Effective March 2019 Supersedes August 2018

BUSSMANN SERIES

C308F

3 mm x 8.4 mm fast-acting, ceramic tube fuses for hazardous applications

Product features

A compact 3 mm x 8.4 mm fuse provides a space saving alternative to conventional fuse solutions with high interrupting rating for primary and secondary circuit protection up to 250 Vac/dc and 250 mA

- Meets electrical perfomance specifications for intrinsically safe (EN60079-11) applications
- Fast-acting, high interrupting rating of 4000 A at 250 Vac/dc
- Ceramic tube, silver plated brass end cap construction
- Optional axial leads (tinned copper axial leads construction)
- RoHS compliant

Agency information

cURus Recognition file number: E19180, Guide JDYX2/JDYX8

Applications

- Hazardous environments
- Petrochemical processing and refining equipment
- · Pulp and paper processing equipment
- Intrinsically safe network barriers

Packaging

· Specify part number and packaging suffix.

· Package suffixes:

Ferrule

- TR (500 fuses on tape and reel)
- TR1 (1000 fuses on tape and reel)

Axial leaded

 TR1 (axial leaded version, 1500 fuses on tape and reel)

Ordering

• Specify part number and packaging suffix (e.g., C308F-V-160mA-TR1)

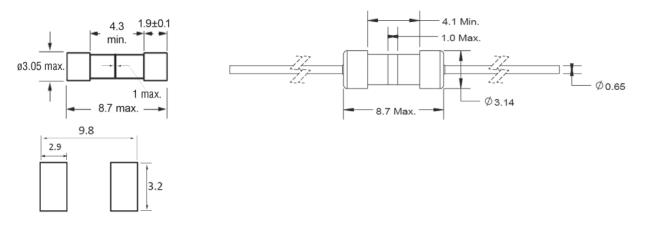
Product specifications

Part number		Voltage	Color	Interrupting	Typical DC cold resistance	Typical melting I²T***	Agency
Ferrule	Axial lead	rating Vac/dc	coding	rating @ 250 Vac/dc (A)*	(Ω)**	I ² T***	Information cURus
C308F40mA	C308F-V-40mA		Grey		14.2	0.00006	Х
C308F50mA	C308F-V-50mA		Red		9.40	0.00010	Х
C308F63mA	C308F-V-63mA		Pink		8.80	0.00012	Х
C308F80mA	C308F-V-80mA		Green		5.10	0.00018	Х
C308F100mA	C308F-V-100mA	250	Yellow	4000	2.87	0.00087	Х
C308F125mA	C308F-V-125mA	•	Orange		2.20	0.00134	Х
C308F160mA	C308F-V-160mA		Violet		2.05	0.00166	Х
C308F200mA	C308F-V-200mA		Brown		1.01	0.00237	Х
C308F250mA	C308F-V-250mA		Black		0.71	0.00530	Х

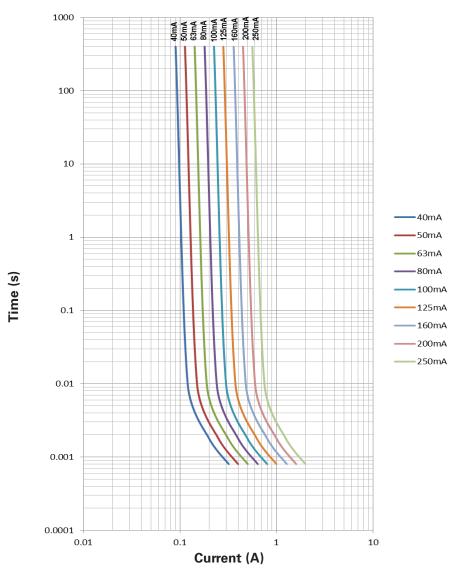
* AC Interrupting Rating (4000 A, PF = 0.4); DC Interrupting Rating measured at rated voltage, time constant 4 microseconds, battery source.

** DC Cold Resistance (Measured at \leq 10% of rated current).

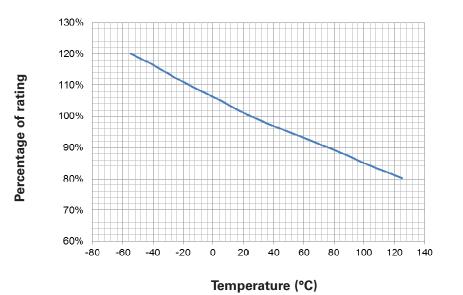
*** Typical I²t measured at 10In.


Electrical characteristics

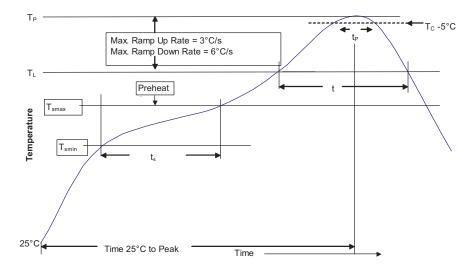
Amp Rating	% of Amp Rating	Opening Time
	110%	4 hours, min
40 mA ~ 250 mA	300%	10 seconds, max
	1000%	0.002 seconds, max


Environmental data

- Operating temperature: -55 °C to +125 °C (with derating)
- Thermal Shock: MIL-STD-202G, Method 107G (Test Condition 5 cycles -55 °C to 125 °C)
- Resistance to Solder Heat: MIL-STD-202G Method 210F
- Vibration: MIL-STD-202G, Method 201A (10 Hz to 55 Hz) Condition A, "-V" axial leaded version IEC60068-2-6
- Solderability: J-STD-002C, Test Method C1, "-V" axial leaded version IEC60127-2/A3.3
- Component Life Reliability: +125 °C, 500 hours


Dimensions-mm

Average time-current curves



Surface mounting soldering parameters (Ferrule)

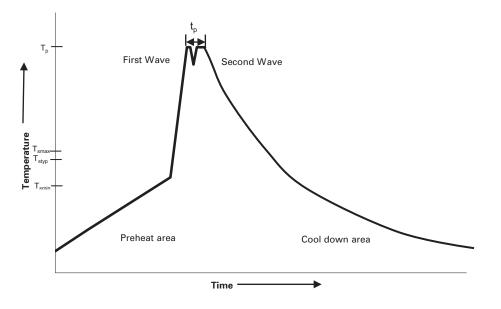
- Reflow solder: JEDEC J-STD-020 $T_c = 250$ °C. $T_p = 30$ s
- Wave and manual solder is not recommended

Table 1 - Standard SnPb Solder (T_c)

Package Thickness	Volume mm3 <350	Volume mm3 ≥350
<2.5mm)	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (T_c)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
<1.6mm	260°C	260°C	260°C
1.6 – 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C


Reference JDEC J-STD-020

Profile Feature	Standard SnPb Solder	Lead (Pb) Free Solder	
Preheat and Soak • Temperature min. (T _{smin})	100 °C		
• Temperature max. (T _{smax})	150 °C	200 °C	
• Time (T _{smin} to T _{smax}) (t _s)	60-120 Seconds	60-120 Seconds	
Average ramp up rate T _{smax} to T _p	3 °C/ Second Max.	3 °C/ Second Max.	
Liquidous temperature (TL) Time at liquidous (tL)	183 °C 60-150 Seconds	217 °C 60-150 Seconds	
Peak package body temperature (T _P)*	Table 1	Table 2	
Time $(t_p)^{**}$ within 5 °C of the specified classification temperature (T_c)	20 Seconds**	30 Seconds**	
Average ramp-down rate (Tp to T _{smax})	6 °C/ Second Max.	6 °C/ Second Max.	
Time 25 °C to Peak Temperature	6 Minutes Max.	8 Minutes Max.	

* Tolerance for peak profile temperature (T_p) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (t_p) is defined as a supplier minimum and a user maximum.

Through hole wave solder profile (Axial lead)

Reflow soldering not recommended

Reference EN 61760-1:2006

Profile Feature		Standard SnPb Solder	Lead (Pb) Free Solder	
Preheat	• Temperature min. (T _{smin})	100°C	100°C	
	• Temperature typ. (T _{styp})	120°C	120°C	
	• Temperature max. (T _{smax})	130°C	130°C	
	• Time (T $_{smin}$ to T $_{smax}$) (t $_{s}$)	70 seconds	70 seconds	
Δ preheat to	max Temperature	150°C max.	150°C max.	
Peak tempera	iture (Tp)*	235°C – 260°C	250°C – 260°C	
Time at peak	temperature (t _p)	10 seconds max 5 seconds max each wave	10 seconds max 5 seconds max each wave	
Ramp-down r	ate	~ 2 K/s min ~3.5 K/s typ ~5 K/s max	~ 2 K/s min ~3.5 K/s typ ~5 K/s max	
Time 25°C to 25°C		4 minutes	4 minutes	

Manual solder

350 °C, 4-5 seconds. (by soldering iron), generally manual, hand soldering is not recommended.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton

Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/electronics

© 2019 Eaton All Rights Reserved Printed in USA Publication No. 4405 — BU-MC15048 March 2019

Eaton is a registered trademark.

All other trademarks are property of their respective owners.