

Adafruit DS1841 I2C Logarithmic Resistor
Created by Bryan Siepert

https://learn.adafruit.com/adafruit-ds1841-i2c-logarithmic-resistor

Last updated on 2022-12-01 03:52:39 PM EST

©Adafruit Industries Page 1 of 18

3

5

7

10

10

17

17

Table of Contents

Overview

Pinouts

• Power Pins

• I2C Logic Pins

• Resistor Pins

• Extra Pins

• Adjusting the I2C Address

Arduino

• I2C Wiring

• Library Installation

• Load Example

• Example Code

Arduino Docs

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of DS1841 Library

• Python Installation of DS1841 Library

• CircuitPython Usage

• Full CircuitPython Example Code

• Python Usage

• Full Python Example Code

Python Docs

Downloads

• Files

• Schematic

• Fab Print

©Adafruit Industries Page 2 of 18

Overview

Potentiometers are the perfect tool when you want to change your circuit by turning a

knob. Turns out, there are times when you want to adjust your circuit without manually

turning a knob, and the DS1841 I2C Logarithmic Resistor from Maxim can do just that.

It's a programmable resistor, similar to an I2C potentiometer like the the DS3502 I2C

Potentiometer (), so why another?

The big difference between the two is how the resistance changes in relation to

changes made to the wiper. The DS3502's resistance has a linear relationship to the

wiper's setting. Each time you change the wiper by a given amount, the resistance will

change by the same amount. With the DS1841, the relationship between resistance

and the wiper setting is logarithmic. This means that as the wiper setting changes, the

amount of resistance will depend on where in the wiper's range the current setting is.

This graph shows the relationship between

the wiper setting and the resulting

resistance. At the start, the changes are

relatively large, but as the values increase,

the resulting change in resistance gets

smaller and smaller.

©Adafruit Industries Page 3 of 18

https://www.adafruit.com/product/4286
https://www.adafruit.com/product/4286
https://www.adafruit.com/product/4286
https://www.adafruit.com/product/4286
https://learn.adafruit.com//assets/89753
https://learn.adafruit.com//assets/89753

Log potentiometers are used in audio applications for things like volume control

because they better match the response of human ear to sound.

The DS1841's resistance ranges from 22kOhms to 3.7 kOhms and has 128 tap points.

Even more interestingly, the DS1841 can be configured to adjust its resistance based

on temperature with hysteresis to keep things from jumping around.

Additionally the temperature compensation can be adjusted by using the LUT (Look

Up Table) built into the DS1841. This table allows you to specify the wiper setting for

each of 70 temperature increments between -39 and 100 degrees C, plus one each

for above or below that range. You can even manually set the wiper to one of the

entries in the LUT.

Working with the DS1841 is easy. We've put it on a breakout PCB with the required

support circuitry and SparkFun qwiic () compatible STEMMA QT () connectors to allow

you to use it with other similarly equipped boards without needing to solder. This

handy little helper can work with 3.3V or 5V micros, so it's ready to get to work with a

range of development boards. To make things even easier we've gone and written

Arduino and CircuitPython/Python 3 drivers to simplify interfacing with your new

knob-replacing friend.

©Adafruit Industries Page 4 of 18

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt

Pinouts

Power Pins

The sensor on the breakout requires between a 2.7V and 5.5V, and can be easily

used with most microcontrollers from an Arduino to a Feather or something else.

Vcc - this is the power pin. To power the board, give it the same power as the

logic level of your microcontroller - e.g. for a 5V micro like Arduino, use 5V

GND - common ground for power and logic

I2C Logic Pins

SCL - I2C clock pin, connect to your microcontrollers I2C clock line. The logic

level is the same as Vcc and it has a 10K pullup already on it.

SDA - I2C data pin, connect to your microcontrollers I2C data line. The logic

level is the same as Vcc. and it has a 10K pullup already on it.

STEMMA QT () - These connectors allow you to connectors to dev boards with S

TEMMA QT connectors or to other things with various associated accessories ()

•

•

•

•

•

©Adafruit Industries Page 5 of 18

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204

Resistor Pins

RW is the wiper of the potentiometer. As the wiper value is adjusted via I2C, the

resistance between RW and GND changes

RH is the High Terminal of the potentiometer, often connected to your high

voltage source. The DS1841 has a fixed resistor between RH and RW which

forms a voltage divider when RH is connected to VCC, with the voltage between

RW and GND varying with the wiper setting

Extra Pins

A0 and A1 - These are the address select pins which set the two least significant

bits of the I2C address. The are pulled to GND with two resistors which sets the

address to 0x28 by default.

Adjusting the I2C Address

The default address is 0x28 and the address can be calculated by 'adding' the A0/A1 t

o the base of 0x28. You can change the values of one or both A0 and A1 by bridging

the solder jumpers on the back of the board with solder. You can also set A0 or A1 by

using a jumper wire to connect them to Vcc.

•

•

•

©Adafruit Industries Page 6 of 18

A0 sets the lowest bit with a value of 1, and A1 sets the next highest bit that has a

value of 2. The final address is 0x28 + A1 + A0.

For example if only A0 is tied to Vcc and A1 is left connected to GND, the

address is 0x28 + 0 + 1 = 0x29

If only A1 is tied to Vcc, the address is 0x28 + 2 + 0 = 0x2A (A is 10 in

hexadecimal)

If both A0 and A1 are connected to Vcc, the address is 0x28 + 2 + 1 = 0x2B (B is

11 in hexadecimal)

Arduino

I2C Wiring

Wiring the DS1841 to communicate with your microcontroller is straight forward

forward thanks to the I2C interface. For these examples we can use the Metro or

Arduino to measure the voltage changes as the DS1841 adjusts its resistance. The

instructions below reference a Metro (), but the same applies to an Arduino

STEMMA QT Wiring

 Connect board VIN (red wire) to

Metro 5V if you are running a 5V board

Arduino (Uno, etc.). If your board is 3V,

connect to that instead.

Connect board GND (black wire) to

Metro GND

Connect board SCL (yellow wire) to

Metro SCL

Connect board SDA (blue wire) to

Metro SDA

Connect RH to Metro 5V

Connect RW to the A0 pin on the Metro, to

allow us to measure the voltage

•

•

•

©Adafruit Industries Page 7 of 18

https://www.adafruit.com/product/2488
https://learn.adafruit.com//assets/91223
https://learn.adafruit.com//assets/91223

Breadboard Wiring

 Connect board VIN (red wire) to

Metro 5V if you are running a 5V board

Arduino (Uno, etc.). If your board is 3V,

connect to that instead.

Connect board GND (black wire) to

Metro GND

Connect board SCL (yellow wire) to

Metro SCL

Connect board SDA (blue wire) to

Metro SDA

Connect RH to Metro 5V

Connect RW to the A0 pin on the Metro, to

allow us to measure the voltage

Library Installation

Once wired up, to start using the DS1841, you'll need to install the Adafruit_DS1841

library (). The library is available through the Arduino library manager so we

recommend taking that approach.

From the Arduino IDE, open up the Library Manager:

Click the Manage Libraries ... menu item, search for Adafruit DS1841, and select the A

dafruit DS1841 library and click Install:

©Adafruit Industries Page 8 of 18

https://learn.adafruit.com//assets/91224
https://learn.adafruit.com//assets/91224
https://github.com/adafruit/Adafruit_DS1841
https://github.com/adafruit/Adafruit_DS1841

Follow the same process to install the Adafruit BusIO library.

Load Example

Open up File -> Examples -> Adafruit DS1841 -> ds1841_test and upload to your Metro

wired up to the DS1841 breakout as shown above. Once you upload the code, you will

see the wiper settings and measured voltage being printed when you open the Serial

Monitor (Tools->Serial Monitor) at 15200 baud, similar to this:

Example Code

The following code comes with the library and illustrates the basic function of using

the variable resistance of the DS1841 to change the voltage measured at pin A0:

// Basic demo for readings from Adafruit DS1841
#include <Wire.h>
#include <Adafruit_DS1841.h>
#define VOLTAGE_DIV_PIN A0
float wiperVoltage(void);
float wiper_voltage;

Adafruit_DS1841 ds;
void setup(void) {
 Serial.begin(115200);
 while (!Serial) delay(10); // will pause Zero, Leonardo, etc until serial
console opens

 Serial.println("Adafruit DS1841 test!");

 // Try to initialize!
 if (!ds.begin()) {
 Serial.println("Failed to find DS1841 chip");
 while (1) { delay(10); }
 }
 Serial.println("DS1841 Found!");
 Serial.print("Current VCC Voltage:"); Serial.print(ds.getVoltage());
Serial.println("mV");
 Serial.print("Temperature: ");Serial.print(ds.getTemperature());Serial.println("

©Adafruit Industries Page 9 of 18

degrees C");

 pinMode(VOLTAGE_DIV_PIN, INPUT);

}

void loop() {
 ds.setWiper(10);
 delay(1000);
 wiper_voltage = wiperVoltage();
 Serial.print("Voltage:");Serial.println(wiper_voltage);
 Serial.print("Temperature: ");Serial.print(ds.getTemperature());Serial.println("
degrees C");
 Serial.print("Wiper: ");Serial.print(ds.getWiper());Serial.println(" LSB");
 Serial.println("");

 ds.setWiper(120);
 delay(1000);
 wiper_voltage = wiperVoltage();
 Serial.print("Voltage:");Serial.println(wiper_voltage);
 Serial.print("Temperature: ");Serial.print(ds.getTemperature());Serial.println("
degrees C");
 Serial.print("Wiper: ");Serial.print(ds.getWiper());Serial.println(" LSB");
 Serial.println("");
}

float wiperVoltage(void) {
 float wiper_value = analogRead(VOLTAGE_DIV_PIN);
 wiper_value *= 5.0;
 wiper_value /= 1024;
 return wiper_value;
}

Arduino Docs

Arduino Docs ()

Python & CircuitPython

CircuitPython Microcontroller Wiring

Wiring the DS1841 to communicate with your microcontroller is straightforward thanks

to the I2C interface. For these examples, we can use a Metro or a Feather to measure

the voltage changes as the DS1841 adjusts its resistance. The instructions below

reference a Feather (), but the same applies to a Metro.

©Adafruit Industries Page 10 of 18

https://adafruit-circuitpython-ds1841.readthedocs.io/en/latest/
https://www.adafruit.com/product/3857

STEMMA QT Wiring

Connect board Vcc (long red wire) to

Feather 3.3V

Connect board GND (black wire) to

Feather GND

Connect board SCL (yellow wire) to

Feather SCL

Connect board SDA (blue wire) to

Feather SDA

Connect RH to Vcc (short red wire)

Connect RW to the A0 pin on the Feather,

to allow us to measure the voltage

Breadboard Wiring

Connect board Vcc (long red wire) to

Feather 3.3V

Connect board GND (black wire) to

Feather GND

Connect board SCL (yellow wire) to

Feather SCL

Connect board SDA (blue wire) to

Feather SDA

Connect RH to Vcc (short red wire)

Connect RW to the A0 pin on the Feather,

to allow us to measure the voltage

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for R

aspberry Pi (). For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired with I2C:

Note that because the Raspberry Pi does not include any pins with analog to

digital converters (ADCs) to read the voltage that will change on the DS1841's

RW pin, you will need to use a multimeter to measure the voltage between the

RW pin and GND.

©Adafruit Industries Page 11 of 18

https://learn.adafruit.com//assets/91225
https://learn.adafruit.com//assets/91225
https://learn.adafruit.com//assets/91226
https://learn.adafruit.com//assets/91226
https://www.adafruit.com/product/3055
https://www.adafruit.com/product/3055
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If you are new to using a multimeter to measure voltage, check out ladyada's guide to

multimeters () which has a section on using your multimeter to measure voltage ()

STEMMA QT Wiring

Connect board Vcc (long red wire) to Pi

3.3V

Connect board GND (black wire) to Pi GND

Connect board SCL (yellow wire) to Pi SCL

Connect board SDA (blue wire) to Pi SDA

board Vcc to board RH (short red wire)

Multimeter Positive Lead to sensor RW

Multimeter Negative Lead to sensor GND

Breadboard Wiring

Connect board Vcc (long red wire) to Pi

3.3V

Connect board GND (black wire) to Pi GND

Connect board SCL (yellow wire) to Pi SCL

Connect board SDA (blue wire) to Pi SDA

board Vcc to board RH (short red wire)

Multimeter Positive Lead to sensor RW

Multimeter Negative Lead to sensor GND

CircuitPython Installation of DS1841 Library

You'll need to install the Adafruit CircuitPython DS1841 () library on your CircuitPython

board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

©Adafruit Industries Page 12 of 18

https://learn.adafruit.com/multimeters
https://learn.adafruit.com/multimeters
https://learn.adafruit.com/multimeters/voltage#get-into-the-right-mode-4-7
https://learn.adafruit.com//assets/91228
https://learn.adafruit.com//assets/91228
https://learn.adafruit.com//assets/91227
https://learn.adafruit.com//assets/91227
https://github.com/adafruit/Adafruit_CircuitPython_DS1841
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually

install the necessary libraries from the bundle:

adafruit_ds1841.mpy

adafruit_bus_device

adafruit_register

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_ds1841.mpy, adafruit_bus_device, and adafruit_register files and folders copied over.

Next connect to the board's serial REPL ()so you are at the CircuitPython >>> prompt.

Python Installation of DS1841 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-ds1841

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython Usage

To demonstrate the usage of the potentiometer we'll initialize it and set the wiper

value to change the voltage on the WH pin. We will then use the A0 pin to take an

analog reading of the voltage on the WH pin.

•

•

•

•

Because of hardware differences, Python Computer users should follow the

"Python Usage" examples in the next section

©Adafruit Industries Page 13 of 18

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Run the following code to import the necessary modules and initialize the I2C

connection with the potentiometer:

import board
import busio
from analogio import AnalogIn
import adafruit_ds1841
i2c = busio.I2C(board.SCL, board.SDA)
ds1841 = adafruit_ds1841.DS1841(i2c)
wiper_output = AnalogIn(board.A0)

With the driver initialized, we can the set the wiper value using the wiper property.

Then we can take an ADC reading to measure the voltage, and convert the raw ADC

value to a human-readable value

ds1841.wiper = 127
print("Wiper set to %d" % ds1841.wiper)
voltage = wiper_output.value
voltage *= 3.3
voltage /= 65535
print("Wiper voltage: %.2f V" % voltage)

We can then set the wiper to a different value and see how it changes the measured

wiper voltage

ds1841.wiper = 0
print("Wiper set to %d" % ds1841.wiper)
voltage = wiper_output.value
voltage *= 3.3
voltage /= 65535
print("Wiper voltage: %.2f V" % voltage)

©Adafruit Industries Page 14 of 18

Full CircuitPython Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

from time import sleep
import board
import busio
from analogio import AnalogIn
import adafruit_ds1841

####### NOTE ################
this example will not work with Blinka/rasberry Pi due to the lack of analog pins.
Blinka and Raspberry Pi users should run the "ds1841_blinka_simpletest.py" example

WIRING:
1 Wire connecting VCC to RH to make a voltage divider using the
internal resistor between RH and RW
2 Wire connecting RW to A0

setup of the i2c bus giving the SCL (clock) and SDA (data) pins from the board
i2c = busio.I2C(board.SCL, board.SDA)
create the ds1841 instance giving the I2C bus we just set up
ds1841 = adafruit_ds1841.DS1841(i2c)

set up an analog input, selecting the A0 pin
wiper_output = AnalogIn(board.A0)

while True:

 # set th
 ds1841.wiper = 127
 print("Wiper set to %d" % ds1841.wiper)
 voltage = wiper_output.value
 voltage *= 3.3
 voltage /= 65535
 print("Wiper voltage: %.2f V" % voltage)
 print("")
 sleep(1.0)

 ds1841.wiper = 0
 print("Wiper set to %d" % ds1841.wiper)
 voltage = wiper_output.value
 voltage *= 3.3
 voltage /= 65535
 print("Wiper voltage: %.2f V" % voltage)
 print("")
 sleep(1.0)

 ds1841.wiper = 63
 print("Wiper set to %d" % ds1841.wiper)
 voltage = wiper_output.value
 voltage *= 3.3
 voltage /= 65535
 print("Wiper voltage: %.2f V" % voltage)
 print("")
 sleep(1.0)

©Adafruit Industries Page 15 of 18

Python Usage

Because the Raspberry Pi and many other similar devices do not include the

hardware for measuring analog voltages, you will have to use a multimeter to

measure the voltage on the RW pin.

To start, similar to above we will import the needed modules and initialize the driver

import board
import busio
import adafruit_ds1841

i2c = busio.I2C(board.SCL, board.SDA)
ds1841 = adafruit_ds1841.DS1841(i2c)

Once the driver has been initialized, we can use it to set the value of the wiper

ds1841.wiper = 127

You can then use your multimeter or other voltage measuring device to check the

voltage across GND and RW. It should be the same as shown in the CircuitPython

example above, approximately 0.3V

Next, change the wiper value again and measure the voltage on the RW pin

ds1841.wiper = 0

The voltage on the RW pin should be the same as shown in the CircuitPython

example above, this time approximately 2.8V

©Adafruit Industries Page 16 of 18

Full Python Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

####### NOTE ################
This example is meant for use with Blinka/rasberry Pi due to the lack of analog
pins.
CircuitPython board users should run the "ds1841_simpletest.py" example

WIRING:
1 Wire connecting VCC to RH to make a voltage divider using the
internal resistor between RH and RW

As this code runs, measure the voltage between ground and the RW (wiper) pin
with a multimeter. You should see the voltage change with each print statement.
from time import sleep
import board
import busio
import adafruit_ds1841

i2c = busio.I2C(board.SCL, board.SDA)
ds1841 = adafruit_ds1841.DS1841(i2c)

while True:
 ds1841.wiper = 127
 print("Wiper value set to 127")
 sleep(5.0)

 ds1841.wiper = 0
 print("Wiper value set to 0")
 sleep(5.0)

 ds1841.wiper = 63
 print("Wiper value set to 63")
 sleep(5.0)

Python Docs

Python Docs ()

Downloads

Files

DS1841 Datasheet ()

EagleCAD files on GitHub ()

Fritzing object in Adafruit Fritzing Library ()

•

•

•

©Adafruit Industries Page 17 of 18

https://adafruit-circuitpython-ds1841.readthedocs.io/en/latest/
https://datasheets.maximintegrated.com/en/ds/DS1841.pdf
https://www.github.com/adafruit/Adafruit-DS1841-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20DS1841.fzpz

Schematic

Fab Print

©Adafruit Industries Page 18 of 18

	Adafruit DS1841 I2C Logarithmic Resistor
	Table of Contents
	Overview
	Pinouts
	Arduino
	Arduino Docs
	Python & CircuitPython
	Python Docs
	Downloads

	Overview
	Pinouts
	Power Pins
	I2C Logic Pins
	Resistor Pins
	Extra Pins
	Adjusting the I2C Address

	Arduino
	I2C Wiring
	STEMMA QT Wiring
	Breadboard Wiring

	Library Installation
	Load Example
	Example Code
	Arduino Docs
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	STEMMA QT Wiring
	Breadboard Wiring

	Python Computer Wiring
	STEMMA QT Wiring
	Breadboard Wiring
	CircuitPython Installation of DS1841 Library
	Python Installation of DS1841 Library
	CircuitPython Usage
	Full CircuitPython Example Code
	Python Usage

	Full Python Example Code
	Python Docs
	Downloads
	Files
	Schematic
	Fab Print

