LX24232

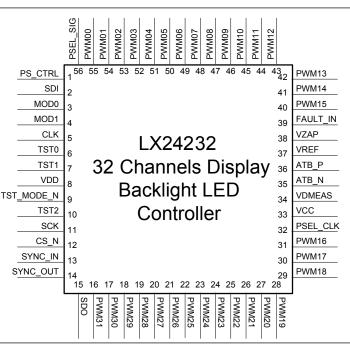
32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

KEY FEATURES

DESCRIPTION LX24232 is a 32 channel display backlight LED controller. The device is part of a chipset consisting of 32 independent PWM output channels with LX24232 and LX23108 - an 8 channel LED driver. independent 12-bit resolution duty-cycle (PWM high-Each LX24232 controller is capable of controlling up to time) control for each channel. 32 LED channels, by controlling up to 4 LX23108 LED Independent 12-bit phase delay (PD) control for each • drivers. Each LX23108 8-channel LED driver contains PWM output channel, optimized for 3D applications. eight FETs driving and controls up to 4x8 LED channels, where each channel is capable of driving a current of up to 32 independent, frame-by-frame controlled, Duty-200mA. Cycle data (DTC) LX24232 has 32 independent, frame-by-frame 32 independent, frame-by-frame controlled, Phase • controlled PWM output channels; each output channel Delay data (PD) supports independent duty-cycle and phase delay control. LX24232 uses V_{sync} input for flexible synchronization Duty-cycle & Phase Delay can be updated multiple schemes, including synchronization to either rising or times per frame falling edges, optimal V_{svnc} jitter support, as well as single Single or multiple PWM cycles in a single frame or multiple PWM cycles per frame support, and loss of support. V_{svnc} support. LX24232 consists of an on-chip internal power supply Frame-by-frame or multiple times per frame data rate • control circuitry that can be used to adjust voltage level of through high-speed SPI interface an external LED power source. This is done by regulating V_{sync} synchronization. LED supply voltage to optimum level, and thus minimizing system power loss. At the same time, accurate current Configurable PWM output synchronization to either regulation for each of the 32 LED strings is maintained. rising or falling edge of external sync pulse. LX24232 includes an on-chip analog to digital converter Advanced V_{sync} jitter support for drain voltage (VD) measurements, for power supply control, fault detection and protection. aunnart

	Channel Display Backlight LED Controller	 Loss of V_{sync} support 			
	hrough SPI interface which speeds up	Optimized LED power supply voltage control.			
communication between LX24	and reduces the number of control signals 232 and host system (FPGA, Video	 On-chip power supply trimming DAC for enhanced power supply control. 			
Processor, and LX24232 sup	ports a daisy chain connection in case	 ±1.5% precision current matching. 			
more than 32 ch LX24232 32-0	annels are required. Channel Display Backlight LED Controller	8-bit resolution current setting.			
	e types of system faults on each of its 32	 Internal A/D for drain voltage measurements. 			
	temperature, open LEDs and short LEDs). aults, unit takes the required measures to	 Automatic minimum FET Vd report. 			
protect system. LX24232 is o	capable of controlling up to 8 LX23108	 Open string, short LED and over-temperature protection for each individual channel. 			
channels are c	cial configuration, where two consecutive onnected together for increased current re details refer to application note.	On-chip thermal monitoring.			
IPORTANT: For	the most current data, consult Microsemi's webs	•			
T (00)	Plastic MLPQ 8 x 8mm QFN 56 pin				
T _A (°C)	Plastic MLPQ 8 x 8mm QFN 56 pin RoHS Compliant/Pb free MSL1				
T _A (° C) -40° to +85°C					



32 CHANNEL LED BACKLIGHT CONTROLLER

CONFIDENTIAL

LX24232

DATASHEET

THERMAL DATA (POWER CONSUMPTION)

21°C/W, according to JESD51-7.

Thermal resistance-junction to ambient

Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{iA})$.

ABSOLUTE MAXIMUM RATINGS

Supply Input Voltage (V_{CC} , V_{DD})	-0.5V $_{\text{DC}}$ to 4.5V $_{\text{DC}}$
All other pins	-0.5V_{DC} toV_{CC}+0.3 up to $4.5V_{DC}$
Operating Ambient Temperature Range	-40°C to +85°C
Maximum Operating Junction Temperature	150°C
ESD Protection at all I/O pins	± 4KV HBM
Storage Temperature Range	-65°C to +150°C
Package Peak Temperature for Solder Reflow (40 seconds maximum exposure)	+260°C (+0,-5°C)

Notes: Exceeding these ratings could result in damage to device. All voltages are with respect to Ground.

APPLICABLE DOCUMENTS

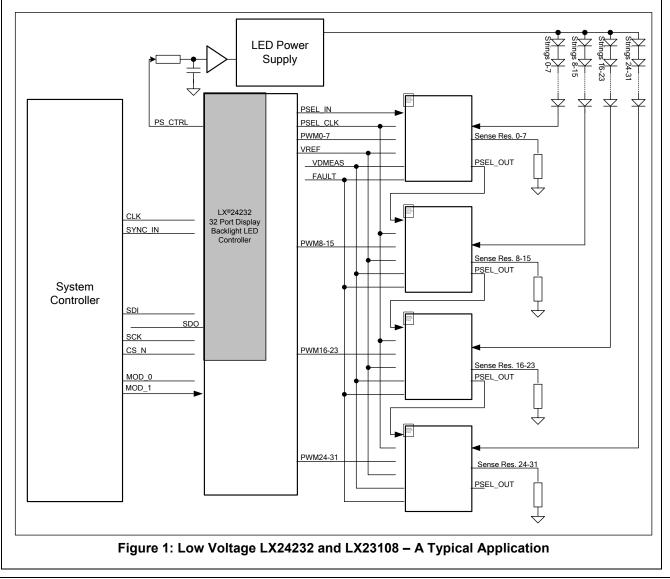
- LX23108AL 8 Channel LED Drivers datasheet (32QFN 5x5)
- LX23108AH 8 Channel LED Drivers datasheet (32QFN 7x7)
- AN-182, Designing a Low Current LED Backlight Driver System, cat no. 06-0077-080

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

TYPICAL APPLICATION INFORMATION


Typical Applications

- LCD Display Back-lighting
- LED Signage
- LED Displays

Figure 1 illustrates a typical application where a System Controller communicates with a LX24232 32 Channel Display Backlight LED Controller through an SPI bus. LX24232 is connected to four LX23108 arrays supporting a total of 32 LED strings. Each LX23108 transmits current very accurately and can drive eight LED strings. Output currents' value is set by the LX24232 which produces a precise and stable voltage, V_{REF} .

All four LX23108 components are cascaded, allowing LX24232 LED controller to sequentially select all 32 channels for monitoring, searching for VD_{MIN} and optimally adjusting power supply voltage through PDM control. Channel dimming is individually adjusted by 32 PWM output pins; 8 input channels per single LX23108 component. Currents are scaled by the external sense resistors.

Figure 2 shows a multiple connection of several LX24232 controllers, supporting 32x4 LED strings.

32 CHANNEL LED BACKLIGHT CONTROLLER

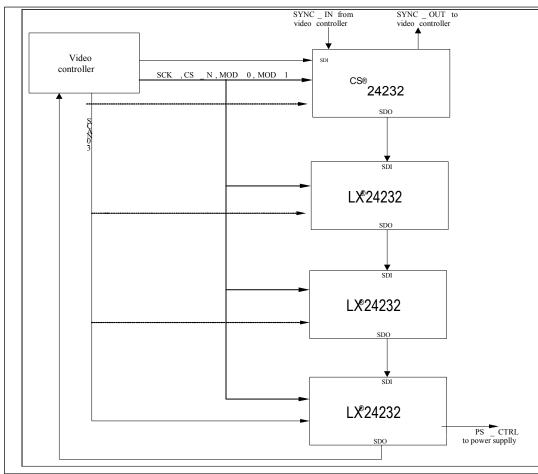


Figure 2: Typical Application with Four LED Controllers

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Electrical Characteristics

Unless otherwise specified, the following specifications apply to the operating ambient temperature, -40° to +85° C, and the following test conditions: $V_{DD} = V_{CC} = 3.3$ VDC.

Performance must be guaranteed for $0^{\circ}C \leq T_{J} \leq +110^{\circ}C$.

PARAMETER	SYMBOL	TEST CONDITIONS /		LX24232 LED CONTROLLER		UNITS
		COMMENT	MIN.	TYP.	MAX.	
POWER SUPPLY						
Input voltage	V _{DD} , V _{CC}	*Note 1	3.0	3.3	3.6	VDC
Operating current	I _{DD}	From V _{DD} power supply		3	5	mA
	I _{CC}	From V _{CC} power supply		3.5	5	mA
DIGITAL INTERFACE						
Input logic high threshold	V _{IH}		2.2			VDC
Input logic low threshold	V _{IL}				0.8	VDC
Output high voltage	V _{он}	I _{ОН} = -1mA	2.4			VDC
Output low voltage	V _{OL}	I _{OH} = 1mA			0.4	VDC
SCK clock frequency	F _{sck}				32	MHz
CLK frequency	F _{clk}	Duty Cycle 40% - 60%	3.5		8.192	MHz
SYNC_IN pulse width	sync_in_pulse		3			Clocks
SYNC_OUT pulse width	sync_out_pulse	T _{SYNC_OUT} [CLK] = 320*(PWM_FRDIV+1)		320		Clocks
	LED	CURRENT CONTROL				
DAC resolution	V _{ref_err}			8		bits
V _{REF} output accuracy error		$1.25 V_{DC} < V_{REF} \le 2.5 V_{DC}$			± 1.43	%
		$0.5 \text{ VDC} < V_{\text{REF}} < 1.25 V_{\text{DC}}$			± 2	%
	V _{ref}	$0.234 V_{DC} < V_{REF} < 0.5 V_{DC}$			± 5.26	%
V _{REF} output range					2.5	V _{DC}
Note 1: During power up, V _{DI}	should not preced	e V _{CC} .	1	•	•	
ADC						
Resolution				7		bits
LSB				15.6		mV
Offset error				1		LSB
Reading error		1 $V_{DC} \le Drain Voltage \le 2$ V_{DC}			± 3	LSB
Full scale ADC input				2		V
PWS CONTROL						
Duty-cycle resolution		At all system clock frequencies (fPWM)		12		bits
Phase-delay resolution		At all system clock frequencies (fPWM)		12		bits

LX24232

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

		DATASHEET						
PARAMETER	SYMBOL TEST CONDITIONS / COMMENT		LX24232 LED CONTROLLER			UNITS		
		MIN.	TYP.	MAX.				
PWM frequency range		$F_{PWM}[Hz] = \frac{CLK[MHz] \cdot 10^{6}}{4096 \cdot (PWM_FRDIV + 1)}$	50		2K	Hz		

SYSTEM PARAMETERS – PROTECTIO	NS				
Short LED detection	At T_{AMB} = 25°C and V_{CC} = 5VDC Short LED detection of <i>LX23108</i> FET Array. Detection is traced per channel when LED voltage is higher than "Short Drain Voltage Threshold".	6.0	6.4	6.8	V _{DC}
Over-temperature detection	Over-temperature indications per channel from <i>LX23108</i> LED Driver.	150	180	210	° C

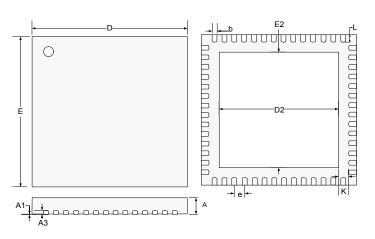
Functional Pin Description

NAME	PIN #	DESCRIPTION
AGND	EPAD	Exposed PAD – Analog ground. A proper ground plane should be deployed around this pin wherever possible.
VCC	33	Supply voltage for the internal analog circuit. A low ESR bypass capacitor $(1\mu F)$ should be placed as close as possible to this pin, using low impedance traces to AGND.
ATB_N ATB_P	35, 36	Internal test output pins; do not connect.
SDI	2	Serial Data Input pin. Data from SPI Host to this pin is clocked into input shift register at the rising edge of SCK clock. MSB is input first.
SDO	15	Serial Data Output pin. Data from input shift register is shifted out from this pin at the falling edge of SCK clock. MSB is output first. SDO pin can be connected to SDI pin of another device to form a cascaded SPI chain. Data from LED controller can also be transmitted to System Controller from this pin. If not used, leave this pin disconnected.
SCK	11	Clock signal for SPI operation. A single clock shifts data by one bit. It is only active when shifting data. This happens when CS_N is at 'low' level.
CS_N	12	Chip Select – SPI control signal input. Data shift starts when CS falls from 'high' to 'low' and data shifted into input register is latched into buffer registers at the rising edge of this signal.
SYNC_IN	13	Synchronization input. If not used, connect this pin to Ground.
SYNC_OUT	14	Synchronization output utilized for multi-chip applications. If unused, leave unconnected.
CLK	5	LX24232 system clock.

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

NAME	PIN #	DESCRIPTION		
VDD	8	Connects to Core Logic and I/O supply rail. A ceramic 1µF or greater decoupling capacitor should be connected from this pin to DGND.		
PWM0-31	55 to 40 31 to 16	PWM Gate control output signals used to command up to 4 x 8-channel LX23018LILQ LED Driver ICs		
VDMEAS	34	MOSFET drain voltage sensing input. External MOSFET drain voltage is sensed via this pin and used to control external power supply, maintaining optimum voltage for LED strings.		
FAULT_IN	39	A fault input signal coming from LED Driver IC. It is asserted 'low' when fault event is detected at one of the LED strings.		
PS_CTRL	1	Power supply control signal output. This Pulse Density Modulation signal (PDM) is used for interfacing to power supply, adjusting DC voltage of LED strings to optimum level. Should be connected to power supply control through resistor-capacitor low pass filter.		
MOD0	3	MOD_1MOD_0TRANSACTION TYPE00Duty Cycle Packet (12-bits resolution per channel)01Phase Delay Packet (12 bits resolution per channel)10Configuration Packet		
MOD1	4	1 0 Comparation Facket 1 1 Reserved for production		
TST0	6	Internal test pins. Should be tied to VDD.		
TST1	7	Internal test pins. Should be tied to VDD.		
TEST_MODE_N	9	Production test mode pin. Should be tied to VCC for normal operation.		
TST2	10	Internal test pins. Should be tied to VDD.		
VZAP	38	Zapping input for IC production trimming; must be tied to VCC.		
VREF	37	Analog reference output signal used for 8-channel LED drivers.		
PSEL_SIG	56	Channel selection serial output signal to LX23108, which is a 32 bits packet, used for selecting (monitoring) one of the 32 strings drain voltages and thermal sensors signals.		
PSEL_CLK	32	Channel selection serial clock signal. Each single clock shifts internal register data of LX23108 by one bit, allowing monitoring the next channel.		


32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Package Information

LQ

56-Pin 8x8mm QFN

DIM	MILLIM	ETERS	INCHES		
DIW	MIN	MAX	MIN	MAX	
А	0.80	1.00	0.031	0.039	
A1	0.00	0.05	0	0.002	
A3	0.20 RE	F	0.008 R	EF	
K	0.20 MI	N	0.008 MIN		
е	0.50 BS	C	0.02 BSC		
L	0.30	0.50	0.012	0.02	
b	0.18	0.30	0.007	0.012	
D2	6.00	6.25	0.236	0.246	
E2	6.00	6.25	0.236	0.246	
D	8.00 BSC		0.315 BSC		
E	8.00 BS	C	0.315 BSC		

Note:

1. Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

www.Microsemi.com

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

LX24232ILQ Principle of Operation

LX[®]24232ILQ 32-Channel Display Backlight LED Controller is designed to drive up to 32 LED strings and control external power supplies to regulate LED current. Interface with the Hosting system (Video Processor / Timing Controller (TCON) / MCU) is accomplished via a standard SPI bus. LED current and PWM dimming duty-cycle commands are received from Hosting system in a digital format and executed by internal circuitry to obtain desired backlight control. In addition, device provides a power supply control signal (PS_CTRL) used to control external power supply and trim it to optimum level. This minimizes system power dissipation, while maintaining accurate current regulation for each of the 32 LED strings.

Block Diagram

Figure 3 shows LX[®]24232ILQ LED 32-Channel Display Backlight LED Controller block diagram, describing its main functions. SPI block implements communication with external Controller. Power supply control circuitry adjusts LED strings' main voltage by utilizing PDM method (Pulse Density Modulation). Scanning control circuitry includes the required logic needed for performing zone selection.

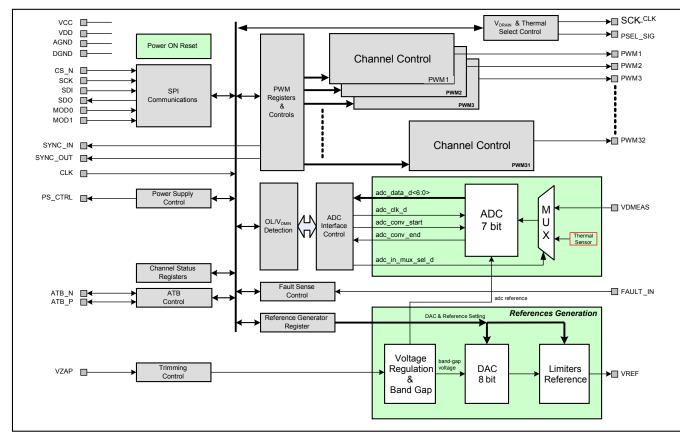


Figure 3: LX®24232ILQ: Detailed Block Diagram

LX24232

www.Microsemi.com

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

SPI Interface Characteristics

SPI interface consists of four signal lines: SDI, SDO, SCK, and CS_N (see

Figure 4).

- **SDI**: Serial data input to LX[®]24232ILQ
- SDO: Serial data output from LX[®]24232ILQ
- SCK: Serial data clock input
- **CS_N**: Serial data chip select

SDI signal is sampled at the rising edge of SCK, while SDO is driven at the falling edge of SDK, where MSB is shifted out first.

SPI data transmission/reception should be executed, starting from bit 447 to bit 0 (DTC Packet / Phase-Delay Packet modes), or starting from bit 223 to bit 0 (Configuration mode). Figure 5 displays SPI timing diagram for a 4-driver configuration. SPI data of the fourth LX[®]24232ILQ is transmitted first, following SPI data of the third, second and then first LX[®]24232ILQ.

SPI Noise Immunity

LX[®]24232ILQ SPI interface includes special noise immunity protection mechanisms, which improve electrical SPI interface immunity against high frequencies noise, short spikes and glitches in a noisy PCB environment. These mechanisms include:

- Filter short glitches and spikes of CS_N, MOD_0 and MOD_1 signals. These signals should remain in either logic "1" or logic "0" for at least 8 clocks (CLK). Shorter periods will be ignored.
- Ignore SPI transaction if number of SPI SCK clocks is not an integer multiple of 8 (8, 16, 24, 32, etc.); in this case
 internal registers remains unchanged.
- If SPI CS_N chip select signal is Set Low for less than 8 x System Clocks, this pulse is ignored, the transaction is canceled and the internal registers remains unchanged.

SPI Timing

Figure 4 and Figure 5 describe LX[®]24232ILQ SPI timing. Refer to Table 1 for timing characteristics.

- Last communication transaction before main counter wraps MUST be of "DTC Packet" type, otherwise transaction will not be loaded.
- First SCK SPI rising edge should occur Tdel_sck after CS_N SPI chip select negation.
- Minimum time between the end of SPI transaction to the beginning of the next one should be Tadj_cs.
- CS_N must be set to "1" at least 8 sysclks before SYNC_IN signal arrives. Otherwise, data will be ignored.

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

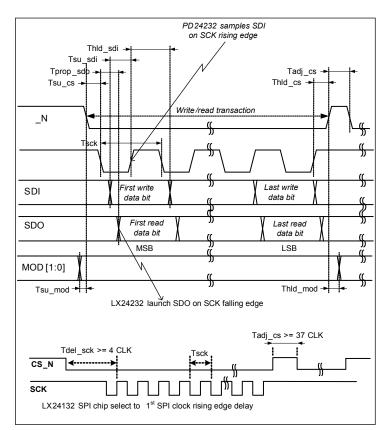
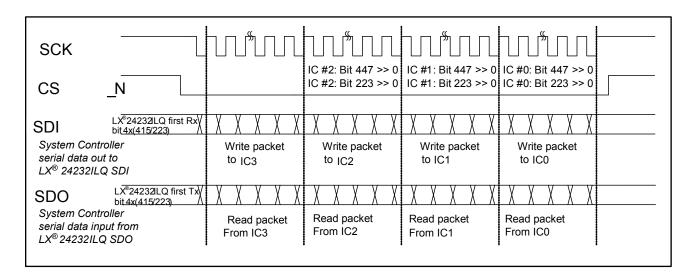


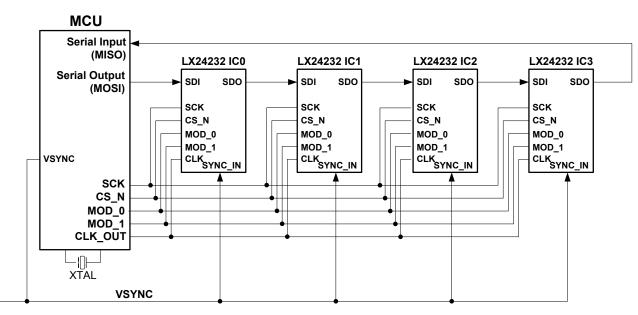
Figure 4: SPI Signals Diagrams

Table 1 - Timing Characteristics

PARAMETER	SYMBOL	TEST CONDITIONS / COMMENT		LX [®] 24232ILQ LED CONTROLLER		
			MIN.	TYP.	MAX.	
SDI set up time to SCK	T _{su_sdi}		5			ns
SDI hold time to SCK	T _{hld_sdi}		5			ns
SDO prop delay from SCK	T _{prop_sdo}	20 pF capacitive load			12	ns
CS_N set up time to SCK	T _{su_cs}		5			ns
CS_N hold time to SCK	T _{hld_cs}		5			ns
Time between adjacent SPI transactions	T _{adj_cs}			37		CLK
Time from de-assertion of CS_N to 1st SCK rising edge	T _{del_sck}		8			CLK
MOD[1:0] set up time to CS	T _{su_mod}		8			CLK
MOD[1:0] hold time to CS	T _{hld_mod}		0			CLK
SYNC_IN propagation delay	T _{PD_SYNC_IN}		8			CLK
SYNC_IN pulse width	sync_in_pulse		4			CLK
SYNC_OUT pulse width	sync_out_pulse	T _{SYNC_OUT} [CLK] = 320*(PWM_FRDIV+1)		320		CLK

Copyright © Microsemi


Rev 2.2 Updated: August 23, 2011, 17:21


CONFIDENTIAL

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Figure 5: SPI Signals Diagram for a Four LED Controllers Configuration

LX24232

mi *Microsemi* Page 1 gust 23, 2011, 17:21 Analog Mixed Signal Group 11861 Western Avenue, Garden Grove, CA. 92841, USA; Phone: 714-898-8121, Fax: 714-893-2570

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

LX24232ILQ Application Information _

Communication packet types

Chip configuration and monitoring is accomplished by sending and receiving a series of bits over SPI.

There are four transaction types that select the type of communication packet to be transmitted to LX24232. Only three of the four possible transaction types are used. These transactions are described in Table 2:

 Table 2 – Communication Packet Types

MOD_1 pin	MOD_0 pin	TRANSACTION TYPE
"0"	"0"	Duty Cycle Packet (12-bits resolution per channel)
"0"	"1"	Phase Delay Packet (12 bits resolution per channel)
"1"	"0"	Configuration Packet
'1"	'1"	Reserved for production

Packet type is chosen by setting MOD_0 and MOD_1 pins of LX24232ILQ according to Table 2, where: "0" – MOD_x signal is logic low.

"1" – MOD_x signal is logic high.

SPI Transaction Packets Overview:

LX24232ILQ SPI mechanism is based on a shift-register.

For each SPI transaction sent to LX24232ILQ (*Write* transactions), an SPI transaction of the same length is sent back to MCU (*Read* transaction).

There are four types of transaction packets:

- DTC (Duty-Cycle) Packet: Write packet contains duty-cycle data for each channel, in addition to control bits for controlling on-going operations. Read packet contains all information (ADC measurements, channel number having minimum drain-voltage measurement, etc.) required for on-going operation.
- **PD (Phase-Delay) Packet**: Write packet contains phase-delay values for each channel; Read packet contains no information (don't care).
- **CONFIG (Configuration) Packet**: Write packet contains all LX24232ILQ configuration fields, such as PWM frequency, LED current, etc. Read packet contains read-back of configuration information.
- **Production packet**: For production purposes only; cannot be accessed in normal operation.

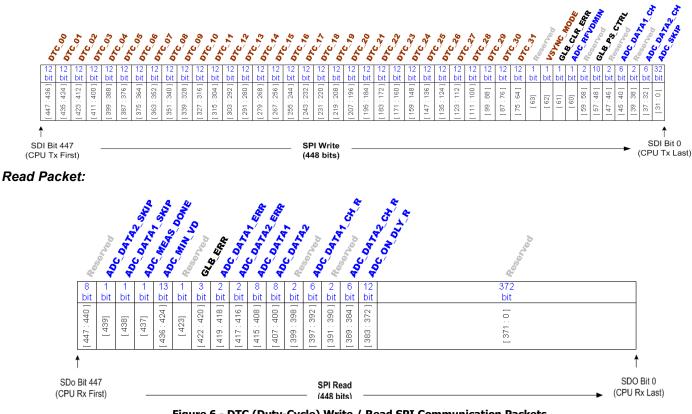
Important note: Bit locations with higher values indicate the most significant bit.

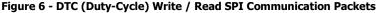
Example:

In ADC_DATA2 register in DTC-Read packet, bits 0-6 (bit location 400-406) represent ADC measurement value. Therefore, <u>bit location 406</u> (bit 6 of the register) is the <u>Most Significant bit</u>, and <u>bit location 400</u> (bit 0 of the register) is the <u>least significant bit</u>.

Figure 6, Figure 7, and Figure 8 illustrate the read/write registers involved in each SPI bit stream for operation and configuration mode¹.

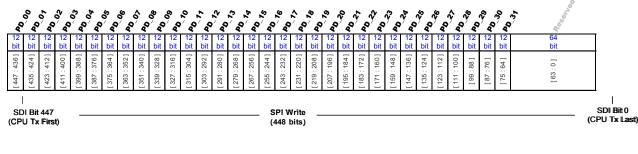
¹ For more details regarding specific bit(s) functions, contact your local Microsemi© representative.

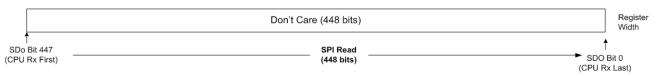



32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

DTC (Duty-Cycle) Packet (Mode Select Pins MOD_1, MOD_0 = "00"):

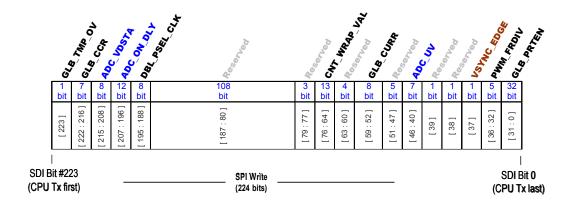

Write Packet:



PD (Phase Delay) Packet (Mode Select Pins MOD_1, MOD_0 = "01"):

Write Packet:

Read Packet:



32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Configuration Packet (Mode Select Pins MOD_1, MOD_0 = "10"):

Write Packet:

Read Packet:

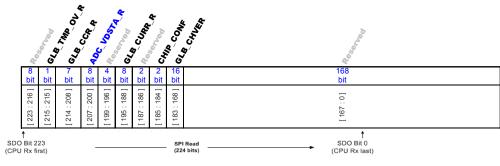
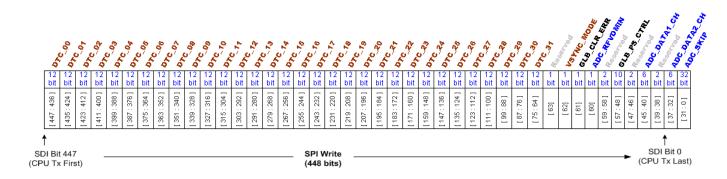


Figure 8 - Config Packet Write / Read Packets

For multiple chip applications, SPI communication should be cascaded (see Figure 5).

LX24232


www.Microsemi.com

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Detailed SPI Transaction Packets Description

DTC-Write Packet Bit Description (MOD_1, MOD_0 = "00"):

Figure 9 - DTC (Duty-Cycle) Write SPI Communication Packets

Table 3 - DTC Write Packet Bit Description Table

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
1	ADC_SKIP	ADC converter "skip channel measurement" control bit. Bit-per-channel control. When ADC_SKIP(n) bit is set, ADC will skip drain voltage measurement of the selected channel. For example, if ADC_SKIP(1) = "1", then LX23108ILQ channel connected to PWM1 pin will be skipped. ADC_SKIP bit should be set if duty-cycle value (DTC_xx) of a channel is lower than ADC_ON_DLY register value (see CONFIG-Write packet): set ADC_SKIP(n) = $\begin{cases} 0 & if (DTC_n > ADC_ON_DLY) \\ 1 & if (DTC_n \le ADC_ON_DLY) \end{cases}$	DTC Write	0-31	32	N/A
2	ADC_DATA2_CH	ADC_DATA2_CH = 0 to 31: Selects which PWM FET V _{drain} channel ADC2 should measure. ADC_DATA2_CH = 32: ADC2 measures LX [®] 24232ILQ chip temperature. Refer to ADC_DATA2 register (DTC read-packet)	DTC Write	32-37	6	0x00
3	Reserved	Reserved	DTC Write	38-39	2	N/A
4	ADC_DATA1_CH	ADC_DATA2_CH = 0 to 31: Selects which PWM FET Vdrain channel ADC1 should measure. ADC_DATA2_CH = 32: ADC1 measures LX [®] 24232ILQ chip temperature. Refer to ADC_DATA1 register (DTC read-packet).	DTC Write	40-45	6	0x00
5	Reserved	Reserved	DTC Write	46-47	2	N/A

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
6	GLB_PS_CTRL	Ten bit D/A used for controlling PS voltage, controlling LEDs power supply. Register value controls PDM (Pulsed Density Modulation) signal on PS_CTRL output pin. External RC-filter (typically 2K Ω and 0.1µF) converts PDM signal to DC voltage ranging from 0 to 3.3VDC. $PS_CTRL[V]^* = GLB_PS_CTRL \cdot \frac{3.3V}{1024}$ * After RC low-pass filter	DTC Write	48-57	10	0x100
7	Reserved	Reserved	DTC Write	58-59	2	N/A
8	ADC_RFVDMIN	ADC refresh minimum VD measurement control bit. Setting bit to "1" sets ADC_MINVD register measured bits 0-6 to 0x7F and clears valid bit 7 (DTC read-packet). ADC_RFMINVD bit is immediately cleared. Chip starts measuring FET V _{drain} for all 32 strings. After all 32 FET V _{drain} channels are measured, ADC_MIN_VD register, bits 0-6 (adc_measure bits), contains the lowest FET V _{drain} ADC reading. ADC_MIN_VD Valid bit 7 is set to '1' and ADC_MEASURE_DONE register bit 0 is set to '1'. Whenever ADC_MEASURE_DONE register equals '1', it means LX®24232ILQ had found the lowest FET V _{drain} out of 32 channels. User should read ADC_MIN_VD register's value and trim PS voltage by writing to the GLB_PS_CTRL register. Setting again ADC_RFMINVD bit to 1 will start a new minimum FET V _{drain} search cycle.	DTC Write	60	1	0x00
9	GLB_CLR_ERR	Setting bit to 1 clears GLB_ERR register error bits (DTC Read-packet bits 420 to 422) and re-enables all channels that were turned off by $LX^{\textcircled{0}}23108ILQ$ 8-Port LED Drivers due to FET V _{drain} over-voltage or over-temperature. Note that over temperature/over-voltage bit in GLB_ERR register cannot be cleared by GLB_CLR_ERR register in cases where it was set due to over temperature event. This field is cleared on write.	DTC Write	61	1	0x00
10	VSYNC_MODE	External <i>SYNC_IN pin</i> synchronization mode. VSYNC_MODE = "0": No synchronization mode (Stand-Alone operation). In this mode LX24232ILQ ignores SYNC_IN input pin state, and PWM block internal 13-bit main counter automatically wraps-around at 4095> 0. VSYNC_MODE = "1": External Synchronization mode. In this mode, PWM output signals are synchronized to either a rising-edge or a falling edge (selected by VSYNC_EDGE field in CONFIG packet, bit 37) of SYNC_IN pin. PWM block 13-bit main counter wraps-around when synchronization signal arrives, synchronizing PWM output signals. If synchronization signal fails to arrive (SYNC_IN pin state does not change), 13-bit main counter wraps-around at the value written in CNT_WRAP_VAL register (CONFIG-Write packet, bits 64 to 76). For more information, see <u>"PWM Synchronization input (SYNC_IN pin)"</u> .	DTC Write	62	1	0x00

Page 17 of 43

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

#Register NameDescriptionTypeRel Location(bits)Vi11ReservedReserved DTC_{10} 63111ReservedReserved DTC_{10} 63112PVM output high-time (duty-cycle) control. Sets PVM high-time (duty-cycle) control for PVM channel 31 one-shot down- control.DTC_064-75112DTC_31 $\frac{17PML(a)-TT}{MML} = \frac{MTC_0(a)}{4M6} \cdot \frac{TPMML_CTCLE fms] + if OTC_0(a) - 4005}{MMH_CTCLE(m) + if OCOTC_1(a) - 4005}.DTC64-75113DTC_30PVM high-time (duty-cycle) control for PVM23. Refer to DTC_31.DTCWrite76-671214DTC_29PVM high-time (duty-cycle) control for PVM22. Refer to DTC_31.DTCWrite88-9912115DTC_26PVM high-time (duty-cycle) control for PVM23. Refer to DTC_31.DTCWrite100-1111216DTC_27PVM high-time (duty-cycle) control for PVM25. Refer to DTC_31.DTCWrite136-1471218DTC_26PVM high-time (duty-cycle) control for PVM25. Refer to DTC_31.DTCWrite136-1471219DTC_23PVM high-time (duty-cycle) control for PVM25. Refer to DTC_31.DTCWrite136-1471219DTC_24PVM high-time (duty-cycle) control for PVM25. Refer to DTC_31.DTCWrite146-1711219DTC_23PVM high-time (duty-cyc$		DATASHEET							
11ReservedWrite6.3112PWM output light-time (duty-cycle) control. Sets PWM high-time (duty-cycle) control. Sets PWM high-time (duty-cycle) control. Sets PWM high-time (duty-cycle) control for PWM31 output pin. DTC range is 0 to 0495. Value writen to FWM output is defined by the following formula: $T_{PRH_{1}(p)=T}[m] = \begin{bmatrix} \frac{DTC_{-2}(1)}{2006} - T_{PRH_{-1}CTC_{-1}(p) \leq 4094} \\ \frac{DTC_{-31}}{2006} - T_{PRH_{-1}CTC_{-1}(p) \leq 4095} \end{bmatrix}$ DTC More is 0 to 31, and: $T_{PRH_{1}(p)=T}[m] = \begin{bmatrix} \frac{DTC_{-2}(1)}{4006} - T_{PRH_{-1}CTC_{-1}(p) \leq 4094} \\ \frac{DTC_{-31}}{2006} - T_{PRH_{-1}CTC_{-1}(p) \leq 4095} \end{bmatrix}$ DTC More is 0 to 31, and: $T_{PRH_{-1}CTC_{-1}(p) = \frac{4096 \cdot (PWM_{-1}FRDH' + 1)}{1000 \cdot CLK_{1}MIE_{-1}} \end{bmatrix}$ DTC More is 0 to 31, and: $T_{PRH_{-1}CTCLE_{-1}(m) = \frac{4096 \cdot (PWM_{-1}FRDH' + 1)}{1000 \cdot CLK_{1}MIE_{-1}} \end{bmatrix}$ DTC More is 0 to 31, and: $T_{PRH_{-1}CTCLE_{-1}(m) = \frac{4096 \cdot (PWM_{-1}FRDH' + 1)}{1000 \cdot CLK_{1}MIE_{-1}} \end{bmatrix}$ DTC More is 0 to 31, and: $T_{PRH_{-1}CTCLE_{-1}(m) = \frac{4096 \cdot (PWM_{-1}FRDH' + 1)}{1000 \cdot CLK_{1}MIE_{-1}} \end{bmatrix}$ DTC More is 0 for 0 to CL 31 values are loaded to DTC_0-DTC_31 registers aginal. For more information see "Advanced PWH output control".DTC More is 0 for 0 to CL 31 values are loaded to DTC_0-DTC_31.DTC Write76-871213DTC_29PWM high-time (duty-cycle) control for PWM29. Refer to DTC_31.DTC Write88-991214DTC_29PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.DTC Write112-11215DTC_26PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.DTC Write126-14719DTC_21PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31		Register Name	Description		Bit Location		Reset Value		
12DTC_31Sets PWH high-time (PWM output = "1") of PWM31 output pin. DTC range is 0 to 4095. Value written in this field is written to PWM othannel 31 one-shot down- counter. 	11	Reserved	Reserved		63	1	N/A		
13 DTC_30 PWM high-time (duty-cycle) control for PWM30. Refer to DTC_31. Write 76-87 12 14 DTC_29 PWM high-time (duty-cycle) control for PWM29. Refer to DTC_31. DTC Write 88-99 12 15 DTC_28 PWM high-time (duty-cycle) control for PWM28. Refer to DTC_31. DTC Write 100-111 12 16 DTC_27 PWM high-time (duty-cycle) control for PWM27. Refer to DTC_31. DTC Write 112-123 12 17 DTC_26 PWM high-time (duty-cycle) control for PWM26. Refer to DTC_31. DTC Write 124-135 12 18 DTC_25 PWM high-time (duty-cycle) control for PWM25. Refer to DTC_31. DTC Write 136-147 12 19 DTC_24 PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31. DTC Write 148-159 12 20 DTC_23 PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31. DTC Write 160-171 12 21 DTC_22 PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31. DTC Write 172-183 12 22 DTC_23 PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31. DTC Write 172-183 12 <td>12</td> <td>DTC_31</td> <td>Sets PWM high-time (PWM output = "1") of PWM31 output pin. DTC range is 0 to 4095. Value written in this field is written to PWM channel 31 one-shot down- counter. Absolute high-time of PWM output is defined by the following formula: $\frac{T_{PWM(n)="1"}[ms] = \begin{cases} \frac{DTC_{(n)}}{4096} \cdot T_{PWM_{CYCLE}}[ms] & \text{if } 0 \le DTC_{(n)} \le 4094 \\ Always & "1" & \text{if } DTC_{(n)} = 4094 \end{cases}$ Where: n = 0 to 31, and: $\frac{T_{PWM_{CYCLE}}[ms] = \frac{4096 \cdot (PWM_{FRDIV} + 1)}{1000 \cdot CLK[MHz]}}{1000 \cdot CLK[MHz]}$ Note: New DTC_0 to DTC_31 values are loaded to DTC_0-DTC_31 registers on next PWM main-counter wrap-around, after rising edge of CS_N input signal.</td> <td></td> <td>64-75</td> <td>1</td> <td>N/A</td>	12	DTC_31	Sets PWM high-time (PWM output = "1") of PWM31 output pin. DTC range is 0 to 4095. Value written in this field is written to PWM channel 31 one-shot down- counter. Absolute high-time of PWM output is defined by the following formula: $ \frac{T_{PWM(n)="1"}[ms] = \begin{cases} \frac{DTC_{(n)}}{4096} \cdot T_{PWM_{CYCLE}}[ms] & \text{if } 0 \le DTC_{(n)} \le 4094 \\ Always & "1" & \text{if } DTC_{(n)} = 4094 \end{cases} $ Where: n = 0 to 31, and: $ \frac{T_{PWM_{CYCLE}}[ms] = \frac{4096 \cdot (PWM_{FRDIV} + 1)}{1000 \cdot CLK[MHz]}}{1000 \cdot CLK[MHz]} $ Note: New DTC_0 to DTC_31 values are loaded to DTC_0-DTC_31 registers on next PWM main-counter wrap-around, after rising edge of CS_N input signal.		64-75	1	N/A		
14 DTC_29 PWM high-time (duty-cycle) control for PWM29. Refer to DTC_31. Write 88-99 12 15 DTC_28 PWM high-time (duty-cycle) control for PWM28. Refer to DTC_31. DTC Write 100-111 12 16 DTC_27 PWM high-time (duty-cycle) control for PWM27. Refer to DTC_31. DTC Write 112-123 12 17 DTC_26 PWM high-time (duty-cycle) control for PWM26. Refer to DTC_31. DTC Write 124-135 12 18 DTC_25 PWM high-time (duty-cycle) control for PWM25. Refer to DTC_31. DTC Write 136-147 12 19 DTC_24 PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31. DTC Write 160-171 12 20 DTC_23 PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31. DTC Write 160-171 12 21 DTC_22 PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31. DTC Write 172-183 12 22 DTC_21 PWM high-time (duty-cycle) control for PWM21. Refer to DTC_31. DTC Write 172-183 12	13	DTC_30	PWM high-time (duty-cycle) control for PWM30. Refer to DTC_31.		76-87	12	N/A		
15DTC_28PWM high-time (duty-cycle) control for PWM28. Refer to DTC_31.Write100-1111216DTC_27PWM high-time (duty-cycle) control for PWM27. Refer to DTC_31.DTC Write112-1231217DTC_26PWM high-time (duty-cycle) control for PWM26. Refer to DTC_31.DTC Write124-1351218DTC_25PWM high-time (duty-cycle) control for PWM25. Refer to DTC_31.DTC Write136-1471219DTC_24PWM high-time (duty-cycle) control for PWM24. Refer to DTC_31.DTC Write148-1591220DTC_23PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31.DTC Write160-1711221DTC_22PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.DTC Write172-1831222DTC_21PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.DTC Write172-18312	14	DTC_29	PWM high-time (duty-cycle) control for PWM29. Refer to DTC_31.		88-99	12	N/A		
16DTC_27PWM high-time (duty-cycle) control for PWM27. Refer to DTC_31.Write112-1231217DTC_26PWM high-time (duty-cycle) control for PWM26. Refer to DTC_31.DTC Write124-1351218DTC_25PWM high-time (duty-cycle) control for PWM25. Refer to DTC_31.DTC Write136-1471219DTC_24PWM high-time (duty-cycle) control for PWM24. Refer to DTC_31.DTC Write148-1591220DTC_23PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31.DTC Write160-1711221DTC_22PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.DTC Write172-1831222DTC_21PWM high-time (duty-cycle) control for PWM21. Refer to DTC_31.DTC Write172-18312	15	DTC_28	PWM high-time (duty-cycle) control for PWM28. Refer to DTC_31.		100-111	12	N/A		
17DTC_26PWM high-time (duty-cycle) control for PWM26. Refer to DTC_31.Write124-1351218DTC_25PWM high-time (duty-cycle) control for PWM25. Refer to DTC_31.DTC Write136-1471219DTC_24PWM high-time (duty-cycle) control for PWM24. Refer to DTC_31.DTC Write148-1591220DTC_23PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31.DTC Write160-1711221DTC_22PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.DTC Write172-1831222DTC_21PWM high-time (duty-cycle) control for PWM21. Refer to DTC_31.DTC Write184-19512	16	DTC_27	PWM high-time (duty-cycle) control for PWM27. Refer to DTC_31.		112-123	12	N/A		
18DTC_25PWM high-time (duty-cycle) control for PWM25. Refer to DTC_31.Write136-1471219DTC_24PWM high-time (duty-cycle) control for PWM24. Refer to DTC_31.DTC Write148-1591220DTC_23PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31.DTC Write160-1711221DTC_22PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.DTC Write172-1831221DTC_21PWM high-time (duty-cycle) control for PWM21. Refer to DTC_31.DTC DTC184-19512	17	DTC_26	PWM high-time (duty-cycle) control for PWM26. Refer to DTC_31.		124-135	12	N/A		
19DTC_24PWM high-time (duty-cycle) control for PWM24. Refer to DTC_31.Write148-1591220DTC_23PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31.DTC Write160-1711221DTC_22PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.DTC Write172-1831222DTC_21PWM high-time (duty-cycle) control for PWM21. Refer to DTC_31.DTC Urite184-19512	18	DTC_25	PWM high-time (duty-cycle) control for PWM25. Refer to DTC_31.		136-147	12	N/A		
20 DTC_23 PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31. Write 160-171 12 21 DTC_22 PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31. DTC Write 172-183 12 22 DTC_21 PWM high-time (duty-cycle) control for PWM21. Refer to DTC_31. DTC Write 184-195 12	19	DTC_24	PWM high-time (duty-cycle) control for PWM24. Refer to DTC_31.		148-159	12	N/A		
21 DTC_22 PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31. Write 1/2-183 12 22 DTC_21 PWM high-time (duty-cycle) control for PWM21. Refer to DTC_31. DTC 184-195 12	20	DTC_23	PWM high-time (duty-cycle) control for PWM23. Refer to DTC_31.		160-171	12	N/A		
22 DIC / PWM high-time (duty-cycle) control for PWM21, Refer to DIC 31. 184-195 12	21	DTC_22	PWM high-time (duty-cycle) control for PWM22. Refer to DTC_31.		172-183	12	N/A		
Wite	22	DTC_21	PWM high-time (duty-cycle) control for PWM21. Refer to DTC_31.	DTC Write	184-195	12	N/A		

www.Microsemi.com

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

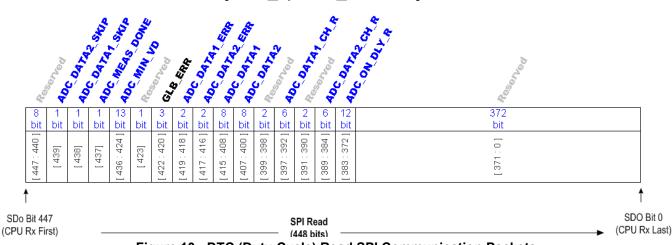
Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
23	DTC_20	PWM high-time (duty-cycle) control for PWM20. Refer to DTC_31.	DTC Write	196-207	12	N/A
24	DTC_19	PWM high-time (duty-cycle) control for PWM19. Refer to DTC_31.	DTC Write	208-219	12	N/A
25	DTC_18	PWM high-time (duty-cycle) control for PWM18. Refer to DTC_31.	DTC Write	220-231	12	N/A
26	DTC_17	PWM high-time (duty-cycle) control for PWM17. Refer to DTC_31.	DTC Write	232-243	12	N/A
27	DTC_16	PWM high-time (duty-cycle) control for PWM16. Refer to DTC_31.	DTC Write	244-255	12	N/A
28	DTC_15	PWM high-time (duty-cycle) control for PWM15. Refer to DTC_31.	DTC Write	256-267	12	N/A
29	DTC_14	PWM high-time (duty-cycle) control for PWM14. Refer to DTC_31.	DTC Write	268-279	12	N/A
30	DTC_13	PWM high-time (duty-cycle) control for PWM13. Refer to DTC_31.	DTC Write	280-291	12	N/A
31	DTC_12	PWM high-time (duty-cycle) control for PWM12. Refer to DTC_31.	DTC Write	292-303	12	N/A
32	DTC_11	PWM high-time (duty-cycle) control for PWM11. Refer to DTC_31.	DTC Write	304-315	12	N/A
33	DTC_10	PWM high-time (duty-cycle) control for PWM10. Refer to DTC_31.	DTC Write	316-327	12	N/A
34	DTC_09	PWM high-time (duty-cycle) control for PWM9. Refer to DTC_31.	DTC Write	328-339	12	N/A
35	DTC_08	PWM high-time (duty-cycle) control for PWM8. Refer to DTC_31.	DTC Write	340-351	12	N/A
36	DTC_07	PWM high-time (duty-cycle) control for PWM7. Refer to DTC_31.	DTC Write	352-363	12	N/A
37	DTC_06	PWM high-time (duty-cycle) control for PWM6. Refer to DTC_31.	DTC Write	364-375	12	N/A
38	DTC_05	PWM high-time (duty-cycle) control for PWM5. Refer to DTC_31.	DTC Write	376-387	12	N/A
39	DTC_04	PWM high-time (duty-cycle) control for PWM4. Refer to DTC_31.	DTC Write	388-399	12	N/A
40	DTC_03	PWM high-time (duty-cycle) control for PWM3. Refer to DTC_31.	DTC Write	400-411	12	N/A

LX24232

Page 19 of 43

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER


Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
41	DTC_02	PWM high-time (duty-cycle) control for PWM2. Refer to DTC_31.	DTC Write	412-423	12	N/A
42	DTC_01	PWM high-time (duty-cycle) control for PWM1. Refer to DTC_31.	DTC Write	424-435	12	N/A
43	DTC_00	PWM high-time (duty-cycle) control for PWM0. Refer to DTC_31.	DTC Write	436-447	12	N/A

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

DTC-Read Transaction Packet (MOD_1, MOD_0 = "00"):

Table 4 - DTC Read Packet Bit Description Table

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
1	Reserved	Reserved. Value of this field has no meaning.	DTC Read	0-371	372	N/A
2	ADC_ON_DLY_R	Reports back the value written to ADC_ON_DLY register in CONFIG-Write packet (bit location 196-207).	DTC Read	372-383	12	0x03
3	ADC_DATA2_CH_R	Channel number indicated by this register is the channel used for ADC_DATA2 measurements. ADC_DATA2_CH_R reports channel number (0 to 31) or temperature (32) measured by ADC_DATA2. ADC_DATA2_CH_R is the channel number selected by ADC_DATA2_CH of the previous DTC-Write transaction. For more information see <u>"Internal A/D Operation"</u> .	DTC Read	384-389	6	0x00
4	Reserved	Reserved. Value of this field has no meaning.	DTC Read	390-391	2	N/A
5	ADC_DATA1_CH_R	Channel number indicated by this register is the channel used for ADC1 measurements. ADC_DATA1_CH_R reports channel number (0 to 31) or temperature (32) measured by ADC1. ADC_DATA1_CH_R is the channel number selected by ADC_DATA1_CH of the previous DTC-Write transaction. For more information see <u>"Internal A/D Operation"</u> .	DTC Read	392-397	6	0x00
6	Reserved	Reserved. Value of this field has no meaning.	DTC Read	398-399	2	N/A

www.Microsemi.com

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

		DATASHEET							
Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value			
7	ADC_DATA2	ADC_DATA2 measurement report. This field contains measurement value, and a valid bit. Bit 0-6: ADC measurement value (bit location 400-406): Value in these bits is the ADC measurement ADC_DATA2_CH_R register (bits 384-389). For ADC_DATA2_CH_R = 0 to 31 , the value that represents LX23108ILQ FET drain-voltage measurement connected to PWM channel specified by ADC_DATA2_CH_R: $VD[V] = ADC_DATA2_CH_R$: These bits are read only. For ADC_DATA2_CH_R = 32 , the value that represents ADC measurement of LX24232ILQ temperature: $LX24232ILQ Temp[^{\circ}C] = 4.3427 \cdot ADC_DATA2[6:0] - 273$ Bit 7 (bit location 407): valid bit "0": ADC measurement bits 0-6 are <u>invalid</u> . Value should be ignored. "1": ADC measurement bits 0-6 are valid. This bit is cleared on read. Note: Since valid bit is of the "clear on read" type (RC), each SPI transaction clears this bit.	DTC Read	400-407	8	0x00			
8	ADC_DATA1	ADC_DATA1 measurement report. This field contains measurement value, and a valid bit. Bit 0-6: ADC measurement value (bit location 408 – 414): Value in these bits is the ADC measurement ADC_DATA1_CH_R register (bits 384-389). For ADC_DATA1_CH_R = 0 to 31 , the value that represents LX23108ILQ FET drain-voltage measurement connected to PWM channel specified by ADC_DATA1_CH_R: $VD[V] = ADC_DATA1_CH_R$: $VD[V] = ADC_DATA1[6:0] \cdot \frac{2V}{128}$ These bits are read only. For ADC_DATA1_CH_R = 32 , the value that represents ADC measurement of LX24232ILQ temperature: $LX24232ILQ Temp[^{\circ}C] = 4.3427 \cdot ADC_DATA1[6:0] - 273$ Bit 7 (bit location 415): valid bit "0": ADC measurement bits 0-6 are <u>invalid</u> . Value should be ignored. "1": ADC measurement bits 0-6 are <u>valid</u> . This bit is cleared on read. Note: Since valid bit is of the "clear on read" type (RC), each SPI transaction clears this bit.	DTC Read	408-415	8	0x00			
Conv	riaht © Microsemi	Microsemi			Page 22	of 13			

LX24232

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

Field Register Name Description Trans. Pine Location Length Location Register Name ADC_DATA2 Messurement Fault indications. Bit 0 (bit location 13:5): under Voltage fault. The Normalian interval indication interval indications. Bit 0 (bit location 13:5): under Voltage fault. The Normalian interval indication interval indication interval indication 40:40. The Normalian intervalindication indication 40:40.<			DATASHEET						
10 ADC_DATA2_Measurement Fault indications. BF 0 (bit location 413): Under Voltage fault. BF 0 (bit location 416): Under Voltage fault. BF 0 (bit location 416): Under Voltage fault. BF 0 (bit location 416): Under Voltage fault. BF 0 (bit location 417): Weither adde, bit location 40.00, UV enginer (DVMFC) weither adde (DVMFC) weither		Register Name	Description			_			
10 ADC_DATA1_ERR Bit 1 (bit location 418): Under Voltage fault. "0" - No faults. "1" - Under-Voltage fault. When "1", ADC reading for channel number indicated by ADC_DATA1_CH_R register is below the value specified in ADC_UV PAC_DATA1_CH_R register is below the value specified in ADC_UV ADC_DATA1_CH_R register (SORTIG-Write packet, bits location 40-46). This Fault is used for indicating an open-string / LED disconnection fault condition. DTC PTC 418-419 2 0x00 10 ADC_DATA1_ERR Bit 1 (bit location 419): Over Temperature / Over Voltage fault: "0" - No faults. "1" - Over Temperature / Over Voltage fault. When "1", at least one of the following faults has occurred: DTC Read 418-419 2 0x00 10 ADC_DATA1_ERR Setting bit 0 in GLB_CLR_ERR register (DTC-Write packet) to "1" clears both bits. Note: ADC_DATA1_CH_R register (DTC-Write packet) to "1" C 0x00	9	ADC_DATA2_ERR	 Bit 0 (bit location 416): Under Voltage fault "0" - No faults. "1" - Under-Voltage Fault. When "1", ADC reading for channel number indicated by ADC_DATA2_CH_R register is below the value specified in ADC_UV register (CONFIG-Write packet, bits location 40-46). This Fault is used for indicating an open-string / LED disconnection fault condition. Note: a channel with under-voltage fault will not be included in the automatic search for minimum VD measurement. Bit 1 (bit location 417): over temperature / over voltage fault: "0" - No faults. "1" - Over Temperature / Over Voltage Fault. When "1", at least one of the following faults has occurred: LX23108ILQ FET drain voltage connected to PWM channel indicated by ADC_DATA2_CH_R was above Short LED Detection level (8-10V, typical 8.8V) An over-temperature event occurred in channel number indicated by ADC_DATA2_CH_R register. Setting bit 0 in GLB_CLR_ERR register (DTC-Write packet) to "1" clear both bits. Note: ADC_DATA2_ERR error is valid only in cases where valid bit (bit 7) of ADC_DATA2 register is set. 		416-417	2	0x00		
Copyright © Microsemi Page 23 of 43			 Bit 0 (bit location 418): Under Voltage fault "0" – No faults. "1" – Under-Voltage fault. When "1", ADC reading for channel number indicated by ADC_DATA1_CH_R register is below the value specified in ADC_UV register (CONFIG-Write packet, bits location 40-46). This Fault is used for indicating an open-string / LED disconnection fault condition. Note: a channel with under-voltage fault will not be included in the automatic search for minimum VD measurement. Bit 1 (bit location 419): Over Temperature / Over Voltage fault: "0" – No faults. "1" – Over Temperature / Over Voltage fault. When "1", at least one of the following faults has occurred: LX23108ILQ FET drain voltage connected to PWM channel indicated by ADC_DATA1_CH_R was above the Short LED Detection level (8-10V, typical 8.8V) An over-temperature event occurred in channel number indicated by ADC_DATA1_CH_R register. Setting bit 0 in GLB_CLR_ERR register (DTC-Write packet) to "1" clears both bits. Note: ADC_DATA1_ERR error is valid only in cases where the valid bit (bit 7) of ADC_DATA1 register is set. 		418-419				

www.Microsemi.com

LX24232

Copyright © Microsemi Rev 2.2 Updated: August 23, 2011, 17:21 11861 Western Aveni ugust 23, 2011, 17:21 Analog Mixed Signal Group 11861 Western Avenue, Garden Grove, CA. 92841, USA; Phone: 714-898-8121, Fax: 714-893-2570

32 CHANNEL LED BACKLIGHT CONTROLLER

D	ATASHEET

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
11	GLB_ERR	 Global Error Register. Bit 0 (bit location 420): Global Under-Voltage "0": No Faults. "1": Under-Voltage fault occurred in one of the channels. Setting bit 0 in <i>GLB_CLR_ERR</i> register to "1" clear this bit. Bit 1 (bit location 421): Global Over-Temp / Over-Voltage "0": No Faults. "1": Over-Voltage or Over-Temperature occurred in one of the channels Setting bit 0 in <i>GLB_CLR_ERR</i> register to "1" clear this bit. Bit 2 (bit location 422): Global Skip indication: "0" – Normal operation "1" – <u>At least one</u> of the 32 channels was not sampled by the internal ADC, due to a skip command. See <i>ADC_DATA1_SKIP</i> and <i>ADC_DATA2_SKIP</i> fields in this packet, bit location 438 and 439). This bit is updated automatically (set or cleared) by LX24232ILQ. 	DTC Read	420-422	3	0x00
12	Reserved	Reserved	DTC Read	423	1	N/A

LX24232

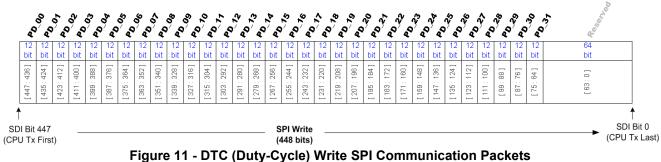
32 CHANNEL LED BACKLIGHT CONTROLLER

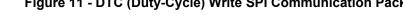
DATASHEET Field Trans. Bit Length Reset **Register Name** Description # Value Location (bits) Туре ADC Automatic minimum drain-voltage (VD) register. This register has three fields: 1. Minimum drain voltage (VD) value (bits [6:0]) 2. Valid bit (bit [7]) Channel number having the minimum VD voltage (bits 3. [12:8]). Bits 0-6 (bit location 424-430) minimum VD value Setting bit 0 in ADC_RFVDMIN register to '1' sets bits 0-6 to 0x7F (highest value equivalent to 1.984V). LX24232ILQ continuously scans channels 0-31. Channel having the minimum VD (drain voltage) value (7 bit) is saved in ADC_MIN_VD[6:0]: 2VMinimum VD[V] = ADC MIN VD/6:0/128 Note: Minimum VD voltage is continuously with minimum VD DTC measurement and updated by internal LX24232ILQ mechanism 424-436 0x7F 13 ADC_MIN_VD 13 Read through automatically scanning channels 0 to 31. Bit 7 (bit location 431): valid bit 0: Minimum VD measurement bits are invalid 1: Minimum VD measurement bits are valid Note 1: Since valid bit is of the "Clear on Read" type (RC), each SPI transaction clears this bit. Note 2: Reading ADC_MIN_VD register before ADC_MEAS_DONE register (see next field) is set clears valid bit. Note 3: In cases where a valid bit is set during the time that ADC_RFVDMIN was set to '1' until ADC_MEAS_DONE become '1', consider adc_measure bits and channel bits as valid, regardless of valid bit 7 state. Bits 8-12 (bit location 431-436): channel number Value reported in this field indicates channel number (0 to 31) having the lowest FET VD reading. ADC Measure Done indication. This bit indicates that "All enabled channels have been scanned". Setting bit 0 in ADC_RFVDMIN register (DTC-Write packet) clears this bit. DTC 14 ADC_MEAS_DONE 437 1 0x00 This bit is set after all enabled channels (up to 32) are scanned by Read internal ADC. Note: This bit is set to "1" after all 32 channels have been scanned. Channels with ADC_SKIP bit set to "1" are skipped and not measured, but are part of the scan.

www.Microsemi.com

32 CHANNEL LED BACKLIGHT CONTROLLER

		D	ATASHEE	т		
Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
15	ADC_DATA1_SKIP	ADC_DATA1 skip indication bit. ADC_DATA1 = "0": channel number indicated by ADC_DATA1_CH_R register has been measured by ADC. ADC_DATA1 = "1": channel number indicated by ADC_DATA1_CH_R register <u>has not been measured</u> by ADC (skipped), because relevant bit in ADC_SKIP register (DTC-Write packet, bits location 0-31) was set to "1".	DTC Read	438	1	0x00
16	ADC_DATA2_SKIP	 ADC_DATA2 skip indication bit. ADC_DATA2 = "0": channel number indicated by ADC_DATA2_CH_R register has been measured by ADC. ADC_DATA2 = "1": channel number indicated by ADC_DATA2_CH_R register has not been measured by ADC (skipped), because relevant bit in ADC_SKIP register (DTC-Write packet, bits location 0-31) was set to "1". 	DTC Read	439	1	0x00
17	Reserved	Reserved	DTC Read	440-447	8	N/A




www.Microsemi.co

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

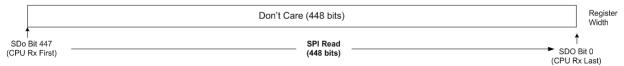
PD (Phase Delay) Write Transaction Packet (MOD_1,MOD_0 = "01"):

Field Trans. Length Reset **Bit Location Register Name** Description # (bits) Value Type PD-Write 0-63 1 Reserved 64 N/A Reserved. Value of this field has no meaning. 12-bit phase delay value of Channel 31. Phase delay values range from 0 to 4095. The phase delay value can be calculated using the following formula: $T_{\text{PhaseDelay}}[ms] = \frac{PD_(n)}{4096} \cdot T_{PWM}_CYCLE[ms]$ Where: n = 0 to 31, and: 2 PD 31 **PD-Write** 64-75 12 N/A $4096 \cdot (PWM FRDIV + 1)$ $T_{PWM_CYCLE}[ms] =$ $1000 \cdot CLK MHz$ Phase delay is referenced to PWM block internal 13-bit main counter wrap-around point. See "Advanced PWM Output control" for more information. 3 PD 30 Phase-delay value of PWM channel 30. See PD_31. **PD-Write** 76-87 12 N/A 4 PD 29 Phase-delay value of PWM channel 29. See PD_31. **PD-Write** 88-99 12 N/A **PD-Write** 5 PD 28 Phase-delay value of PWM channel 28. See PD_31. 100-111 12 N/A **PD-Write** 112-123 12 6 PD_27 Phase-delay value of PWM channel 27. See PD_31. N/A 7 PD 26 Phase-delay value of PWM channel 26. See PD 31. PD-Write 124-135 12 N/A 8 PD 25 Phase-delay value of PWM channel 25. See PD_31. **PD-Write** 136-147 12 N/A **PD-Write** 9 PD_24 Phase-delay value of PWM channel 24. See PD_31. 148-159 12 N/A **PD-Write** 10 PD 23 Phase-delay value of PWM channel 23. See PD_31. 160-171 12 N/A Phase-delay value of PWM channel 22, See PD 31. PD-Write 12 11 PD 22 172-183 N/A PD-Write 12 12 PD 21 Phase-delay value of PWM channel 21. See PD_31. 184-195 N/A **PD-Write** 12 13 PD_20 Phase-delay value of PWM channel 20. See PD_31. 196-207 N/A **PD-Write** 14 PD 19 Phase-delay value of PWM channel 19. See PD_31. 208-219 12 N/A 15 PD 18 Phase-delay value of PWM channel 18. See PD_31. PD-Write 220-231 12 N/A **PD-Write** PD_17 Phase-delay value of PWM channel 17. See PD_31. 232-243 12 N/A 16 PD-Write 17 PD_16 Phase-delay value of PWM channel 16. See PD_31. 244-255 12 N/A 18 PD_15 Phase-delay value of PWM channel 15. See PD_31. PD-Write 256-267 12 N/A PD-Write 19 PD 14 Phase-delay value of PWM channel 14. See PD_31. 268-279 12 N/A PD-Write 12 20 PD_13 N/A Phase-delay value of PWM channel 13. See PD_31. 280-291

Table 5 – PD Write Packet Bit Description Table

11861 Western Avenue, Garden Grove, CA. 92841, USA, Phone: 714-898-8121, Fax: 714-893-2570

Page 27 of 43


LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

			DATASH	EET		
21	PD_12	Phase-delay value of PWM channel 12. See PD_31.	PD-Write	292-303	12	N/A
22	PD_11	Phase-delay value of PWM channel 11. See PD_31.	PD-Write	304-315	12	N/A
23	PD_10	Phase-delay value of PWM channel 10. See PD_31.	PD-Write	316-327	12	N/A
24	PD_09	Phase-delay value of PWM channel 9. See PD_31.	PD-Write	328-339	12	N/A
25	PD_08	Phase-delay value of PWM channel 8. See PD_31.	PD-Write	340-351	12	N/A
26	PD_07	Phase-delay value of PWM channel 7. See PD_31.	PD-Write	352-363	12	N/A
27	PD_06	Phase-delay value of PWM channel 6. See PD_31.	PD-Write	364-375	12	N/A
28	PD_05	Phase-delay value of PWM channel 5. See PD_31.	PD-Write	376-387	12	N/A
29	PD_04	Phase-delay value of PWM channel 4. See PD_31.	PD-Write	388-399	12	N/A
30	PD_03	Phase-delay value of PWM channel 3. See PD_31.	PD-Write	400-411	12	N/A
31	PD_02	Phase-delay value of PWM channel 2. See PD_31.	PD-Write	412-423	12	N/A
32	PD_01	Phase-delay value of PWM channel 1. See PD_31.	PD-Write	424-435	12	N/A
33	PD_00	Phase-delay value of PWM channel 0. See PD_31.	PD-Write	436-447	12	N/A

N/A – Not available or undefined.

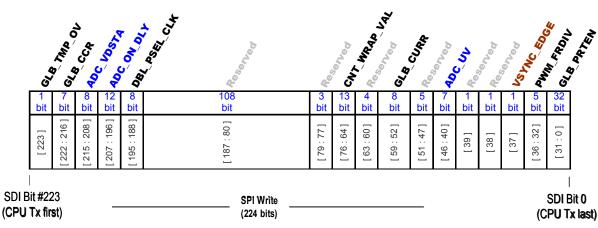
PD (Phase Delay) Read Transaction Packet (MOD_1,MOD_0 = "01"):

Figure 12 - DTC (Duty-Cycle) Read SPI Communication Packets

Table 6 – PD <u>Read</u> Packet Bit Description Table

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
1	Reserved	No Information. All bits of this packet should be ignored.	PD-Read	0-447	448	N/A

N/A – Not available or undefined.


www.Microsemi.com

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

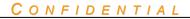
Configuration-Write Tranasction Packet (MOD_1, MOD_0 = "10"):

Table 7 – Configuration Write Packet Bit Description

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
1	GLB_PRTEN	Bit0-31: Enable/Disable PWM channels pulse generation on PWM[n] output pins. Bit[n] = 0: PWM[n] output pin is disabled Bit[n] = 1: PWM[n] output pin is enabled n = 0 - 31 Note : Unused channels should be disabled	CONFIG Write	0-31	32	0x0000
2	PWM_FRDIV	Divide system clock (pin 5) which drives internal 12 bit PWM counter by: PWM_FRDIV+1. 0: Divide by 1 31: divide by 32 $PWM Frequency[Hz] = \frac{CLK[MHz] \cdot 10^{6}}{4096 \cdot (PWM_FRDIV + 1)}$	CONFIG Write	32-36 5 0:		0x0F
3	VSYNC_EDGE	External sync signal (SYNC_IN) pin edge detection selection. PWM output signals are synchronized to either a falling- edge, or a rising-edge detected at SYNC_IN pin: VSYNC_EDGE = "0": falling edge detection VSYNC_EDGE = "1": rising edge detection.	CONFIG Write	37	1	0
4	Reserved	Reserved. Value of this field has no meaning.	CONFIG Write	38	1	N/A
5	Reserved	Reserved. Value of this field has no meaning.	CONFIG Write	39	1	N/A

32 CHANNEL LED BACKLIGHT CONTROLLER

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
6	ADC_UV	WriteA drain voltage measurement by ADC (during PWM on time) of any of the LX23108ILQ FET that is below ADC_UV, will be considered as open-string.Channel's drain voltage will be ignored, and will be excluded from minimum-VD search for the channel with minimum drain voltage.Under - Voltage detection $[V] = ADC_UV \times \frac{2V}{128}$ ADC_UV range: 0-127 (0V to 1.984V) Typical value: ADC_UV = 3. For this setting, under- voltage detection level is 3 x (2/128) = 46.8mV Note: If FET V _{drain} measurement in one channel is below ADC_UV, GLB_ERR register bit0 is set to '1'.		40-46	7	0x07
7	Reserved	Reserved. Value of this field has no meaning.	CONFIG Write	47-51	5	N/A
8	GLB_CURR		CONFIG Write	52-59	8	0x80
9	Reserved	Reserved. Value of this field has no meaning.	CONFIG Write	60-63	4	N/A
10	CNT_WRAP_VAL	Sets the wrap-around value of PWM block 13-bit main counter when VSYNC_MODE = "1" (DTC packet). This 13 bits value holds LX24232 internal PWM counter wrap-around value. If internal counter reaches the value written in this field, it resets to 0. Value of this register sets maximum PWM cycle period expected in case of V _{sync} loss. An internal sync signal is created when the main-counter wraps-around. Typical value: 4096 x (1 + Vsync_jitter(%)) Example: If maximum expected Vsync jitter is +5%, then CNT_WRAP_VAL should be set to 4096 x 1.05 = 4300. Note : When VSYNC_MODE = "0", PWM 13-bit main counter wraps-around at 4095> 0.	CONFIG Write	64-76	13	0x1FFF
11	Reserved	Reserved. Value of this field has no meaning.	CONFIG Write	77-79	3	N/A
12	Reserved	Reserved. Value of this field has no meaning.	CONFIG Write	80-187	108	N/A



LX24232

www.Microsemi.com

32 CHANNEL LED BACKLIGHT CONTROLLER

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
13	DBL_PSEL_CLK	Controls PSEL_CLK clock frequency and PSEL_SIG width to LX23108ILQ devices. When activated, PSEL_CLK frequency is doubled, and PSEL_SIG width is halved. Doubling PSEL_CLK is required in case more than 4 LX23108ILQ are connected to a single LX24232ILQ. DBL_PSEL_CLK = 0x4E: Normal PSEL_CLK frequency, Normal PSEL_SIG signal width. DBL_PSEL_CLK = 0x84: Double-rate PSEL_CLK frequency, half PSEL_SIG signal width. Note : When Double PSEL Clock is activated, only the odd channels of LX23108ILQ devices are measured; even channels drain voltage measurements are ignored. For detailed application information on connecting more than 4 LX23108ILQ to a single LX24232ILQ, contact your local Microsemi's technical support.	CONFIG Write	188-195	8	N/A

32 CHANNEL LED BACKLIGHT CONTROLLER

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
14	ADC_ON_DLY	Allocated time interval for ADC measurements, referenced to the end of the PWM(n) output cycle (falling-edge). Value in this register defines the time interval, referenced to the falling edge of each PWM output, in which ADC measurements of LX23108ILQ drain voltages are performed. Value of ADC_ON_DLY also sets the number of channels to be measured in a single PWM cycle. In cases where ADC cannot measure all 32 channels during a single PWM cycle, it continues channel measurement on the next PWM cycle. Value specified in this register has the same units as PWM main counter. Drain-voltage measurement of any of the channel will be done only if the on-time value (DTC_xx) of the channel is above ADC_ON_DLY. If DTC value is below ADC_ON_DLY, the relevant skip bit (DTC packet) should be set to "1". Example: Drain voltage of LX23108ILQ connected to PWM3 pin (VD3 of LX23108ILQ, for example) will be measured only if: DTC_03 > ADC_ON_DLY. ADC_ON_DLY value can be translated to time using the following formula: $\frac{ADC_ON_DLY[\mu_{B}] = \frac{ADC_ON_DLY \cdot (PWM_FRDIV + 1)}{CLK[MHz]}$ Typical value for ADC_ON_DLY is 50µs, or 24 (decimal) for CLK of 4.9152MHz and PWM_FRDIV of 10 (PWM = 120Hz). Total number of channels that will be measured during a single PWM cycle is defined by: $\frac{N = \frac{ADC_ON_DLY[\mu_{B}] + T_{CONV_ADC}[\mu_{B}]}{ADC_VDSTA[\mu_{B}] + T_{CONV_ADC}[\mu_{B}]}$ Where ADC_VDSTA is the internal ADC mux stabilization time (typ. 5µs) and T _{CONV_ADC} is the ADC conversion time (typ. 5µs).	CONFIG Write	196-207	12	0x003
15	ADC_VDSTA	Time required for LX®23108LILQ internal mux to stabilize before LX®24232ILQ can measure FET V _{drain} voltage. Minimum stabilization time = 5 μ s. ADC_VDSTA value can be calculated from: $\underline{ADC_VDSTA = ADC_VDSTA[\mu s] \cdot CLK[MHz]}$ Typical stabilization time of 5 μ s and 4.9152MHz CLK: ADC_VDSTA = 5 μ s x 4.9152MHz = 24	CONFIG Write	208-215	8	0x28

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
16	GLB_CCR	Bit 0 (bit location 216): Reserved Bit 1 (bit location 217): Reserved Bit 2 (bit location 218): sleep_mode: Switch off analog and partial digital sections of the chip for power saving purposes. 0: Normal operation 1: Switch off analog and partial digital chip sections. This bit is read-write. Bit 3 (bit location 219): sync_out_disable: Enable/Disable pulse at SYNC_OUT output pin each time internal PWM counter reaches "0". 0: Enable sync_out. Set Bit4 & bit5 to 00 1: SYNC_OUT output pin = Low. This bit is read-write. Bit 4-5 (bits location 220-221): sync_out_func: For internal use. Set bits 4 and 5 to Low. Bit 6 (bit location 222): read_mode: 0: For internal use. Set to Low.	CONFIG Write	216-222	7	0x00
17	GLB_TMP_OV	 Enable/Disable LX[®]23108ILQ internal FET V_{drain} over-voltage and over-temperature protection. GLB_TMP_OV = "0": Enabled Over Voltage: LX[®]23108ILQ 8 Port LED Drivers turns off PWM channels whenever FET V_{drain} voltage exceeds 7.5-11.5VDC. To re-enable turned off channels user should set bit0 in the GLB_CLR_ERR register. Over Temperature: LX[®]23108ILQ turns off PWM channels whenever FET temperature exceeds 180+/-20°c. To re-enable turned off channels user should set bit0 in register GLB_CLR_ERR. GLB_TMP_OV = "1": Disabled Over Voltage: LX[®]23108ILQ FTE Vd over-voltage protection is disabled. Over Temperature: LX[®]23108ILQ turns off PWM channels whenever FET temperature exceeds 180+/-20°c. However, PWM channels are automatically re-enabled whenever FET cools down. Note: Setting bit0 in GLB_CLR_ERR register re-enables PWM channels, regardless of FET temperature. However, if FET temperature is too high, FET channels are turned off again. 	CONFIG Write	223	1	0x1

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Configuration-Read Tranasction Packet (MOD_1, MOD_0 = "10"):

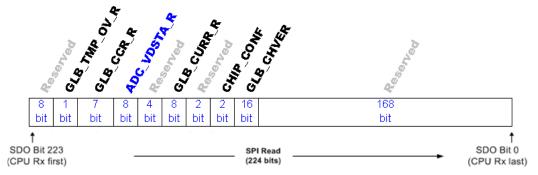


Figure 14 - DTC (Duty-Cycle) Read SPI Communication Packets

Table 8 - Configuration Read - Packet Transaction Bit Description:

Field #	Register Name	Description	Trans. Type	Bit Location	Length (bits)	Reset Value
1	Reserved	Reserved	CONFIG Read	0-167	168	N/A
2	GLB_CHVER	Chip version; for internal use	CONFIG Read	168-183	16	0x01A0
3	CHIP_CONF	Chip sub version; for internal use	CONFIG Read	184-185	2	0x0
4	Reserved	Reserved	CONFIG Read	186-187	2	N/A
5	GLB_CURR_R	Reports same value as written to GLB_CURR register (bits 52-59).	CONFIG Read	188-195	8	0x80
6	Reserved	Reserved	CONFIG Read	196-199	4	N/A
7	ADC_VDSTA_R	Reports same value as written to ADC_VDSTA register (bits 208-215).	CONFIG Read	200-207	8	0x28
8	GLB_CCR_R	Reports same value as written to GLB_CCR register (bits 216-222).	CONFIG Read	208-214	7	0x0
9	GLB_TMP_OV_R	Reports same value as written to GLB_TMP_OV register (bit 223).	CONFIG Read	215	1	0x1
10	Reserved	Reserved	CONFIG Read	216-223	8	N/A

LX24232

www.Microsemi.cow

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

LX24232ILQ Detailed Functional Description

Advanced PWM Output Control (Pins PWM0-PWM31)

LX24232ILQ has flexible PWM timing configuration schemes, supported by 32 independent PWM output channels of 12bit resolution duty-cycle (PWM high-time) control for each channel, and 12-bit phase delay (PD) control for each PWM output channel, optimized for 3D applications.

This internal advanced configuration enables LX24232ILQ to support various timing schemes. Main features are:

- 32 independent, frame-by-frame controlled, Duty-Cycle data (DTC)
- 32 independent, frame-by-frame controlled, Phase Delay data (PD)
- True 100% duty-cycle support.
- V_{sync} synchronization.
- Configurable PWM output synchronization to either rising or falling edge of external sync pulse.
- Advanced V_{sync} jitter support
- · Supports single or multiple PWM cycles in a single frame.

PWM Block Behavioral Description:

PWM block is consisted of PWM Registers & Control block and 32 Channel control blocks.

PWM Register & Control block consists of a 13-bit main counter, which is responsible for timing the phased-delay values and for synchronization with external Sync signal, usually VSYNC of TCON.

13-bit main counter clock frequency and PWM output frequency is set by configuring PWM_FRDIV register, located in the Configuration packet.

Value for PWM_FRDIV can be calculated according to the following equation:

$$F_{PWM}[Hz] = \frac{CLK[MHz] \cdot 10^6}{4096 \cdot (PWM_FRDIV + 1)}$$
(Eq. 1)

Where:

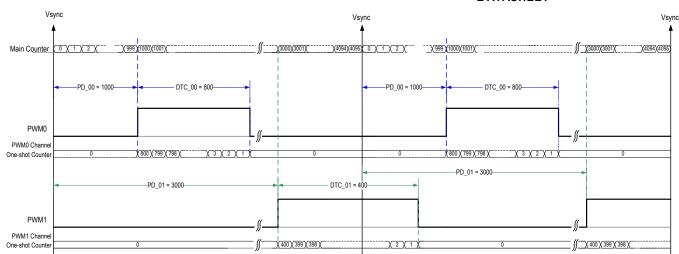
CLK is LX24232ILQ input clock frequency, in MHz. PWM_FRDIV is clock divider value, range 0 to 31. F_{PWM} is PWM frequency, in Hz.

For example: CLK = 4.9152MHz (Clock input of LX24232ILQ) Required PWM frequency = 120Hz, then: PWM_FRDIV = 9.

Each of the channel control blocks contains a 12-bit retriggerable one-shot (mono-stable). The one-shot is triggered when main counter value is equal to the phase-delay value defined in the relevant PD_xx register (phase-delay packet) causing relevant PWM(x) output pin to go to high level.

At the same time, one-shot timer is loaded with corresponding DTC_xx register value (DTC packet), starting to count down from value loaded to 0.

PWM(x) output pin goes back to low level when the one-shot down-counter reaches 0, and remains low until main counter reaches phase-delay value again.


Figure 15 shows timing diagram example of PWM operation.

LX24232

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Figure 15: PWM Operation Example, Shown for Channel 0 (PWM0 Pin) and Channel 1 (PWM1 Pin). Channel 0 has DTC value of 800 and PD value of 1000; Channel 1 has DTC value of 400 and PD value of 3000. Main counter wraps-around after 4095.

True 100% duty-cycle support:

When setting register value DTC_xx to 4095, corresponding PWM(x) output will remain "1" (regardless of phase-delay value) until different duty-cycle (other than 4095) is written to DTC_xx register and loaded to the corresponding one-shot.

PWM Synchronization Input (SYNC_IN Pin)

LX24232ILQ has comprehensive PWM synchronization options, enabling PWM output signals to be synchronized to an external sync signal, usually connected to TCON / video processor's VSYNC output. SYNC_IN pin is used as the input pin for the synchronization signal.

Two registers define synchronization mode: *VSYNC_MODE* in DTC packet and *VSYNC_EDGE* in Configuration packet. Synchronization to external signal is achieved by rising or falling edge of SYNC_IN signal, resetting 13-bit main counter of the PWM block.

For synchronizing PWM output to the rising-edge of SYNC_IN signal, VSYNC_EDGE should be set to "1". For synchronizing PWM output to the falling-edge of SYNC_IN signal, VSYNC_EDGE should be set to "0".

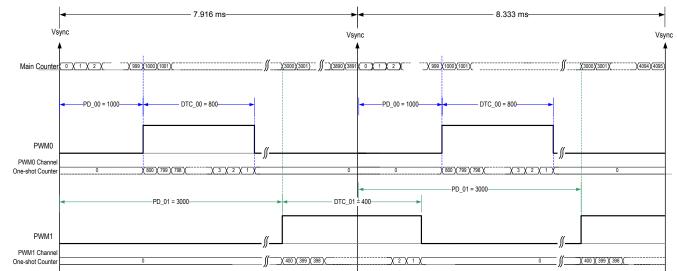
When setting VSYNC_MODE to"1", a rising-edge on the SYNC_IN signal resets the 13-bit main counter of the PWM registers & Control block.

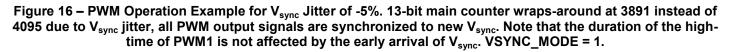
In case where there is a single PWM cycle per frame, V_{sync} frequency is equal to PWM frequency. In this case, the 13-bit main counter will wrap-around around the value of 4095, the exact value depends on V_{sync} jitter.

Phase-delay values are referenced to the wrap-around point of the main counter. Thus, the *following* rising edge of the PWM output signals will be synchronized to V_{sync} . Note that PWM output signals that are logic high when V_{sync} arrives, are *not* affected by V_{sync} arrival.

Advanced V_{sync} Jitter Support

In many TV applications, V_{sync} signal has considerable jitter, usually in the range of +/-5% of the frame rate. LX24232ILQ inherent structure prevents V_{sync} jitter from affecting PWM output on-time, while maintaining synchronization with V_{sync} signal connect to SYNC_IN Input.


www.Microsemi.com


32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

For a V_{sync} nominal frequency of 120Hz, V_{sync} signal is expected to arrive every (1/120Hz =) 8.333ms. If V_{sync} jitter value is, for example, -5% of 120Hz for a specific frame, then next V_{sync} will arrive after 8.333ms x 0.95 = 7.916ms, instead of 8.333ms. Therefore, the 13-bit main counter will not reach the value of 4095 but will wrap-around on the rising-edge (or falling edge, depending on the VSYNC_EDGE register value) of the SYNC_IN Input. Since phase-delay timings (PD_XX registers) are referenced to 13-bit main counter wrap-around point, the frame beginning with V_{sync} that arrived 416µs (416µs = 0.05 x (1 / 120Hz)) earlier, will be synchronized to the new V_{sync} .

The operation of PWM output signals for VSYNC_MODE = "1" are shown in figure 16 and figure 17

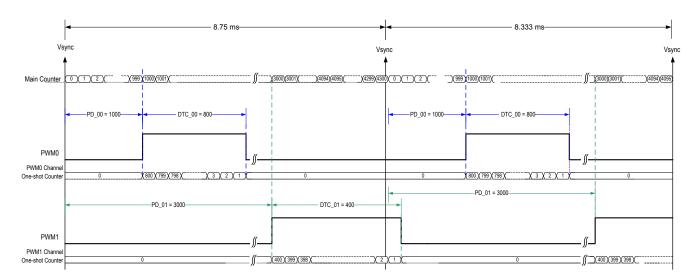
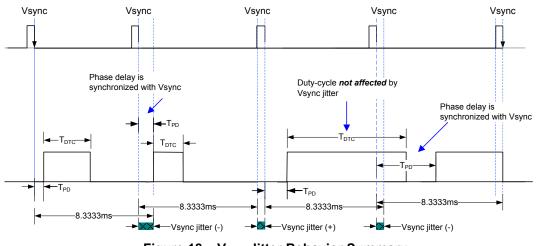


Figure 17 – PWM Operation Example for V_{sync} Jitter of +5%. 13-bit main counter wraps-around at 4300 instead of 4095 due to V_{sync} jitter (4096 x 1.05 = 4300), all PWM output signals are synchronized to new V_{sync}. Note that the duration of the high-time of PWM1 is not affected by the early arrival of V_{sync}. VSYNC_MODE = 1.

Loss of $V_{\mbox{\scriptsize sync}}$ Operation

LX24232ILQ incorporates a mechanism to support loss of V_{sync} , enabling system to continue to operate even if V_{sync} signal is lost.


32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

With VSYNC_MODE = "1", if V_{sync} signal is lost, main counter would automatically wrap-around at a predefined value, configured by *CNT_WRAP_VAL* register in the Configuration packet.

A typical value of CNT_WRAP_VAL is just above system's maximum positive V_{sync} jitter. For example, if maximum V_{sync} jitter is +5%, CNT_WRAP_VAL can be set to 4096 x 1.055 = 4321. This setting takes small headroom over V_{sync} jitter, and ensures LX24232ILQ will detect loss of V_{sync} only if Vsync signal has failed to arrive, and not mistakenly detect a loss of V_{sync} due to the V_{sync} jitter.

Upon detection of V_{sync} loss, LX24232ILQ 13-bit main counter will automatically wrap-around, enabling system to continue to operate and output PWM values until V_{sync} is restored, or switch to stand-alone mode if user desires to do so.

Figure 18 – V_{sync} Jitter Behavior Summary

Stand-Alone Operation and Multiple PWM Cycle per Frame Support

When setting VSYNC_MODE to "0", LX24232ILQ ignores SYNC_IN input. 13-bit main counter will always wrap-around at 4095 (4095 \rightarrow 0). This mode enables LX24232ILQ to operate without an external V_{sync} signal, which is very useful for testing purposes or when V_{sync} is lost for a long duration of time.

LX24232ILQ also supports multiple PWM cycles per frame, while still maintaining synchronization with V_{sync} signal, which, in this mode of operation, arrives every integer (N) number of PWM cycles.

Setting VSYNC_MODE to "1" before V_{sync} arrives on SYNC_IN pin will synchronize PWM output to V_{sync} signal, while setting VSYNC_MODE to "0" for PWM cycles between two Vsyncs will ensure PWM frequency is N x V_{sync} Frequency, as required.

SPI Packet Data Loading Sequence

Configuration packet data is loaded into LX24232ILQ on the rising edge of SPI CS_N signal.

Phase-delay packet data is loaded into an internal shadow-register inside LX24232ILQ on the rising edge of SPI CS_N signal, and is copied to the phased-delay registers on the main counter wrap-around point.

The duty-cycle packet data is stored in LX24232ILQ SPI shift-register on rising edge of CS_N signal, and is loaded into duty-cycle registers on main counter wrap-around point.

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Power Supply Control

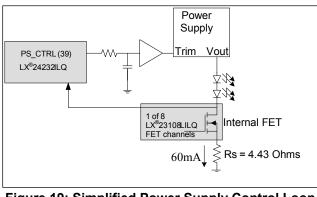


Figure 19: Simplified Power Supply Control Loop

Automatic Minimum V_{Drain} Voltage Mechanism

The channel with the minimum V_{Drain} voltage is the channel having the maximum forward voltage across the LED string. To have all strings within current-regulation region, power supply voltage should be set according to the string with maximum forward voltage, or minimum V_{Drain} voltage.

LX24232ILQ has an internal mechanism for finding the channel which has the minimum V_{Drain} voltage.

This is done by sampling all 32 channels continuously and saving channel number that has the minimum V_{Drain} voltage and V_{Drain} voltage value into ADC_MIN_VD register, containing both channel number and V_{Drain} voltage.

Setting ADC_RFVDMIN register to '1' causes LX[®]24232ILQ 32 Channel Display Backlight LED Controller to search for the channel with the lowest FET V_{Drain} ADC reading. When searching process ends, LX[®]24232ILQ sets bit 0 in ADC_MEAS_DONE register. Host controller (MCU / TCON / video processor) can control power supply voltage by reading ADC_MIN_VD register of LX[®]24232ILQ, located in DTC Read packet.

Minimum V_{Drain} voltage required for maintaining LED current-regulation can be calculated according to the following equation:

$$VD_{MIN} = I_{LED} \cdot (R_{SENSE} + R_{DS FET}) + V_{HEADROOM}$$
(Eq. 2)

Where:

 VD_{MIN} is the minimum drain voltage required for maintaining current regulation I_{LED} is LED string current R_{SENSE} is sense resistor value R_{DS} FET is internal FET on resistance of LX23108

 V_{HEADROOM} is headroom voltage, to compensate for power supply ripple. This value is usually set around 0.15V.

Taking the values in figure 10, required $VD_{\mbox{\scriptsize MIN}}$ voltage is:

$$VD_{MIN} = I_{LED} \cdot (R_{SENSE} + R_{DS}_{FET}) + V_{HEADROOM} = 0.06[A] \cdot (4.43\Omega + 2.6\Omega) + 0.15V = 0.5718V$$
(Eq. 3)

ADC_MIN_VD register reading can be converted to voltage by:

$$VD_{MIN}[V] = ADC_VD_MIN[6:0] \cdot \frac{2V}{128}$$
(Eq. 4)

Where ADC_VD_MIN[6:0] are the 7 LSBs of ADC_VD_MIN register.

Controller increases power supply voltage when minimum FET V_{Drain} is lower than required VD_{MIN} value, and decreases it in cases where minimum FET V_{Drain} is too high.

Power supply trimming is implemented by writing to GLB_PS_CTRL register (10 bit DAC) which uses a PDM generator to generate an equally distributed number of pulses proportional to the GLB_PS_CTRL value. Each pulse's duration equals to a single CLK clock length.

After low pass filtering, PS_CTRL output DC component is used to trim LED power supply (for more details see AN-182).

www.Microsemi.com

32 CHANNEL LED BACKLIGHT CONTROLLER

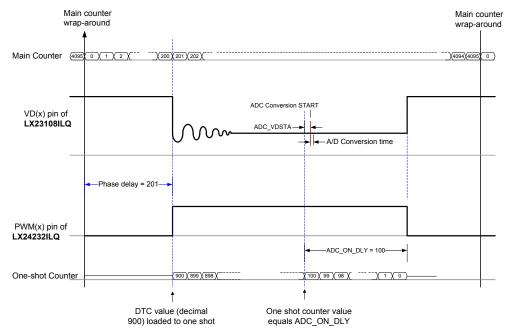
DATASHEET

Open String / Under-Voltage Protection Mechanism:

LX24232ILQ has an under-voltage mechanism that detects an open-string condition, by comparing the drain voltage measurement of each channel to a predefined under-voltage level. A string is detected as open if drain voltage drops below under-voltage level, configured in *ADC_UV* register located in the Configuration-Write packet. Once a string is detected as open, the internal under-voltage mechanism prevents that specific string (having very low ADC readings) from being part of the minimum FET V_{Drain} search algorithm (reported by ADC_MIN_VD register).

To configure the ADC_UV register that defines the under-voltage level, the following equation can be used:

Under - voltage detection level[V] = ADC_UV[6:0]
$$\cdot \frac{2V}{128}$$
 (Eq. 5)


For example, by setting ADC_UV to decimal value of 3, any drain voltage measurement measured below that value will be detected as an open-string condition (disconnected string).

This value enforces ADC_MIN_VD register to reject any ADC reading bellow 47mV. This protection mechanism is required when disconnected channel is enabled, or one of the LEDs had failed and was disconnected.

Internal A/D Operation

The internal ADC of LX[®]24232ILQ 32 Channel LED backlight controller measures the voltage on VDMEAS input pin, which connects to LX[®]23108ILQ 8 Channel LED Drivers VDMEAS output pin. LX[®]24232ILQ determines which FET vd voltage of LX[®]23108ILQ is multiplexed to VDMEAS input pin for FET V_{Drain} measurement. *ADC_VDSTA* and *ADC_ON_DLY* registers control internal ADC operation.

ADC_ON_DLY register defines the time *referenced to the end of the PWM on-time*, to make sure measurement is done at the quietest point of drain voltage, for ensuring minimum noise measurement.

Figure 20: ADC Operation – Output Waveform and A/D Sampling Time Example. A/D measurement will <u>not</u> start <u>before</u> channle's one-shot counter reached ADC_ON_DLY, but may start anywhere between ADC_ON_DLY and 0.

LX[®]24232ILQ contains two additional ADCs used by the system controller which manages LX[®]24232ILQ. ADCs can be configured to measure any of the 32 PWM channels FET V_{Drain} voltages, report under-voltage, over-voltage and skip an individual PWM channel, if duty-cycle of that channel is too low to measure.

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Current Setting

Current setting is done by GLB_CURR register.

 $GLB_CURR = 0.7168 \cdot (R_{SENSE}[\Omega] + R_{BOND}[\Omega]) \cdot I_{LED}[mA]$

(Eq. 6)

Where:

 R_{SENSE} = sense resistor connected to LX[®]23108ILQ S[x] pin. R_{BOND} = LX[®]23108ILQ bonding wire resistance, R_{BOND} = 0.08 Ω

Fault Detection

LX24232ILQ incorporates fault detection and reports two types of errors and events. Faults are reported in *GLB_ERR* register, in the DTC-Read packet.

Bit 0: Under_voltage: Will be set whenever one or more FET V_{Drain} voltage value, out of 32 channels, is/are below ADC_UV register's value. A typical scenario is where a LED is disconnected.

Note: Setting bit0 in GLB_CLR_ERR register to '1' clears this error bit.

Bit 1: Over temperature / Over voltage: Will be set whenever FET V_{Drain} exceeds 8.8 VDC (typical). A typical scenario is when a LED becomes shorted, or LED power supply was trimmed to too high voltage.

LX24232ILQ can be configured to *automatically shut down* shorted-string by setting bit 0 of GLB_TMP register (configuration packet) to "0", or just reporting the shorted channel by setting bit 0 of GLB_TMP to "1".

Note: Setting bit0 in GLB_CLR_ERR register's to '1' clears this bit.

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

Software Implementation Considerations

Recommended Start-Up Sequence

- 1. Send Config packet to set system parameters, including CNT_WRAP_VAL, with GLB_PRTEN = 0.
- 2. Send Phase Delay packet.
- 3. Send DTC packet only with "0", and VSYNC_MODE = 0 (Ignore SYNC_IN pin synchronization).
- 4. Wait for main counter to wrap around (maximum two PWM frames).
- 5. Send CONFIG packet (same as first CONFIG packet) with relevant GLB_PRTEN enabled.

On-Going Communications:

Data sent in either Phase Delay or Config transactions is loaded to a double-buffer that loads transaction data on rising-edge of CS. Duty-cycle transaction data has a single buffer, loading data on the next main-counter wrap-around point. Therefore, Duty-Cycle data has to be the last data being sent to LX24232ILQ.

Each packet sent should begin with CS falling-edge and end with CS rising-edge.

The following order should be kept when sending multiple packets in one PWM cycle:

1. For updating DTC packet only: Send (and receive) DTC packet.

2. For updating Phase Delay packet only: Send (and receive) Phase Delay packet.

3. For updating Phase Delay and DTC packets: Send (and receive) Phase Delay packet Send (and receive) DTC packet

4. For updating CONFIG, Phase Delay and DTC packets: Send (and receive) Config packet Send (and receive) Phase Delay packet Send (and receive) DTC packet

Changing Mode0 and Mode1 Pins:

MODE0 and MODE1 pins are latched 8 sysclks after CS falling edge. Therefore, MODE0 and MODE1 pins should be stable at least 9 sysclks before CS falling edge.

Configuration Example

Code bellow provides a configuration example for configuring LX24232ILQ registers. CLK = 4.9152MHz Rsense = 3.48Ω Required PWM frequency: 120Hz.

REGISTER	TRANSACTION TYPE	VALUE	PARAMETER
GLB_TMP_OV		0x00	Enable over-temperature / over voltage protection
GLB_CCR		0x00	Normal configuration
ADC_VDSTA		0x28	Set ADC stabilization time to 5µs (with 4.9152MHz clock)
ADC_ON_DLY		0x19	Set ADC_ON_DLY to 50µs.
DBL_PSEL_CLK		0x4E	Use normal PSEL_CLK frequency (for up to four LX23108ILQ)
CNT_WRAP_VAL	CONFIG-Write	0x10F4	Set CNT_WRAP_VAL to 4340 (dec) to detect loss of V _{sync} , in case V _{sync} is not present after 106% of PWM cycle period has past. This setting avoids loss-of-V _{sync} detection for V _{sync} jitter < 6%.
GLB_CURR		0xCC	Set GLB_CURR to 204 (dec), for LED current of 80mA.
ADC_UV		0x03	Set open-string fault detection to 47mV.
VSYNC_EDGE		0x01	Set PWM outputs to synchronize to rising-edge of SYNC_IN input pin.
PWM_FRDIV		0x09	Set PWM frequency to 120Hz.
GLB_PRTEN		0xFFFF	Enable all 32 channels.

32 CHANNEL LED BACKLIGHT CONTROLLER

DATASHEET

The information contained in the document is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. The product is subject to other terms and conditions which can be located on the Web at http://www.microsemi.com/legal/tnc.asp

Revision History

Revision Level / Date	Para. Affected	Description
0.1 / 04 November 2010	-	Initial Preliminary Release
0.2 / 02 January 2011	1 (description)	Add Per Channel frame by frame DC and PD Features
1.0 / 09 April 2011	2 (order info)	Production Release, TR ordering PN corrected
2.0 / 18 July 2011	1,2,3	Application information added, Tamir L.
2.1 / 24 July 2011	All	Detailed bit description added, Tami L.
2.2 / 9 Aug 2011	All	Wording

© 2011 Microsemi Ltd. All rights reserved.

For support contact: sales_AMSG@microsemi.com

Cat. No. DS_LX24232