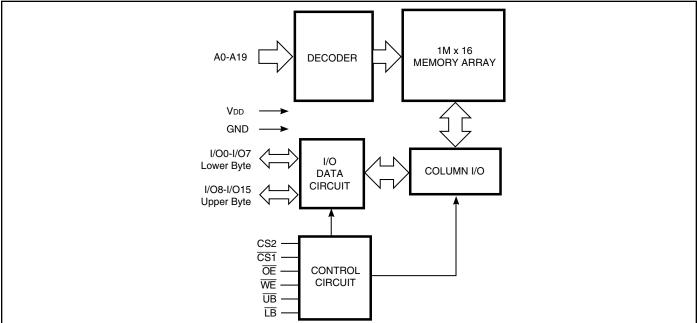


16Mb LOW VOLTAGE, ULTRA LOW POWER PSEUDO CMOS STATIC RAM

FEATURES

- High-speed access time:
 70ns (IS66WV1M16DALL/DBLL)
 - 55ns (IS66WV1M16DBLL)
- CMOS low power operation
- Single power supply
 - $-V_{DD} = 1.7V 1.95V (IS66WV1M16DALL)$
 - $-V_{DD} = 2.5V 3.6V (IS66WV1M16DBLL)$
- Three state outputs
- Data control for upper and lower bytes
- Industrial temperature available
- Lead-free available

DESCRIPTION


The *ISSI* IS66WV1M16DALL/DBLL is a high-speed, 16M bit static RAMs organized as 1Mb words by 16 bits. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields highperformance and low power consumption devices.

When $\overline{CS1}$ is HIGH (deselected) or when CS2 is LOW (deselected) or when $\overline{CS1}$ is LOW, CS2 is HIGH and both \overline{LB} and \overline{UB} are HIGH, the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable $\overline{(WE)}$ controls both writing and reading of the memory. A data byte allows Upper Byte $\overline{(UB)}$ and Lower Byte $\overline{(LB)}$ access.

The IS66WV1M16DALL/DBLL is packaged in the JEDEC standard 48-ball mini BGA (6mm x 8mm). The device is also available for die sales.

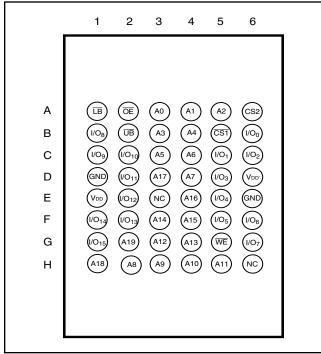
FUNCTIONAL BLOCK DIAGRAM

Copyright © 2011 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and


c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

IS66WV1M16DALL IS66WV1M16DBLL

PIN CONFIGURATIONS:

48-Ball mini BGA (6mm x 8mm)

Note:

TSOP package option is under evaluation.

PIN DESCRIPTIONS

A0-A19	Address Inputs		
I/O0-I/O15	Data Inputs/Outputs		
CS1, CS2 Chip Enable Input			
ŌĒ	Output Enable Input		
WE	Write Enable Input		
LB	Lower-byte Control (I/O0-I/O7)		
UB	Upper-byte Control (I/O8-I/O15)		
NC	No Connection		
Vdd	Power		
GND	Ground		

IS66WV1M16DALL IS66WV1M16DBLL

TRUTH TABLE

					I/O PIN				
Mode	WE	CS1	CS2	ŌĒ	LB	UB	I/O0-I/O7 I/O8-I/O15 VDD Current		
Not Selected	Х	Н	Х	Х	Х	Х	High-Z High-Z IsB1, ISB2		
	Х	Х	L	Х	Х	Х	High-Z High-Z IsB1, ISB2		
	Х	Х	Х	Х	Н	Н	High-Z High-Z ISB1, ISB2		
Output Disabled	Н	L	Н	Н	L	Х	High-Z High-Z Icc		
	Н	L	Н	Н	Х	L	High-Z High-Z Icc		
Read	Н	L	Н	L	L	Н	Dout High-Z Icc		
	Н	L	Н	L	Н	L	High-Z Dout		
	Н	L	Н	L	L	L	D оит D оит		
Write	L	L	Н	Х	L	Н	DIN High-Z Icc		
	L	L	Н	Х	Н	L	High-Z DIN		
	L	L	Н	Х	L	L	DIN DIN		

OPERATING RANGE (VDD)

Range	Ambient Temperature	(70ns)	(55ns)
Commercial	0°C to +70°C	1.7V - 1.95V, 2.5V - 3.6V	2.5V - 3.6V
Industrial	–40°C to +85°C	1.7V - 1.95V, 2.5V - 3.6V	2.5V - 3.6V
Automotive	-40°C to +105°C	2.5V-3.6V	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.2 to VDD+0.3	V
TBIAS	Temperature Under Bias	-40 to +85	°C
Vdd	VDD Related to GND	-0.2 to +3.8	V
Тѕтс	Storage Temperature	–65 to +150	°C
Рт	Power Dissipation	1.0	W

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	Vdd	Min.	Max.	Unit
Vон	Output HIGH Voltage	Іон = -1 mA 2	2.5-3.6V	2.2	—	V
Vol	Output LOW Voltage	IoL = 2.1 mA 2	2.5-3.6V	_	0.4	V
VIH	Input HIGH Voltage		2.5-3.6V	2.2	VDD + 0.3	V
VIL	Input LOW Voltage	2	2.5-3.6V	-0.2	0.6	V
Iц	Input Leakage	$GND \leq V_{\text{IN}} \leq V_{\text{DD}}$		-1	1	μA
Ilo	Output Leakage	GND ≤ Vout ≤ Vod, Outp	uts Disabled	-1	1	μA

Notes:

VIL (min.) = −2.0V AC (pulse width < 10ns). Not 100% tested.

VIH (max.) = VDD + 2.0 V AC (pulse width < 10ns). Not 100% tested.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$V_{DD} = 1.7V - 1.95V$

Symbol	Parameter	Test Conditions VDD	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -0.1 mA 1.7-1.95V	1.4	_	V
Vol	Output LOW Voltage	IoL = 0.1 mA 1.7-1.95V	_	0.2	V
Vін	Input HIGH Voltage	1.7-1.95V	1.4	VDD + 0.2	V
Vı∟	Input LOW Voltage	1.7-1.95V	-0.2	0.4	V
L	Input Leakage	$GND \leq V_{IN} \leq V_{DD}$	-1	1	μA
Ilo	Output Leakage	$GND \leq VOUT \leq VDD$, Outputs Disabled	-1	1	μA

Notes:

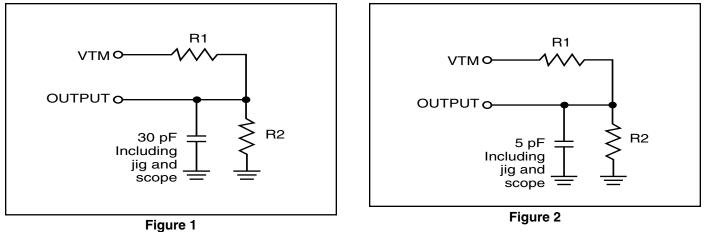
 V_{IL} (min.) = -1.0V AC (pulse width < 10ns). Not 100% tested.

VIH (max.) = VDD + 1.0V AC (pulse width < 10ns). Not 100% tested.

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 0V$	8	pF
Соит	Input/Output Capacitance	Vout = 0V	10	pF

Note:


1. Tested initially and after any design or process changes that may affect these parameters.

AC TEST CONDITIONS

Parameter	1.7V-1.95V (Unit)	2.5V-3.6V (Unit)	
Input Pulse Level	0.4V to VDD-0.2	0.4V to VDD-0.3V	
Input Rise and Fall Times	5 ns	5ns	
Input and Output Timing and Reference Level	Vref	Vref	
Output Load	See Figures 1 and 2	See Figures 1 and 2	

	1.7V - 1.95V	2.5V - 3.6V
R1(Ω)	3070	1029
R2(Ω)	3150	1728
VREF	0.9V	1.4V
Vтм	1.8V	2.8V

AC TEST LOADS

Symbol	Parameter	Test Conditions		Max. 70ns	Unit
Icc	VDD Dynamic Operating Supply Current	$V_{DD} = Max.,$ $I_{OUT} = 0 mA, f = f_{MAX}$ All Inputs 0.4V or V_{DD} - 0.2V	Com. Ind. Auto.	20 25 30	mA
Icc1	Operating Supply Current	$\frac{V_{DD} = Max., \overline{CS1} = 0.2V}{WE = V_{DD} - 0.2V}$ $CS2 = V_{DD} - 0.2V, f = 1_{MHZ}$	Com. Ind. Auto.	4 4 10	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{array}{l} V_{DD} = Max., \\ V_{IN} = V_{IH} \mbox{ or } V_{IL} \\ \hline CS1 = V_{IH} \mbox{ , } CS2 = V_{IL}, \\ f = 1 \mbox{ MHz} \end{array}$	Com. Ind. Аито.	0.6 0.6 1	mA
	OR				
	ULB Control	$\frac{V_{DD} = Max., V_{IN} = V_{IH} \text{ or } V_{IL}}{\overline{CS1} = V_{IL}, f = 0, \overline{UB} = V_{IH}, \overline{L}}$			
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{split} & \frac{V_{DD} = Max.,}{\overline{CS1} \geq V_{DD} - 0.2V,} \\ & CS2 \leq 0.2V, \\ & V_{IN} \geq V_{DD} - 0.2V, \text{ or} \\ & V_{IN} \leq 0.2V, \text{ f} = 0 \end{split}$	Com. Ind. Auto.	100 120 150	μΑ
	OR				
	ULB Control	$\begin{array}{l} V_{DD} = Max., \ \overline{CS1} = V_{IL}, \ C\\ \overline{V_{IN}} \geq V_{DD} - 0.2V, \ or \ V_{IN} \leq \\ \overline{UB} \ / \ \overline{LB} = V_{DD} - 0.2V \end{array}$			

1.7V-1.95V POWER SUPPLY CHARACTERISTICS (Over Operating Range)

Note:

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

2.5V-3.6V POWER SUPPLY CHARACTERISTICS (Over Operating Range)

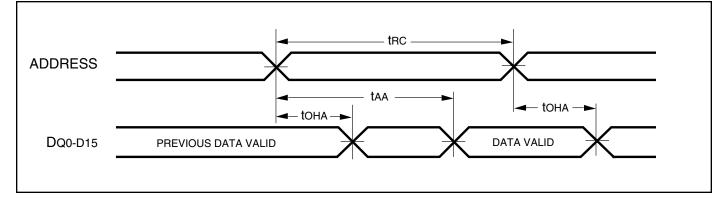
Symbol	Parameter	Test Conditions		Max. 55ns	Unit	
Icc	VDD Dynamic Operating	Vdd = Max.,	Com.	25	mA	
	Supply Current	IOUT = 0 mA, $f = f_{MAX}$	Ind.	28		
		All Inputs 0.4V	Auto.	35		
		or VDD – 0.3V	typ. ⁽²⁾	15		
Icc1	Operating Supply	$V_{DD} = Max., \overline{CS1} = 0.2V$	Com.	5	mA	
	Current	$\overline{\text{WE}} = \text{V}_{\text{DD}} - 0.2\text{V}$	Ind.	5		
		CS2 = VDD - 0.2V, f = 1мнz	Αυτο.	10		
ISB1	TTL Standby Current	Vdd = Max.,	Com.	0.6	mA	
	(TTL Inputs)	VIN = VIH or VIL	Ind.	0.6		
		CS1 = V⊮ , CS2 = V∟, f = 1 MHz	Αυτο.	1		
	OR					
	ULB Control	$\frac{V_{DD} = Max., V_{IN} = V_{IH} \text{ or } V_{IL}}{\overline{CS1} = V_{IL}, f = 0, \overline{UB} = V_{IH}, \overline{L}}$				
ISB2	CMOS Standby	Vdd = Max.,	Com.	100	μA	
	Current (CMOS Inputs)	$\overline{\text{CS1}} \geq \text{V}_{\text{DD}} - 0.2 \text{V},$	Ind.	130	·	
		$CS2 \leq 0.2V$,	Auto.	150		
		$V_{IN} \ge V_{DD} - 0.2V$, or	typ. ⁽²⁾	75		
		$V \text{IN} \leq ~0.2 \text{V}, f = 0$				
	OR					
	ULB Control	$V_{DD} = Max., \overline{CS1} = V_{IL}, C$	S2=Vін			
		$V_{IN} \ge V_{DD} - 0.2V$, or $V_{IN} \le 100$				
		$\overline{\text{UB}} / \overline{\text{LB}} = \text{V}_{\text{DD}} - 0.2\text{V}$				

Note:

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change. 2. Typical values are measured at VDD = 3.0V, TA = 25°C and not 100% tested.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

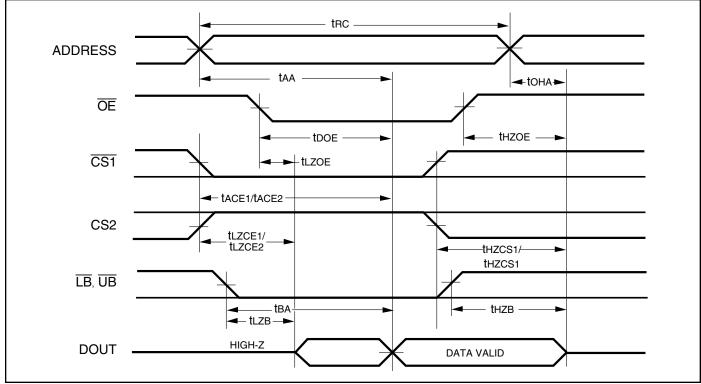
		55 n	s	70 ns	;		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
t RC	Read Cycle Time	55	—	70	_	ns	
taa	Address Access Time		55	—	70	ns	
tона	Output Hold Time	10	—	10	_	ns	
tacs1/tacs2	CS1/CS2 Access Time		55		70	ns	
t doe	OE Access Time	_	25	_	35	ns	
thzoe ⁽²⁾	OE to High-Z Output	—	20	—	25	ns	
tlzoe ⁽²⁾	OE to Low-Z Output	5	_	5	_	ns	
tHZCS1/tHZCS2 ⁽²⁾	CS1/CS2 to High-Z Output	0	20	0	25	ns	
tLZCS1/tLZCS2 ⁽²⁾	CS1/CS2 to Low-Z Output	10		10		ns	
tва	LB, UB Access Time		55	_	70	ns	
tнzв	LB, UB to High-Z Output	0	20	0	25	ns	
t LZB	LB, UB to Low-Z Output	0		0		ns	


Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.

2. Tested with the load in Figure 2. Transition is measured ±100 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS


READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CS1} = \overline{OE} = V_{IL}$, $CS2 = \overline{WE} = V_{IH}$, \overline{UB} or $\overline{LB} = V_{IL}$)

AC WAVEFORMS

READ CYCLE NO. 2^(1,3) (CS1, CS2, OE, AND UB/LB Controlled)

Notes:

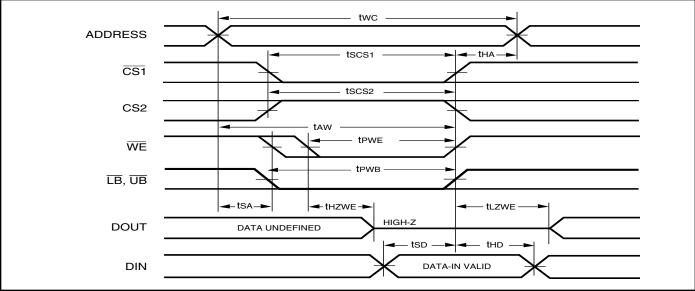
- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1}$, \overline{UB} , or $\overline{LB} = V_{IL}$. $CS2=\overline{WE}=V_{IH}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CS1}}$ LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2) (Over Operating Range)

		55 ns		70 ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	55	—	70	—	ns
tscs1/tscs	2 CS1/CS2 to Write End	45	_	60	_	ns
taw	Address Setup Time to Write End	45	_	60		ns
tна	Address Hold from Write End	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	ns
tрwв	$\overline{\text{LB}}$, $\overline{\text{UB}}$ Valid to End of Write	45		60		ns
tpwe ⁽⁴⁾	WE Pulse Width	45	15,000	60	15,000	ns
t sd	Data Setup to Write End	25	_	30	_	ns
tнd	Data Hold from Write End	0		0		ns
tHZWE ⁽³⁾	WE LOW to High-Z Output	_	20	_	30	ns
tlzwe ⁽³⁾	WE HIGH to Low-Z Output	5		5	_	ns

Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.

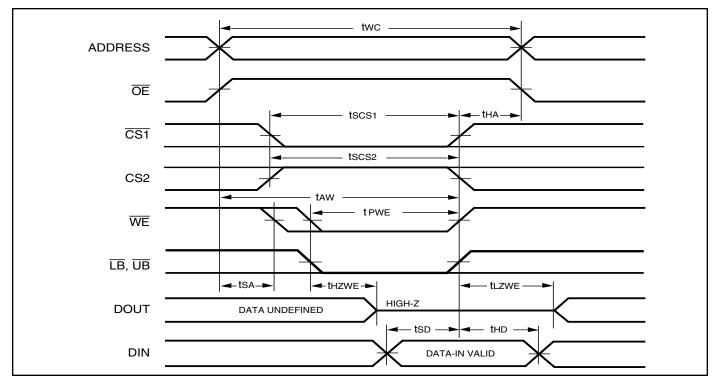

2. The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

3. Tested with the load in Figure 2. Transition is measured ±100 mV from steady-state voltage. Not 100% tested.

4. tPWE > tHZWE + tSD when \overline{OE} is LOW.

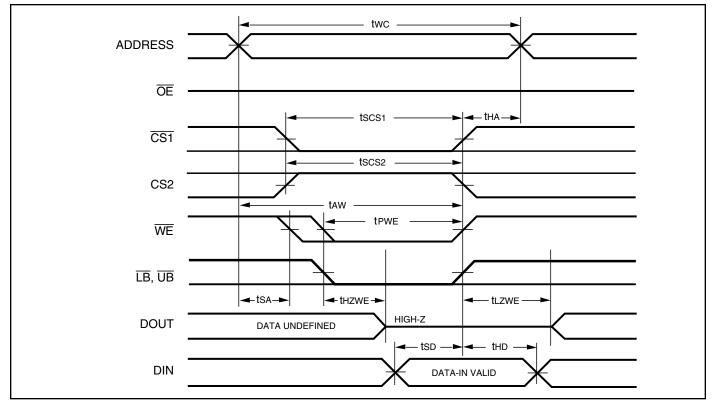
AC WAVEFORMS

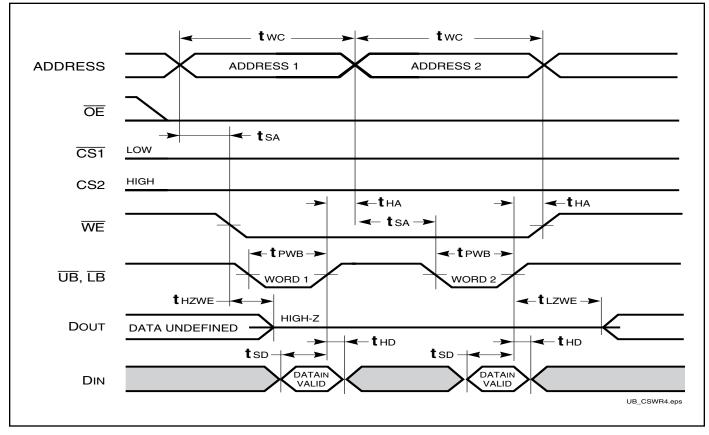
WRITE CYCLE NO. $1^{(1,2)}$ ($\overline{CS1}$ Controlled, \overline{OE} = HIGH or LOW)



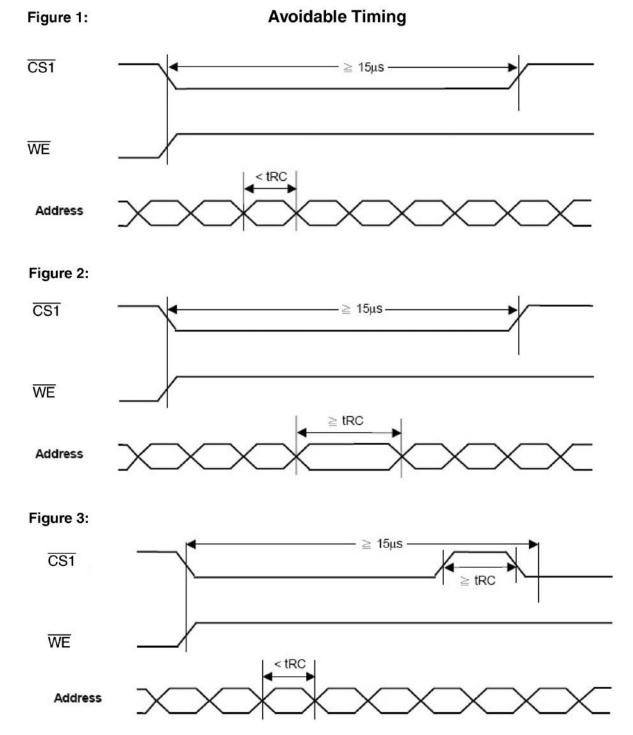
Notes:

1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the CS1, CS2 and WE inputs and at least one of the LB and UB inputs being in the LOW state.


^{2.} WRITE = $(\overline{CS1}) [(\overline{LB}) = (\overline{UB})] (\overline{WE}).$


WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)

WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

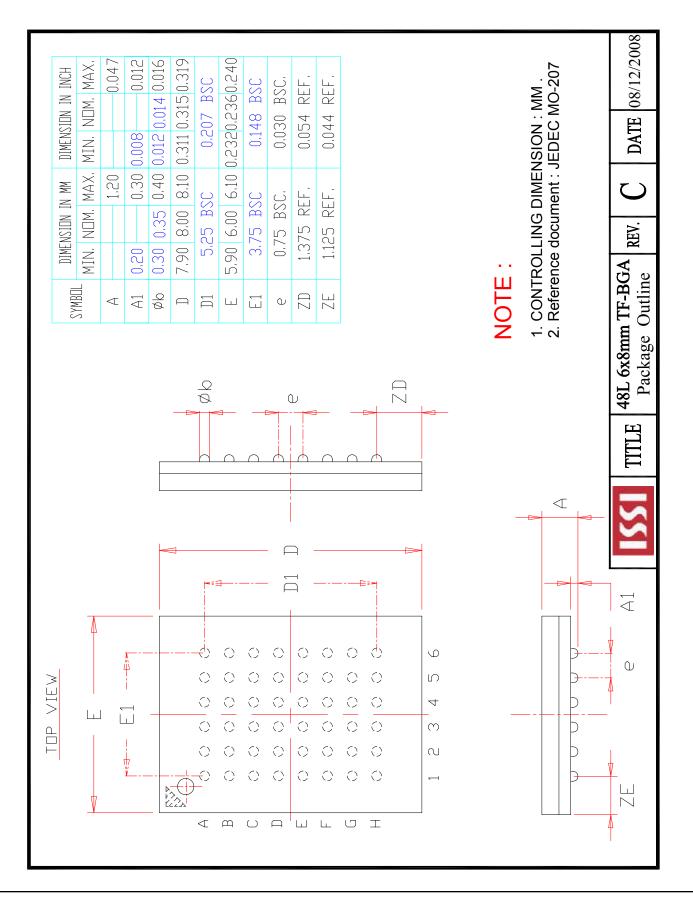


WRITE CYCLE NO. 4 (UB/LB Controlled)

Please avoid address change for less than tRc during the cycle time longer than 15 μ s (Figure 1). Figure 2 & 3 provide work around solution for this issue.

IS66WV1M16DALL

Industrial Range: -40°C to +85°C Voltage Range: 1.7V to 1.95V


Speed (ns)	Order Part No.	Package
70	IS66WV1M16DALL-70BLI	mini BGA (6mm x 8mm), Lead-free

IS66WV1M16DBLL

Industrial Range: -40°C to +85°C Voltage Range: 2.5V to 3.6V

Speed (ns)	Order Part No.	Package
55	IS66WV1M16DBLL-55BLI	mini BGA (6mm x 8mm), Lead-free
70	IS66WV1M16DBLL-70BLI	mini BGA (6mm x 8mm), Lead-free

