

June 2007

BC183C

NPN General Purpose Amplifer

Absolute Maximum Ratings $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	45	V
V _{CEO}	Collector-Emitter Voltage	30	V
V _{EBO}	Emitter-Base Voltage	6	V
I _C	Collector Current (DC)	100	mA
P _C	Collector Dissipation (T _a =25°C)	350	mW
T _{STG} , T _J	Storage Junction Temperature Range	- 55 ~ 150	°C

Electrical Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Conditions	Min.	Max	Units
BV _{CBO}	Collector-Base Voltage	I _C = 10μA	45		V
BV _{CEO}	Collector-Emitter Voltage	I _C = 2mA	30		V
BV _{EBO}	Emitter-Base Voltage	I _E = 100μA	6		V
I _{CBO}	Collector Cut-off Current	V _{CB} = 30V		15	nA
I _{EBO}	Emitter Cut-off Current	V _{EB} = 4V		15	nA
h _{FE}	DC Current Gain	$V_{CE} = 5V, I_{C} = 10\mu A$ $V_{CE} = 5V, I_{C} = 2.0mA$ $V_{CE} = 5V, I_{C} = 100mA$	40 120 80	800	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_{C} = 10 \text{mA}, I_{B} = 0.5 \text{mA}$ $I_{C} = 100 \text{mA}, I_{B} = 5.0 \text{mA}$		0.25 0.6	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	$I_C = 100 \text{mA}, I_B = 5 \text{mA}$		1.2	V
V _{BE} (on)	Base-Emitter On Voltage	$V_{CE} = 5V$, $I_C = 2mA$	0.55	0.7	V
СОВ	Output Capacitance	V _{CE} = 10V, f = 1.0MHz		5	pF
f _T	Current gain Bandwidth Product	$V_{CE} = 5V, I_{C} = 10mA$	150		MHz
h _{fe}	Small Signal Current Gain	$V_{CE} = 5V, I_{C} = 2mA$ 450 900 f = 1KHz		900	
NF	Noise Figure	V_{CE} = 5V, I_{C} = 200mA R_{G} = 2K Ω , f = 1KHz		10	dB

Typical Characteristics

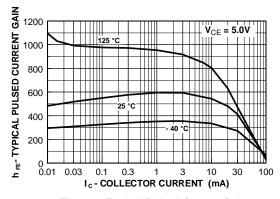
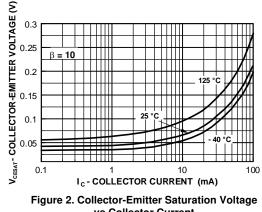



Figure 1. Typical Pulsed Current Gain vs Collector Current

vs Collector Current

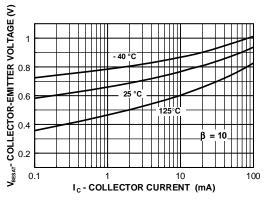


Figure 3. Base-Emitter Saturation Voltage vs Collector Curent

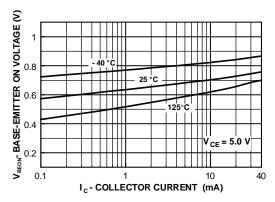


Figure 4. Base-Emitter ON Voltage vs Collector Current

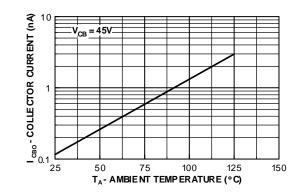


Figure 5. Collector-Cutoff Current vs Ambient Temperature

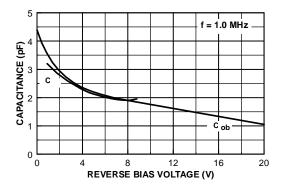


Figure 6. Input and Output Capacitance vs Reverse Bias Voltage

2

UniFET™

 VCX^{TM}

Wire™

FAIRCHILD SEMICONDUCTOR TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 OCX^{TM} SILENT SWITCHER® ACEx[™] FACT Quiet Series™ ActiveArray™ OCXPro™ GlobalOptoisolator™ SMART START™ OPTOLOGIC® Bottomless™ GTO™ SPM™ OPTOPLANAR™ HiSeC™ Build it Now™ Stealth™ I^2C^{TM} PACMAN™ SuperFET™ CoolFET™ **РОР**^{ТМ} i-LoTM $CROSSVOLT^{TM}$ SuperSOT™-3 Power247™ SuperSOT™-6 DOME™ ImpliedDisconnect™ $\mathsf{EcoSPARK}^{\mathsf{TM}}$ PowerEdge™ IntelliMAX™ SuperSOT™-8 E^2CMOS^{TM} PowerSaver™ ISOPLANAR™ SyncFET™ PowerTrench® ТСМ™ EnSigna™ LittleFET™ QFET® FACT[®] $\mathsf{MICROCOUPLER}^{\mathsf{TM}}$ TinyBoost™ FAST[®] QSTM TinyBuck™ MicroFET™ FASTr™ MicroPak™ QT Optoelectronics™ TinyPWM™ FPS™ Quiet Series™ MICROWIRE™ TinyPower™ RapidConfigure™ FRFET™ MSXTM TinyLogic[®] RapidConnect™ $MSXPro^{TM}$ TINYOPTO™ Across the board. Around the world.™ սSerDes™ TruTranslation™ ScalarPump™ UHC®

The Power Franchise®

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPE-CIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		

Rev. I23