavior is,
while within the ISR, to disable the GIE bit on the stack, so that interrupts are disabled after exiting the ISR.
This permits the non-ISR code to be debugged (but without interrupts). Interrupts can later be re-enabled by
setting GIE in the status register in the Register window.

On devices with Clock Control, it may be possible to suspend a clock between single steps and delay an
interrupt request (Project → Properties → CCS Debug Settings → Target → Clock Control).

18.On devices equipped with a Data Transfer Controller (DTC), the completion of a data transfer cycle
preempts a single step of a low-power mode instruction. The device advances beyond the low-power
mode instruction only after an interrupt is processed. Until an interrupt is processed, it appears that the single
step has no effect. A workaround to this situation is to set a breakpoint on the instruction following the low-
power mode instruction, and then execute (Run) to this breakpoint.

19.The transfer of data by the Data Transfer Controller (DTC) may not stop precisely when the DTC is
stopped in response to a single step or a breakpoint. When the DTC is enabled and a single step is
performed, one or more bytes of data can be transferred. When the DTC is enabled and configured for two-
block transfer mode, the DTC may not stop precisely on a block boundary when stopped in response to a
single step or a breakpoint.

20.Breakpoints. CCS supports a number of predefined breakpoint and watchpoint types. See Section 3.2.2 for
a detailed overview.

Note

Linux and OS X do not support the MSP-FET430UIF if it has an old firmware image (MSP Debug
Stack v2) on it.

Customers who buy a new MSP-FET430UIF will encounter this issue on OS X or Linux, because the
MSP Debug Stack v2 is programmed on the debugger during production. To resolve this problem,
connect the debugger to a Windows PC and use IAR, CCS, or the MSP430 Flasher to update the
firmware on the debugger to the latest version (v3 or newer).

Note

Do not connect through a USB hub when performing a firmware update on the MSP-FET, the MSP-
FET430UIF, or a LaunchPad™ development kit.
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7 Migration of C Code from IAR 2.x, 3.x, 4.x, 5.x, 6.x or 7.x to CCS
Source code for the TI CCS C compiler and source code for the IAR Embedded Workbench C compiler are not
fully compatible. Standard ANSI/ISO C code is portable between these tools, but implementation-specific
extensions differ and must be ported. This appendix describes the major differences between the two compilers.

7.1 Interrupt Vector Definition
IAR ISR declarations (using the #pragma vector = ) are now fully supported in CCS. However, this is not the
case for all other IAR pragma directives.

7.2 Intrinsic Functions
CCS and IAR tools use the same instructions for MSP430 processor-specific intrinsic functions.

7.3 Data and Function Placement
7.3.1 Data Placement at an Absolute Location

The scheme implemented in the IAR compiler using either the @ operator or the #pragma location directive is
not supported with the CCS compiler:

/* IAR C Code */ 
__no_init char alpha @ 0x0200;  /* Place 'alpha' at address 0x200 */ 
#pragma location = 0x0202 
const int beta;

If absolute data placement is needed, this can be achieved with entries into the linker command file, and then
declaring the variables as extern in the C code:

/* CCS Linker Command File Entry */ 
alpha = 0x200; 
beta = 0x202; 
/* CCS C Code */ 
extern char alpha; 
extern int beta;

The absolute RAM locations must be excluded from the RAM segment; otherwise, their content may be
overwritten as the linker dynamically allocates addresses. The start address and length of the RAM block must
be modified within the linker command file. For the previous example, the RAM start address must be shifted 4
bytes from 0x0200 to 0x0204, which reduces the length from 0x0080 to 0x007C (for an MSP430 device with 128
bytes of RAM):

/* CCS Linker Command File Entry */ 
/****************************************************************************/ 
/* SPECIFY THE SYSTEM MEMORY MAP */ 
/****************************************************************************/ 
MEMORY /* assuming a device with 128 bytes of RAM */ 
{ 
... 
RAM   :origin = 0x0204, length = 0x007C  /* was: origin = 0x200, length = 0x0080 */ 
... 
}

The definitions of the peripheral register map in the linker command files (lnk_msp430xxxx.cmd) and the device-
specific header files (msp430xxxx.h) that are supplied with CCS are an example of placing data at absolute
locations.

Note

When a project is created, CCS copies the linker command file corresponding to the selected MSP430
derivative from the include directory (<Installation Root>\ccsv5\ccs_base\tools\compiler
\MSP430\include) into the project directory. Therefore, ensure that all linker command file changes are
done in the project directory. This allows the use of project-specific linker command files for different
projects using the same device.
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7.4 Data Placement Into Named Segments
In IAR, it is possible to place variables into named segments using either the @ operator or a #pragma directive:

/* IAR C Code */ 
__no_init int alpha @ "MYSEGMENT";  /* Place 'alpha' into 'MYSEGMENT' */ 
#pragma location="MYSEGMENT"        /* Place 'beta' into 'MYSEGMENT' */ 
const int beta;

With the CCS compiler, the #pragma DATA_SECTION() directive must be used:

/* CCS C Code */ 
#pragma DATA_SECTION(alpha, "MYSEGMENT")
int alpha;
#pragma DATA_SECTION(beta, "MYSEGMENT")
int beta;

See Section 7.7.3 for information on how to translate memory segment names between IAR and CCS.

7.5 Function Placement Into Named Segments
With the IAR compiler, functions can be placed into a named segment using the @ operator or the #pragma
location directive:

/* IAR C Code */ 
void g(void) @ "MYSEGMENT" 
{ 
} 
#pragma location="MYSEGMENT" 
void h(void) 
{ 
}

With the CCS compiler, the following scheme with the #pragma CODE_SECTION() directive must be used:

/* CCS C Code */ 
#pragma CODE_SECTION(g, "MYSEGMENT") 
void g(void) 
{ 
}

See Section 7.7.3 for information on how to translate memory segment names between IAR and CCS.
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7.6 C Calling Conventions
The CCS and IAR C-compilers use different calling conventions for passing parameters to functions. When
porting a mixed C and assembly project to the TI CCS code generation tools, the assembly functions need to be
modified to reflect these changes. For detailed information about the calling conventions, see the TI MSP430
Optimizing C/C++ Compiler User's Guide and the IAR MSP430 C/C++ Compiler Reference Guide.

The following example is a function that writes the 32-bit word Data to a given memory location in big-endian
byte order. It can be seen that the parameter Data is passed using different CPU registers.

IAR Version:

;---------------------------------------------------------------------------- 
; void WriteDWBE(unsigned char *Add, unsigned long Data) 
; 
; Writes a DWORD to the given memory location in big-endian format. The 
; memory address MUST be word-aligned. 
; 
; IN:  R12    Address      (Add) 
;      R14    Lower Word   (Data) 
;      R15    Upper Word   (Data) 
;---------------------------------------------------------------------------- 
WriteDWBE 
   swpb    R14          ; Swap bytes in lower word 
   swpb    R15          ; Swap bytes in upper word 
   mov.w   R15,0(R12)   ; Write 1st word to memory 
   mov.w   R14,2(R12)   ; Write 2nd word to memory 
   ret

CCS Version:

;---------------------------------------------------------------------------- 
; void WriteDWBE(unsigned char *Add, unsigned long Data) 
; 
; Writes a DWORD to the given memory location in big-endian format. The 
; memory address MUST be word-aligned. 
; 
; IN:  R12    Address     (Add) 
;      R13    Lower Word  (Data) 
;      R14    Upper Word  (Data) 
;---------------------------------------------------------------------------- 
WriteDWBE 
   swpb    R13          ; Swap bytes in lower word 
   swpb    R14          ; Swap bytes in upper word 
   mov.w   R14,0(R12)   ; Write 1st word to memory 
   mov.w   R13,2(R12)   ; Write 2nd word to memory 
   ret

7.7 Other Differences
7.7.1 Initializing Static and Global Variables

The ANSI/ISO C standard specifies that static and global (extern) variables without explicit initializations must be
pre-initialized to 0 (before the program begins running). This task is typically performed when the program is
loaded and is implemented in the IAR compiler:

/* IAR, global variable, initialized to 0 upon program start */ 
int Counter;

However, the TI CCS compiler does not pre-initialize these variables; therefore, it is up to the application to fulfill
this requirement:

/* CCS, global variable, manually zero-initialized */ 
int Counter = 0;
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7.7.2 Custom Boot Routine

With the IAR compiler, the C start-up function can be customized, giving the application a chance to perform
early initializations such as configuring peripherals, or omit data segment initialization. This is achieved by
providing a customized __low_level_init() function:

/* IAR C Code */ 
int __low_level_init(void) 
{ = 
/* Insert your low-level initializations here */ 
/*================================== */ 
/* Choose if segment initialization  */ 
/* should be done or not.            */ 
/* Return:  0 to omit initialization */ 
/*          1 to run initialization  */ 
/*================================== */ 
return (1); 
}

The return value controls whether or not data segments are initialized by the C start-up code. With the CCS C
compiler, the custom boot routine name is _system_pre_init(). It is used the same way as in the IAR compiler.

/* CCS C Code */ 
int _system_pre_init(void) 
{ 
/* Insert your low-level initializations here */ 
/*================================== */ 
/* Choose if segment initialization  */ 
/* should be done or not.            */ 
/* Return:  0 to omit initialization */ 
/*          1 to run initialization  */ 
/*================================== */ 
return (1); 
}

Omitting segment initialization with both compilers omits both explicit and nonexplicit initialization. The user must
ensure that important variables are initialized at run time before they are used.

7.7.3 Predefined Memory Segment Names

Memory segment names for data and function placement are controlled by device-specific linker command files
in both CCS and IAR tools. However, different segment names are used. See the linker command files for more
detailed information. The following table shows how to convert the most commonly used segment names.

Description CCS Segment Name IAR Segment Name

RAM .bss
DATA16_N
DATA16_I
DATA16_Z

Stack (RAM) .stack CSTACK

Main memory (flash or ROM) .text CODE

Information memory (flash or ROM) .infoA
.infoB

INFOA
INFOB
INFO

Interrupt vectors (flash or ROM)

.int00

.int01
…
.int14

INTVEC

Reset vector (flash or ROM) .reset RESET
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7.7.4 Predefined Macro Names

Both IAR and CCS compilers support a few non ANSI/ISO standard predefined macro names, which help
creating code that can be compiled and used on different compiler platforms. Check if a macro name is defined
using the #ifdef directive.

Description CCS Macro Name IAR Macro Name
Is MSP430 the target and is a particular compiler
platform used? __MSP430__ __ICC430__

Is a particular compiler platform used? __TI_COMPILER_VERSION__ __IAR_SYSTEMS_ICC__

Is a C header file included from within assembly
source code? __ASM_HEADER__ __ IAR_SYSTEMS_ASM__
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8 Migration of Assembler Code from IAR 2.x, 3.x, 4.x, 5.x, 6.x or 7.x to CCS
Source for the TI CCS assembler and source code for the IAR assembler are not 100% compatible. The
instruction mnemonics are identical, but the assembler directives are somewhat different. This appendix
describes the differences between the CCS assembler directives and the IAR assembler directives.

8.1 Sharing C/C++ Header Files With Assembly Source
The IAR A430 assembler supports certain C/C++ preprocessor directives directly and, thereby, allows direct
including of C/C++ header files such as the MSP430 device-specific header files (msp430xxxx.h) into the
assembly code:

#include "msp430x14x.h" // Include device header file

With the CCS Asm430 assembler, a different scheme that uses the .cdecls directive must be used. This directive
allows programmers in mixed assembly and C/C++ environments to share C/C++ headers containing
declarations and prototypes between the C/C++ and assembly code:

.cdecls C,LIST,"msp430x14x.h" ; Include device header file

More information on the .cdecls directive can be found in the MSP430 Assembly Language Tools User's Guide.

8.2 Segment Control
The CCS Asm430 assembler does not support any of the IAR A430 segment control directives such as ORG,
ASEG, RSEG, and COMMON.

Description Asm430 Directive (CCS)
Reserve space in the .bss uninitialized section .bss

Reserve space in a named uninitialized section .usect

Allocate program into the default program section (initialized) .text

Allocate data into a named initialized section .sect

To allocate code and data sections to specific addresses with the CCS assembler, it is necessary to create and
use memory sections defined in the linker command files. The following example demonstrates interrupt vector
assignment in both IAR and CCS assembly to highlight the differences.

;-------------------------------------------------------------------------- 
; Interrupt Vectors Used MSP430x11x1 and 12x(2) - IAR Assembler 
;-------------------------------------------------------------------------- 
   ORG     0FFFEh      ; MSP430 RESET Vector 
   DW      RESET       ; 
   ORG     0FFF2h      ; Timer_A0 Vector 
   DW      TA0_ISR     ; 
;-------------------------------------------------------------------------- ; 
Interrupt Vectors Used MSP430x11x1 and 12x(2) - CCS Assembler 
;-------------------------------------------------------------------------- 
   .sect   ".reset"    ; MSP430 RESET Vector 
   .short  RESET       ; 
   .sect   ".int09"    ; Timer_A0 Vector 
   .short  TA0_ISR     ;

Both examples assume that the standard device support files (header files, linker command files) are used. The
linker command files are different between IAR and CCS and cannot be reused. See Section 7.7.3 for
information on how to translate memory segment names between IAR and CCS.
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8.3 Translating A430 Assembler Directives to Asm430 Directives
8.3.1 Introduction

The following sections describe, in general, how to convert assembler directives for the IAR A430 assembler
(A430) to TI CCS Asm430 assembler (Asm430) directives. These sections are intended only as a guide for
translation. For detailed descriptions of each directive, see either the MSP430 Assembly Language Tools User's
Guide from TI or the MSP430 IAR Assembler Reference Guide from IAR.

Note

Only the assembler directives require conversion

Only the assembler directives require conversion, not the assembler instructions. Both assemblers
use the same instruction mnemonics, operands, operators, and special symbols such as the section
program counter ($) and the comment delimiter (;).

The A430 assembler is not case sensitive by default. These sections show the A430 directives written in
uppercase to distinguish them from the Asm430 directives, which are shown in lower case.

8.3.2 Character Strings

In addition to using different directives, each assembler uses different syntax for character strings. A430 uses C
syntax for character strings: A quote is represented using the backslash character as an escape character
together with quote (\") and the backslash itself is represented by two consecutive backslashes (\\). In Asm430
syntax, a quote is represented by two consecutive quotes (""); see examples:

Character String Asm430 Syntax (CCS) A430 Syntax (IAR)
PLAN "C" "PLAN ""C""" "PLAN \"C\""

\dos\command.com "\dos\command.com" "\\dos\\command.com"

Concatenated string (for example, Error 41) - "Error " "41"
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8.3.3 Section Control Directives

Asm430 has three predefined sections into which various parts of a program are assembled. Uninitialized data is
assembled into the .bss section, initialized data into the .data section, and executable code into the .text section.

A430 also uses sections or segments, but there are no predefined segment names. Often, it is convenient to
adhere to the names used by the C compiler: DATA16_Z for uninitialized data, CONST for constant (initialized)
data, and CODE for executable code. The following table uses these names.

A pair of segments can be used to make initialized, modifiable data PROM-able. The ROM segment would
contain the initializers and would be copied to RAM segment by a start-up routine. In this case, the segments
must be exactly the same size and layout.

Description Asm430 Directive (CCS) A430 Directive (IAR)
Reserve size bytes in the .bss (uninitialized data) section .bss(1)  (2)

Assemble into the .data (initialized data) section .data RSEG const

Assemble into a named (initialized) section .sect RSEG

Assemble into the .text (executable code) section .text RSEG code

Reserve space in a named (uninitialized) section .usect(1)  (2)

Alignment on byte boundary .align 1  (3)

Alignment on word boundary .align 2 EVEN

(1) .bss and .usect do not require switching back and forth between the original and the uninitialized section. For example:
; IAR Assembler Example
             RSEG   DATA16_N      ; Switch to DATA segment
             EVEN                 ; Ensure proper alignment
ADCResult:   DS     2             ; Allocate 1 word in RAM
Flags:       DS     1             ; Allocate 1 byte in RAM
             RSEG   CODE          ; Switch back to CODE segment
; CCS Assembler Example #1
ADCResult   .usect  ".bss",2,2    ; Allocate 1 word in RAM
Flags       .usect  ".bss",1      ; Allocate 1 byte in RAM
; CCS Assembler Example #2
            .bss    ADCResult,2,2 ; Allocate 1 word in RAM
            .bss    Flags,1       ; Allocate 1 byte in RAM

(2) Space is reserved in an uninitialized segment by first switching to that segment, then defining the appropriate memory block, and then
switching back to the original segment. For example:
            RSEG    DATA16_Z
LABEL:      DS      16            ; Reserve 16 byte
            RSEG    CODE

(3) Initialization of bit-field constants (.field) is not supported, therefore, the section counter is always byte-aligned.

8.3.4 Constant Initialization Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Initialize one or more successive bytes or text strings .byte or .string DB

Initialize a 32-bit IEEE floating-point constant .double or .float DF

Initialize a variable-length field .field  (1)

Reserve size bytes in the current section .space DS

Initialize one or more text strings Initialize one or more text strings DB

Initialize one or more 16-bit integers .word DW

Initialize one or more 32-bit integers .long DL

(1) Initialization of bit-field constants (.field) is not supported. Constants must be combined into complete words using DW.
; Asm430 code                 ; A430 code
.field 5,3   \
.field 12,4  | ->             DW (30<<(4+3))|(12<<3)|5  ; equals 3941
.field 30,8  /
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8.3.5 Listing Control Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Allow false conditional code block listing .fclist LSTCND-

Inhibit false conditional code block listing .fcnolist LSTCND+

Set the page length of the source listing .length PAGSIZ

Set the page width of the source listing .width COL

Restart the source listing .list LSTOUT+

Stop the source listing .nolist LSTOUT-

Allow macro listings and loop blocks .mlist LSTEXP+ (macro)
LSTREP+ (loop blocks)

Inhibit macro listings and loop blocks .mnolist LSTEXP- (macro)
LSTREP- (loop blocks)

Select output listing options .option  (1)

Eject a page in the source listing .page PAGE

Allow expanded substitution symbol listing .sslist  (2)

Inhibit expanded substitution symbol listing .ssnolist  (2)

Print a title in the listing page header .title  (3)

(1) No A430 directive directly corresponds to .option. The individual listing control directives (above) or the command-line option -c (with
suboptions) should be used to replace the .option directive.

(2) There is no directive that directly corresponds to .sslist and .ssnolist.
(3) The title in the listing page header is the source file name.

8.3.6 File Reference Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Include source statements from another file .copy or .include #include or $

Identify one or more symbols that are defined in the
current module and used in other modules .def PUBLIC or EXPORT

Identify one or more global (external) symbols .global  (1)

Define a macro library .mlib  (2)

Identify one or more symbols that are used in the current
module but defined in another module .ref EXTERN or IMPORT

(1) The directive .global functions as either .def if the symbol is defined in the current module, or .ref otherwise. PUBLIC or EXTERN must
be used as applicable with the A430 assembler to replace the .global directive.

(2) The concept of macro libraries is not supported. Include files with macro definitions must be used for this functionality.

Modules may be used with the Asm430 assembler to create individually linkable routines. A file may contain
multiple modules or routines. All symbols except those created by DEFINE, #define (IAR preprocessor directive)
or MACRO are "undefined" at module end. Library modules are, furthermore, linked conditionally. This means
that a library module is included in the linked executable only if a public symbol in the module is referenced
externally. The following directives are used to mark the beginning and end of modules in the A430 assembler.

Additional A430 Directives (IAR) A430 Directive (IAR)
Start a program module NAME or PROGRAM

Start a library module MODULE or LIBRARY

Terminate the current program or library module ENDMOD
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8.3.7 Conditional Assembly Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Optional repeatable block assembly .break  (1)

Begin conditional assembly .if IF

Optional conditional assembly .else ELSE

Optional conditional assembly .elseif ELSEIF

End conditional assembly .endif ENDIF

End repeatable block assembly .endloop ENDR

Begin repeatable block assembly .loop REPT

(1) There is no directive that directly corresponds to .break. However, the EXITM directive can be used with other conditionals if
repeatable block assembly is used in a macro, as shown:
SEQ   MACRO  FROM,TO     ; Initialize a sequence of byte constants
      LOCAL  X
X     SET    FROM
      REPT   TO-FROM+1   ; Repeat from FROM to TO
      IF     X>255       ; Break if X exceeds 255
      EXITM
      ENDIF
      DB     X           ; Initialize bytes to FROM...TO
X     SET    X+1         ; Increment counter
      ENDR
      ENDM

8.3.8 Symbol Control Directives

The scope of assembly-time symbols differs in the two assemblers. In Asm430, definitions can be global to a file
or local to a module or macro. Local symbols can be undefined with the .newblock directive. In A430, symbols
are either local to a macro (LOCAL), local to a module (EQU), or global to a file (DEFINE). In addition, the
preprocessor directive #define also can be used to define local symbols.

Description Asm430 Directive (CCS) A430 Directive (IAR)
Assign a character string to a substitution symbol .asg SET or VAR or ASSIGN

Undefine local symbols .newblock  (1)

Equate a value with a symbol .equ or .set EQU or =

Perform arithmetic on numeric substitution symbols .eval SET or VAR or ASSIGN

End structure definition .endstruct  (2)

Begin a structure definition .struct  (2)

Assign structure attributes to a label .tag  (2)

(1) No A430 directive directly corresponds to .newblock. However, #undef may be used to reset a symbol that was defined with the
#define directive. Also, macros or modules may be used to achieve the .newblock functionality because local symbols are implicitly
undefined at the end of a macro or module.

(2) Definition of structure types is not supported. Similar functionality is achieved by using macros to allocate aggregate data and base
address plus symbolic offset, as shown:
MYSTRUCT: MACRO
            DS 4
            ENDM
LO          DEFINE  0
HI          DEFINE  2
            RSEG    DATA16_Z
X           MYSTRUCT
            RSEG    CODE
            MOV     X+LO,R4
            ...
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8.3.9 Macro Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Define a macro .macro MACRO

Exit prematurely from a macro .mexit EXITM

End macro definition .endm ENDM

8.3.10 Miscellaneous Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)
Send user-defined error messages to the output device .emsg #error

Send user-defined messages to the output device .mmsg #message(1)

Send user-defined warning messages to the output device .wmsg  (2)

Define a load address label .label  (3)

Directive produced by absolute lister .setsect ASEG(4)

Directive produced by absolute lister .setsym EQU or =(4)

Program end .end END

(1) The syntax of the #message directive is: #message "<string>"
This causes '#message <string>' to be output to the project build window during assemble and compile time.

(2) Warning messages cannot be user-defined. #message may be used, but the warning counter is not incremented.
(3) The concept of load-time addresses is not supported. Run-time and load-time addresses are assumed to be the same. To achieve the

same effect, labels can be given absolute (run-time) addresses by the EQU directives.
; Asm430 code          ; A430 code
.label  load_start     load_start:
Run_start:                 <code>
   <code>              load_end:
Run_end:               run_start: EQU 240H
.label  load_end       run_end:   EQU run_start+load_end-load_start

(4) Although not produced by the absolute lister, ASEG defines absolute segments and EQU can be used to define absolute symbols.
MYFLAG    EQU   23EH       ; MYFLAG is located at 23E
          ASEG  240H       ; Absolute segment at 240
MAIN:     MOV   #23CH, SP  ; MAIN is located at 240
...
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8.3.11 Alphabetical Listing and Cross Reference of Asm430 Directives

Asm430 Directive
(CCS) A430 Directive (IAR) Asm430 Directive

(CCS) A430 Directive (IAR)

.align ALIGN .loop REPT

.asg SET or VAR or ASSIGN .macro MACRO

.break See Section 8.3.7 .mexit EXITM

.bss See Section 8.3.8 .mlib See Section 8.3.6

.byte or .string DB .mlist LSTEXP+ (macro)

.cdecls C pre-processor declarations are inherently
supported. LSTREP+ (loop blocks)

.copy or .include #include or $ .mmsg #message (XXXXXX)

.data RSEG .mnolist LSTEXP- (macro)

.def PUBLIC or EXPORT LSTREP- (loop blocks)

.double Not supported .newblock See Section 8.3.8

.else ELSE .nolist LSTOUT-

.elseif ELSEIF .option See Section 8.3.5

.emsg #error .page PAGE

.end END .ref EXTERN or IMPORT

.endif ENDIF .sect RSEG

.endloop ENDR .setsect See Section 8.3.10

.endm ENDM .setsym See Section 8.3.10

.endstruct See Section 8.3.8 .space DS

.equ or .set EQU or = .sslist Not supported

.eval SET or VAR or ASSIGN .ssnolist Not supported

.even EVEN .string DB

.fclist LSTCND- .struct See Section 8.3.8

.fcnolist LSTCND+ .tag See Section 8.3.8

.field See Section 8.3.4 .text RSEG

.float See Section 8.3.4 .title See Section 8.3.5

.global See Section 8.3.6 .usect See Section 8.3.8

.if IF .width COL

.label See Section 8.3.10 .wmsg See Section 8.3.10

.length PAGSIZ .word DW

.list LSTOUT+
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8.3.12 Unsupported A430 Directives (IAR)

The following IAR assembler directives are not supported in the CCS Asm430 assembler:

Conditional Assembly Directives Macro Directives
REPTC(1) LOCAL(2)

REPTI

File Referencing Directives Miscellaneous Directives Symbol Control Directives
NAME or PROGRAM RADIX DEFINE

MODULE or LIBRARY CASEON SFRB

ENDMOD CASEOFF SFRW

Listing Control Directives C-Style Preprocessor Directives(3) Symbol Control Directives
LSTMAC (±) #define ASEG

LSTCOD (±) #undef RSEG

LSTPAG (±) #if, #else, #elif COMMON

LSTXREF (±) #ifdef, #ifndef STACK

#endif ORG

#include

#error

(1) There is no direct support for IAR REPTC and REPTI directives in CCS. However, equivalent functionality can be achieved using the
CCS .macro directive:
; IAR Assembler Example
            REPTI   zero,"R4","R5","R6"
            MOV     #0,zero
            ENDR
; CCS Assembler Example
zero_regs .macro list
            .var item
            .loop
            .break ($ismember(item, list) = 0)
            MOV #0,item
            .endloop
            .endm
Code that is generated by calling "zero_regs R4,R5,R6":
            MOV #0,R4
            MOV #0,R5
            MOV #0,R6

(2) In CCS, local labels are defined by using $n (with n=0…9) or with NAME?. Examples are $4, $7, or Test?.
(3) The use of C-style preprocessor directives is supported indirectly through the use of .cdecls. More information on the .cdecls directive

can be found in the MSP430 Assembly Language Tools User's Guide.
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9 Writing Portable C Code for CCS and MSP430-GCC for MSP430
Source code for the TI CCS C compiler and source code for the GCC for MSP430 compiler are not fully
compatible. Standard ANSI/ISO C code is portable between these tools, but implementation-specific extensions
differ and must be ported. This appendix describes the major differences between the two compilers.

9.1 Interrupt Vector Definition
The syntax for ISR declarations used by the CCS C compiler (using the #pragma vector = ) is not supported by
GCC for MSP430. It is, however, possible to write correct C code for both compilers by wrapping the different
declarations in a preprocessor directive:

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=PORT1_VECTOR
__interrupt void Port1_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(PORT1_VECTOR))) Port1_ISR (void)
#else
#error Compiler not supported!
#endif

Further information on the use of the GCC compiler can be found in the document Using the GNU Compiler
Collection.
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10 FET-Specific Menus
This appendix describes the CCS menus that are specific to the FET.

10.1 Menus
10.1.1 Debug View: Run → Free Run

The debugger uses the device JTAG signals to debug the device. On some MSP430 devices, these JTAG
signals are shared with the device port pins. Normally, the debugger maintains the pins in JTAG mode so that
the device can be debugged. During this time, the port functionality of the shared pins is not available.

However, when Free Run is selected (by opening a pulldown menu next to the Run icon on top of the Debug
View), the JTAG drivers are set to 3-state, and the device is released from JTAG control (TEST pin is set to
GND) when GO is activated. Any active on-chip breakpoints are retained, and the shared JTAG port pins revert
to their port functions.

At this time, the debugger has no access to the device and cannot determine if an active breakpoint (if any) has
been reached. The debugger must be manually commanded to stop the device, at which time the state of the
device is determined (that is, was a breakpoint reached?).

See FAQ 9.

10.1.2 Run → Connect Target

Regains control of the device when ticked.

10.1.3 Run → Advanced → Make Device Secure

Blows the JTAG fuse on the target device. After the fuse is blown, no further communication through JTAG with
the device is possible.

10.1.4 Project → Properties → Debug → MSP430 Properties → Clock Control

Disables the specified system clock while the debugger has control of the device (following a STOP or
breakpoint). All system clocks are enabled following a GO or a single step (STEP or STEP INTO). Can only be
changed when the debugger is inactive. See FAQ 12.

10.1.5 Window → Show View → Breakpoints

Opens the MSP430 Breakpoints View window. This window can be used to set basic and advanced breakpoints.
Advanced settings such as Conditional Triggers and Register Triggers can be selected individually for each
breakpoint by accessing the properties (right click on corresponding breakpoint). Pre-defined breakpoints such
as Break on Stack Overflow can be selected by opening the Breakpoint pulldown menu, which is located next to
the Breakpoint icon at the top of the window. Breakpoints may be combined by dragging and dropping within the
Breakpoint View window. A combined breakpoint is triggered when all breakpoint conditions are met.

10.1.6 Window → Show View → Other... Debug → Trace Control

The Trace View enables the use of the state storage module. The state storage module is present only in
devices that contain the full version of the Enhanced Emulation Module (EEM) (see Table 3-1). After a
breakpoint is defined, the State Storage View displays the trace information as configured. Various trace modes
can be selected when clicking the Configuration Properties icon at the top right corner of the window. Details on
the EEM are available in the application report Advanced Debugging Using the Enhanced Emulation Module
(EEM) With Code Composer Studio IDE.

10.1.7 Project → Properties → Debug → MSP430 Properties → Target Voltage

The target voltage of the MSP-FET430UIF can be adjusted between 1.8 V and 3.6 V. This voltage is available on
pin 2 of the 14-pin target connector to supply the target from the USB FET. If the target is supplied externally, the
external supply voltage should be connected to pin 4 of the target connector, so the USB FET can set the level
of the output signals accordingly. Can only be changed when the debugger is inactive.
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11 Device-Specific Menus
11.1 MSP430L092
11.1.1 Emulation Modes

The MSP430L092 can operate in two different modes: the L092 mode and C092 emulation mode. The purpose
of the C092 emulation mode is to mimic a C092 with up to 1920 bytes of code at its final destination for mask
generation by using an L092. The operation mode must be set in CCS before launching the debugger. The
selection happens in the project properties under Device Options at the bottom, after selecting MSP430L092 as
Device Variant as shown in Figure 11-1. Figure 11-2 shows how to select the C092 mode.
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Figure 11-1. MSP430L092 Modes
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11.1.2 Loader Code

The Loader Code in the MSP430L092 is a ROM-code from TI that provides a series of services. It enables
customers to build autonomous applications without needing to develop a ROM mask. Such an application
consists of an MSP430 device containing the loader (for example, MSP430L092) and an SPI memory device (for
example, '95512 or '25640). Those and similar devices are available from various manufacturers. The majority of
use cases for an application with a loader device and external SPI memory for native 0.9-V supply voltage are
late development, prototyping, and small series production. The external code download may be set in the CCS
Project Properties → Debug → MSP430 Properties → Download Options → Copy application to external SPI
memory after program load (see Figure 11-1).

Figure 11-2. MSP430L092 in C092 Emulation Mode
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11.1.3 C092 Password Protection

The MSP430C092 is a customer-specific ROM device, which is protected by a password. To start a debug
session, the password must be provided to CCS. Open the MSP430C092.CCXML file in your project, click
Target Configurations in the Advanced Setup section, Advanced Target Configuration. The CPU Properties
become visible after MSP430 is selected. Figure 11-3 shows how to provide a HEX password in CCS v6.1 target
configuration.

Figure 11-3. MSP430C092 Password Access
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11.2 MSP430F5xx and MSP430F6xx BSL Support
Most of the MSP430F5xx and MSP430F6xx devices support a custom BSL that is protected by default. To
program the custom BSL, this protection must be disabled in CCS Project Properties → Debug → MSP430
Properties → Download Options → Allow Read/Write/Erase access to BSL memory (see Figure 11-4).

Figure 11-4. Allow Access to BSL
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11.3 MSP430FR5xx and MSP430FR6xx Password Protection
Selected MSP430FR5xx and MSP430FR6xx devices provide JTAG protection by a user password. When
debugging these MSP430 derivatives, the hexadecimal JTAG password must be provided to start a debug
session. Open the MSP430Fxxxx.CCXML file in your project, click Target Configurations in the Advanced Setup
section, Advanced Target Configuration. The CPU Properties become visible after MSP430 is selected (see
Figure 11-5). Details regarding the password protection of MSP430FR5xx and MSP430FR6xx devices may be
found in the device user's guides.

Figure 11-5. MSP430 Password Access
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11.4 MSP430 Ultra-Low-Power LPMx.5 Mode
11.4.1 What is LPMx.5

LPMx.5 is an ultra-low power mode in which the entry and exit are handled differently than in the other low-
power modes.

LPMx.5 gives the lowest power consumption available on a device. To achieve this, entry to LPMx.5 disables the
LDO of the PMM module, which removes the supply voltage from the core and the JTAG module of the device.
Because the supply voltage is removed from the core, all register contents and SRAM contents are lost. Exit
from LPMx.5 causes a BOR event, which forces a complete reset of the system.

Note

See the corresponding MSP430 device family user's guide for additional LPMx.5 and ultra-low-power
debug mode details.

11.4.2 Debugging LPMx.5 Mode on MSP430 Devices That Support the Ultra-Low-Power Debug Mode

To enable the ultra-low power debug mode feature the "Enable Ultra Low Power debug / LPMx.5 debug"
checkbox must be enabled by clicking Project Properties -> Debug -> MSP430 Properties -> Enable Ultra Low
Power debug / LPMx.5 debug (see Figure 11-6).

When the ultra-low power debug mode is enabled a notification is displayed in the Debugger log every time the
target device enters and leaves LPMx.5 mode.

Press the Halt or Reset button CCS to wake up the target device from LPMx.5. Execution of the code is halted at
the start of the program. All breakpoints that had been active before LPMx.5 are restored and reactivated
automatically.
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Figure 11-6. Enable Ultra-Low-Power Debug Mode

11.4.2.1 Limitations

When a target device is in LPMx.5 mode, it is not possible to set or remove advanced conditional or software
breakpoints. It is, however, possible to set hardware breakpoints. In addition, only hardware breakpoints that
were set during LPMx.5 can be removed in the LPMx.5 mode. Attach to running target is not possible in
combination with LPMx.5 mode debugging, as this results in a device reset.

When using the "Free Run" option in combination with LPMx.5 mode, the target device does not resume code
execution after LPMx.5 wakeup. In this case, suspend the debug session by clicking the "Suspend" button, and
then resume the session by clicking the "Resume" button.
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11.4.3 Debugging LPMx.5 Mode on MSP430 Devices That Do Not Support the Ultra-Low-Power Debug
Mode

On MSP430 devices that do not support the ultra-low-power mode, the LPMx.5 low-power mode can be
debugged using the "Free Run" option. This configuration provides the absolute current and energy consumption
of MSP430 LPMx.5 low-power mode.

11.4.3.1 Limitations

Using this configuration presents some limitations:

1. Breakpoint
a. Setting or erasing any kind of breakpoint is not possible when the device is in LPMx.5.

2. Device State
a. There are no notifications about the current device state. From the perspective of the IDE, the device is

running.
3. Pause

a. The pause button might not work reliably when the device is in LPMx.5 mode. The device might not leave
LPMx.5 mode when the pause button is pressed. In this case, the debug session must be restarted.
During debugging, an option is to trap the device in active mode after wake-up from LPMx.5, so that the
device can be paused/suspend reliably when it is in a known power mode other than LPMx.5.

4. Debugger connection
a. To make sure that the debugger can always connect and synchronize to the MSP430 device.

1. Do not enter LPMx.5 directly after code start. A 500-ms delay is required between code start and
LPMx.5 entry to ensure reliable debugger synchronization.

2. If 4-wire JTAG shows connection and synchronization errors, use 2-wire SBW instead of the 4-wire
JTAG protocol.

3. Make sure that the code removes the lock I/O setting for all MSP430 port pins.
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