

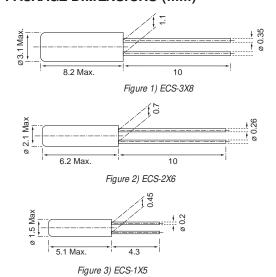
ECS tuning fork type crystals are used as a clock source in communication equipment, measuring instruments, microprocessors and other time management applications. Their low power consumption makes these crystals ideal for portable equipment.

FEATURES

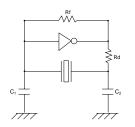
- Cost effective
- Tight tolerance
- · Long term stability
- Excellent resistance and environmental characteristics

PART NUMBERING GUIDE "EXAMPLE"

		FREQUENCY		LOAD CAPACITANCE		PACKAGE TYPE*	
ECS	-	.327	_	12.5	_	8	
ECS	_	.327	_	12.5	_	13	
ECS	_	.327	_	8	_	14	


^{*} Package type examples (8=3x8, 13=2x6, 14=1x5)

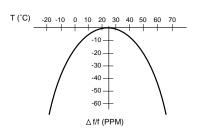
OPERATING CONDITIONS/ELECTRICAL CHARACTERISTICS


PARAMETERS		ECS-3X8	ECS-2X6	ECS-1X5	UNITS	
NOMINAL FREQUENCY	Fo	32.768	32.768	32.768	KHz	
FREQUENCY TOLERANCE Δ1		±20	±20	±20	PPM	
LOAD CAPACITANCE (typ.)		12.5	12.5	8.0	pF	
DRIVE LEVEL (max.)	DL	1	1	1	μW	
RESISTANCE AT SERIES RESONANCE	R ₁	35 (max.)	35 (max.)	40 (max.)	ΚΩ	
Q-FACTOR	Q	90,000 (typ.)	70,000 (typ.)	80,000 (typ.)		
TURNOVER TEMPERATURE	T _M	+25 ±5	+25 ±5	+25 ±5	°C	
TEMPERATURE COEFFICIENT	В	-0.040ppm/°C² max.	-0.040ppm/*C2 max.	-0.040ppm/°C² max.	PPM/(∆C°)	
SHUNT CAPACITANCE	Co	1.60 (typ.)	1.35 (typ.)	1.00 (typ.)	pF	
CAPACITANCE RATIO		460 (typ.)	450 (typ.)	400 (typ.)		
OPERATING TEMP. RANGE	TOPR	-10~+60				
STORAGE TEMP. RANGE T _{STG}		-40~+85				
SHOCK RESISTANCE	CK RESISTANCE Drop test 3 times on hard wooden board from height of 75cm / ±5 PPM max.					
INSULATION RESISTANCE IR 500MΩ min./DC100V						
AGING (FIRST YEAR) Δf/fo ±3 PPM max. @ +25°C ±3°C						
MOTIONAL CAPACITANCE C ₁		0.0035 (typ.)	0.0030 (typ.)	0.0025 (typ.)	pF	

Note: Contact factory for optional load capacitance.

PACKAGE DIMENSIONS (mm)

RECOMMENDED OSCILLATION CIRCUIT



ELECTRICAL CHARACTERISTICS

IC: TC 4069P Rf: $10M\Omega$ Rd: 330K Ω (As required) $C_1 = 22pF, C_2 = 22pF$ $V_{DD} = 3.0V$

In this circuit, low drive level with a maximum of 1μW is recommended. If excessive drive is applied, irregular oscillation or quartz element fractures may occur.

PARABOLIC TEMPERATURE CURVE

To determine frequency stability, use parabolic curvature. For example: What is the stability at 45°C?

1) Change in T (°C) = 45 -25 = 20°C 2) Change in frequency = -0.04 PPM x $(\Delta T)^2$ $= -0.04 PPM \times (20)^2$ = -16.0 PPM

ECS. INC. INTERNATIONAL 1105 S. RIDGEVIEW. OLATHE. KS 66062 • 913-782-7787 • 800-237-1041 • FAX 913-782-6991 • WWW.ECSXTAL.COM