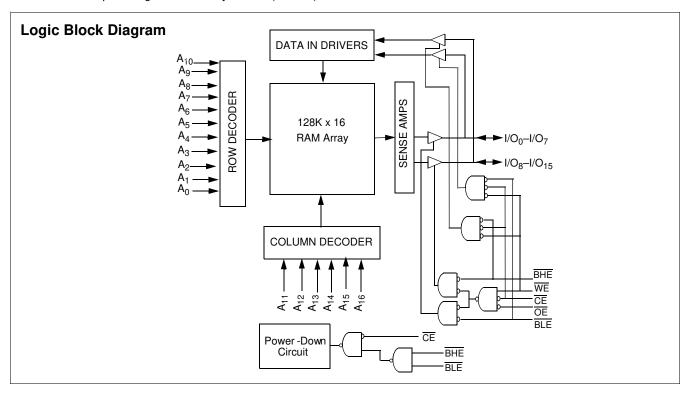


2-Mbit (128K x 16) Static RAM

Features

- High Speed
 - 55 ns
- · Temperature Ranges
 - Industrial: –40°C to 85°C
- Automotive: -40°C to 125°C
- Wide voltage range: 2.7V 3.6V
- · Ultra-low active, standby power
- · Easy memory expansion with CE and OE features
- · TTL-compatible inputs and outputs
- Automatic power-down when deselected
- · CMOS for optimum speed/power
- Available in Pb-free and non Pb-free standard 44-pin TSOP Type II package


Functional Description[1]

The CY62137V is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in

portable applications such as cellular telephones. The device also has an automatic power-down feature that reduces power consumption by 99% when addresses are not toggling. The device can also be <u>put</u> into standby mode <u>when deselected</u> ($\overline{\text{CE}}$ HIGH) or when $\overline{\text{CE}}$ is LOW and both $\overline{\text{BLE}}$ and $\overline{\text{BHE}}$ are HIGH. The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com

Product Portfolio

						Power Dissipation				
	V _{CC} Range (V)		Speed	Operating, I _{CC} (mA)		Standby, I _{SB2} (μA)				
Product	Min.	Typ. ^[2]	Max.	(ns)	Grades	Typ . ^[2]	Max.	Typ. ^[2]	Max.	
CY62137VLL	2.7	3.0	3.6	55	Industrial	7	20	1	15	
				70		7	15	1	15	
				70	Automotive	7	15	1	20	

Pin Configurations^[3]

TSOP II (Forward) Top View							
A4 🗆	1	44 □ A ₅					
A ₃ □	2	43 🗖 A ₆					
A ₂	3	42 🛮 A ₇					
A_1^{-}	4	41 OE					
A ₀ □	5	⁴⁰ ☐ BHE					
CĔ□	6	39 BLE					
I/O ₀ □	7	38 🗆 I/O ₁₅					
I/O ₁	8	37 🗆 I/O ₁₄					
I/O ₂	9	36 2 I/O ₁₃					
I/O ₃	10	35 🛛 I/O ₁₂					
V _{CC} □	11	³⁴ $ pred$					
$V_{SS} \square$	12	³³ □ V _{CC}					
I/O ₄ □	13	32 🔲 I/O ₁₁					
I/O ₅	14	31 2 I/O ₁₀					
I/O ₆	15	30 🛛 I/O ₉					
I/O ₇	16	29 🛮 I/O ₈					
WE	17	28 NC					
A ₁₆	18	27 🛮 A ₈					
A ₁₅	19	26 A A9					
A ₁₄ [20 21	25 H A ₁₀					
A ₁₃ [22	24 A ₁₁ 23 NC					
A ₁₂	44	20 LINU					

Pin Definitions

Pin Number	Туре	Description
1–5, 18–22, 24–27, 42–45	Input	A ₀ -A ₁₆ . Address Inputs
7–10, 13–16, 29–32, 35–38	Input/Output	I/O ₀ -I/O ₁₅ . Data lines. Used as input or output lines depending on operation
23	No Connect	NC. This pin is not connected to the die
17	Input/Control	WE . When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted
6	Input/Control	CE. When LOW, selects the chip. When HIGH, deselects the chip
40, 39	Input/Control	BHE, BLE. BHE = LOW selects higher order byte WRITEs or READs on the SRAM BLE = LOW selects lower order byte WRITEs or READs on the SRAM
41	Input/Control	OE . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are Tri-stated, and act as input data pins
12, 34	Ground	V _{SS} . Ground for the device
11, 33	Power Supply	V _{CC} . Power supply for the device

- 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(TYP)}., T_A = 25°C.
 3. NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential -0.5V to +4.6V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

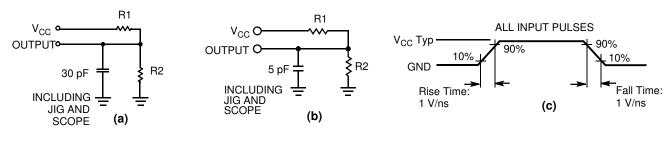
Range	Ambient Temperature	V _{cc}
Industrial	-40°C to +85°C	2.7V to 3.6V
Automotive	-40°C to +125°C	2.7V to 3.6V

Electrical Characteristics Over the Operating Range

					C١	/62137\	/- 55	CY	62137V	'-70	
Parameter	Description	Test C	Conditions		Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.7V$	1	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$,			0.4			0.4	V
V _{IH}	Input HIGH Voltage				2.2		V _{CC} + 0.5V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage				-0.5		0.8	-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$			-1		+1	-1		+1	μА
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$			-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0$ mA, $f = f_{Max} = 1/t_{RC}$, CMOS Levels	V _{CC} = 3.6V			7	20		7	15	mA
		I _{OUT} =0 mA, f=1MHz, CMOS Levels				1	2		1	2	mA
I _{SB1}	Automatic CE Power-down Current—CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or }$ $V_{IN} \le 0.3V, f = f_{Max}$	V _{CC} = 3.6V				100			100	μА
I _{SB2}	Automatic CE	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.3V$	$V_{CC} = 3.6V$	Industrial		1	15		1	15	μΑ
	Power-down Current—CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, $f = 0$		Automotive					1	20	

Capacitance^[5]

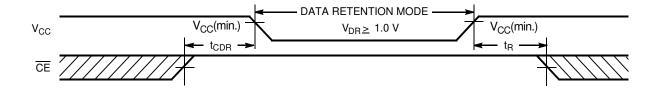
Parameter	Description	Test Conditions	Max.	Unit	
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	6	pF	
C _{OUT}	Output Capacitance		8	pF	


Thermal Resistance^[5]

Parameter	Description	Test Conditions	TSOPII	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 2-layer printed circuit board	60	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)		22	°C/W

 ^{4.} V_{IL}(min.) = -2.0V for pulse durations less than 20 ns.
 5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms



Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions			Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.0			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.0V, \overline{CE} \ge V_{CC} - 0.3V,$ Indus $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$,			0.5	7.5	μА
		$V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V,$ No input may exceed $V_{CC} + 0.3V$	Automotive			10	
t _{CDR} ^[5]	t _{CDR} ^[5] Chip Deselect to Data Retention Time		0			ns	
t _R	Operation Recovery Time			70			ns

Data Retention Waveform

Switching Characteristics Over the Operating Range [6]

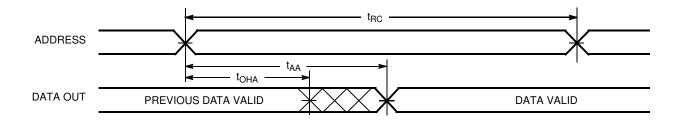
		55	ns	70			
Parameter	Description	Min. Max.		Min. Max.		Unit	
Read Cycle							
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address to Data Valid		55		70	ns	
t _{OHA}	Data Hold from Address Change	10		10		ns	
t _{ACE}	CE LOW to Data Valid		55		70	ns	
t _{DOE}	OE LOW to Data Valid		25		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[7]	5		5		ns	
t _{HZOE}	OE HIGH to High-Z ^[7, 8]		25		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[7]	10		10		ns	
t _{HZCE}	CE HIGH to High-Z ^[7, 8]		25		25	ns	
t _{PU}	CE LOW to Power-up	0		0		ns	
t _{PD}	CE HIGH to Power-down		55		70	ns	
t _{DBE}	BHE/BLE LOW to Data Valid		55		70	ns	
t _{LZBE} ^[9]	BHE/BLE LOW to Low-Z	5		5		ns	
t _{HZBE}	BHE/BLE HIGH to High-Z		25		25	ns	
Write Cycle ^[10, 11]		.	<u> </u>	•	•	•	
t _{WC}	Write Cycle Time	55		70		ns	
t _{SCE}	CE LOW to Write End	45		60		ns	
t _{AW}	Address Set-up to Write End	45		60		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	40		50		ns	
t _{SD}	Data Set-up to Write End	25		30		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High-Z ^[7, 8]		20		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[7]	5		10		ns	
t _{BW}	BHE/BLE LOW to End of Write	50		60		ns	

Notes:

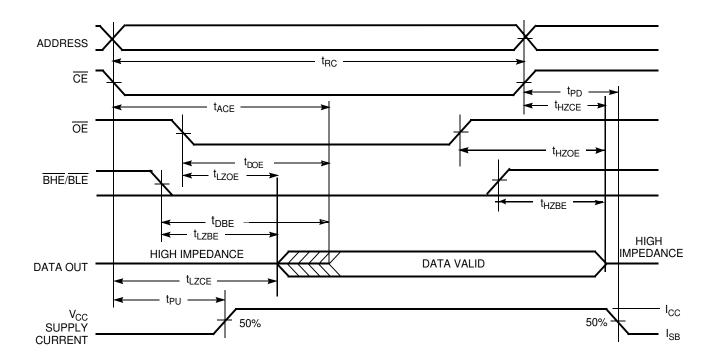
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZNE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

9. If both byte enables are toggled together this value is 10 ns.


10. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

11. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

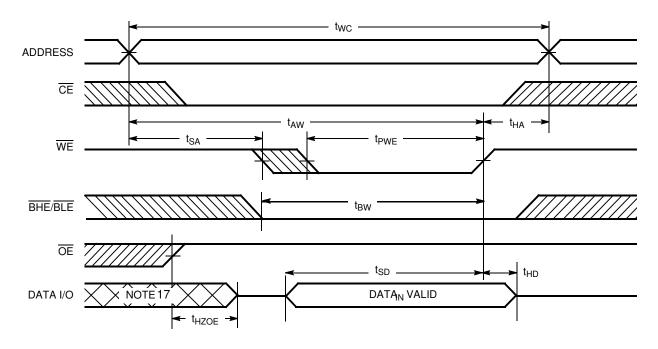


Switching Waveforms

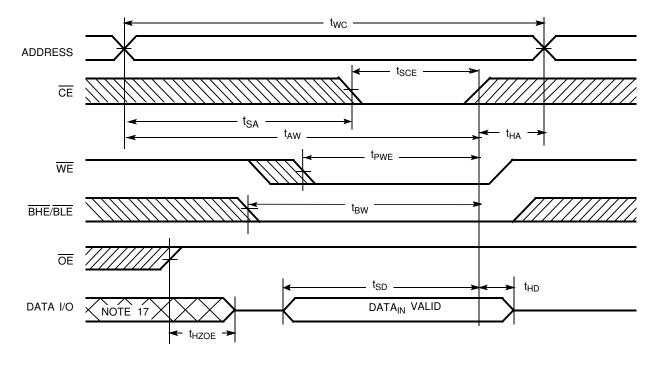
Read Cycle No. 1 (Address Transition Controlled)^[12, 13]

Read Cycle No. 2 (OE Controlled)[13, 14]

- 12. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}.


 13. <u>WE</u> is HIGH for read cycle.

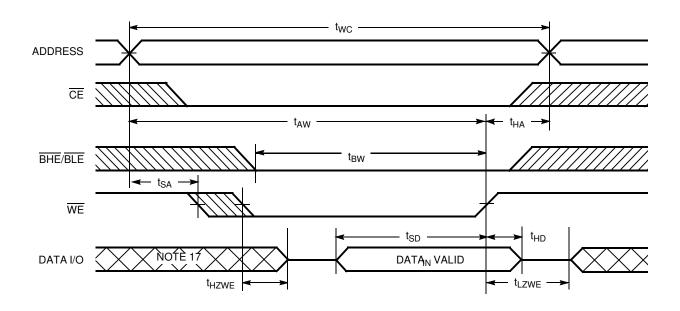
 14. Address valid prior to or coincident with <u>CE</u> transition LOW.



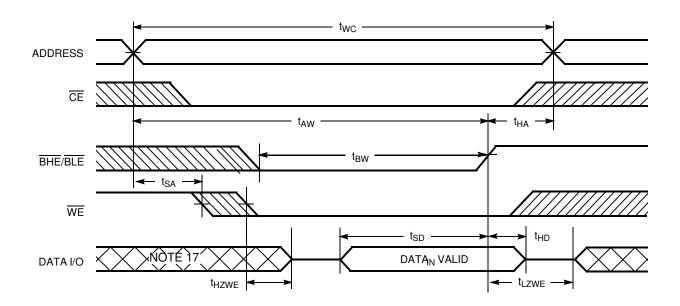
Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)^[10, 15, 16]

Write Cycle No. 2 (CE Controlled)[10, 15, 16]

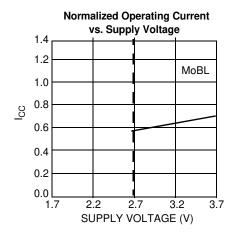


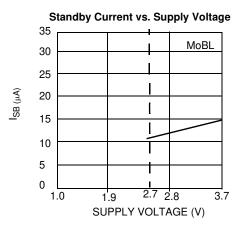
- 15. Data I/O is high-impedance if $\overline{\text{OE}} = \underline{V_{\text{IH}}}$ 16. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.
 17. During this period, the I/Os are in output state and input signals should not be applied.

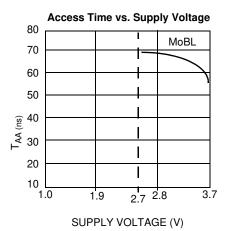


$\textbf{Switching Wave} \underline{\textbf{forms}} \hspace{0.1in} (\texttt{continued})$

Write Cycle No. 3 (WE Controlled, OE LOW)[11, 16]



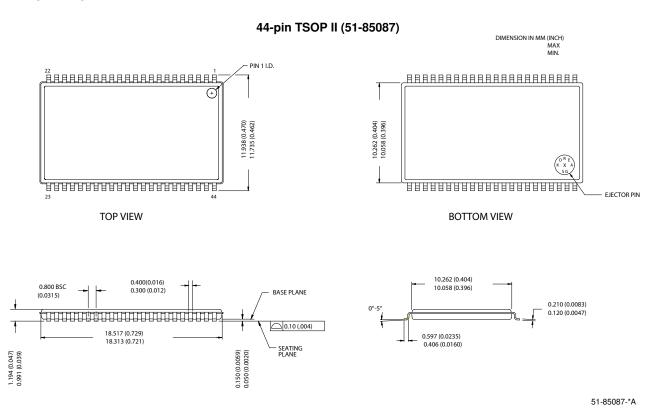

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[17]



Typical DC and AC Characteristics

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Χ	Χ	Χ	Χ	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Х	Х	Н	Н	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	Ш	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	High-Z (I/O ₈ -I/O ₁₅); Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ -I/O ₁₅); High-Z (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	High-Z (I/O ₈ –I/O ₁₅); Data In (I/O ₀ –I/O ₇)	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ -I/O ₁₅); High-Z (I/O ₀ -I/O ₇)	Write	Active (I _{CC})
L	Н	Н	L	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62137VLL-55ZI	51-85087	44-pin TSOP II	Industrial
	CY62137VLL-55ZXI		44-pin TSOP II (Pb-free)	
70	CY62137VLL-70ZI		44-pin TSOP II	-
	CY62137VLL-70ZXI		44-pin TSOP II (Pb-free)	=
	CY62137VLL-70ZE		44-pin TSOP II	Automotive
	CY62137VLL-70ZXE		44-pin TSOP II (Pb-free)	=
	CY62137VLL-70ZSXE		44-pin TSOP II (Pb-free)	

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109960	10/03/01	SZV	Changed from Spec number: 38-00738 to 38-05051
*A	116788	09/04/02	GBI	Added footnote number one Added SL power bin Deleted fBGA package; replacement fBGA package is available in CY62137CV30
*B	237428	See ECN	AJU	Added Automotive product information
*C	329640	See ECN	AJU	Changed TSOPII package name from Z44 to ZS44 Added Pb-free ordering information
*D	372074	See ECN	SYT	Added Pb-free ordering information for Automotive
*E	486789	See ECN	VKN	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Removed SL Power Bin Updated Ordering Information Table