

DESCRIPTION

The EVBL4415A-QB-00A is an evaluation board designed for the MP4415A and MPQ4415A. It features and MPS inductor.

The MP4415A is a synchronous, rectified, stepdown switch-mode converter with build-in power MOSFETs. The device offers a very compact solution to achieve 1.5A of continuous output current with excellent load and line regulation across a wide input supply range. The MP4415A uses synchronous mode operation to achieve high efficiency across the output current load range.

The MP4415A is available in a QFN-13 (2.5mmx3mm) package.

ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Value	Units
Input voltage	Vin	4 to 36	V
Output voltage	Vout	3.3	V
Output current	Іоит	1.5	А

EVBL4415A-QB-00A

High-Efficiency, 1.5A, 36V, 2.2MHz Synchronous Step-Down Converter Evaluation Board

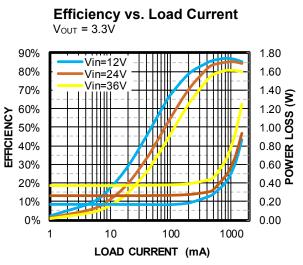
FEATURES

- Wide 4V to 36V Operating Input Range
- 90mΩ High-Side/50mΩ Low-Side Internal Power MOSFETs
- High-Efficiency Synchronous Mode
 Operation
- Default 2.2MHz Switching Frequency
- 450kHz to 2.2MHz Frequency Sync
- Forced Continuous Conduction Mode (FCCM)
- High Duty Cycle for Automotive Cold Crank
- Internal Soft Start (SS)
- Power Good (PG) Indicator
- Over-Current Protection (OCP) with Valley Current Detection and Hiccup Mode
- Thermal Shutdown
- Output Adjustable from 0.8V
- Available in a QFN-13 (2.5mmx3mm) Package
 MPL Optimized Performance with

MPS Inductor MPL-AT2514 Series

APPLICATIONS

- Automotive
- Industrial Control System
- Distributed Power Systems


All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

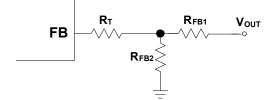
EVBL4415A-QB-00A EVALUATION BOARD

Board Number	MPS IC Number		
EVBL4415A-QB-00A	MP4415AGQB,		
EVBL4413A-QB-00A	MPQ4415AGQB		

QUICK START GUIDE

- 1. Connect the load terminals to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND

Note that electronic loads represent a negative impedance to the regulator, so a high current can trigger hiccup mode.


2. Preset the power supply output to be between 4 and 36V, then turn it off.

If longer cables (>0.5m total) are used between the source and the EVB, install a damping capacitor at the input terminals, especially when V_{IN} is greater than or equal to 24V.

- 3. Connect the power supply output terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND.
- 4. Turn the power supply on. The MP4415A should automatically start up.
- 5. To use the enable function, apply a digital input to the EN/SYNC pin. Drive EN/SYNC above 1.45V to turn the regulator on; drive EN below 1V to turn it off.
- 6. To use the sync function, apply a 450kHz to 2.2MHz external clock to the EN/SYNC pin to synchronize the internal clock rising edge.
- 7. The output voltage is set by the external resistor divider. The feedback resistor (R_{FB1}) also sets the feedback loop bandwidth with the internal compensation capacitor. Choose R_{FB1} to be around $40k\Omega$ when $V_{OUT} \ge 1V$. R_{FB2} can then be calculated with Equation (1):

$$R_{FB2} = \frac{R_{FB1}}{\frac{V_{OUT}}{0.807V} - 1}$$
(1)

8. The T-type network is highly recommended when V_{OUT} is low (see Figure 1)

Figure 1: T-Type Network

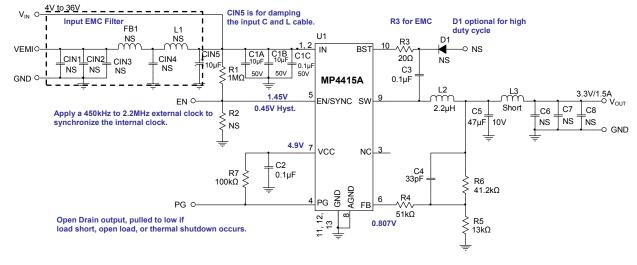
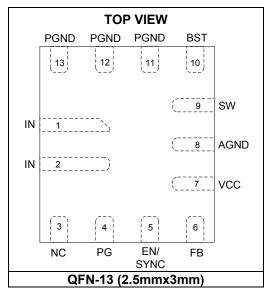

9. R_T and R_{FB1} are used to set the loop bandwidth. The lower R_T and R_{FB1} is, the higher the bandwidth. However, a high bandwidth may cause an insufficient phase margin, which results in an unstable loop. Select an appropriate value for R_T to make a tradeoff between the bandwidth and phase margin. Table 1 lists the recommended feedback resistor and R_T values for common output voltages.

Table 1: Recommended Feedback Resistors and C	Dutput Voltages
---	------------------------

V оит (V)	R _{FB1} (kΩ)	R _{FB2} (kΩ)	R⊤ (kΩ)
3.3	41.2 (1%)	13 (1%)	51 (1%)
5	41.2 (1%)	7.68 (1%)	51 (1%)


EVALUATION BOARD SCHEMATIC

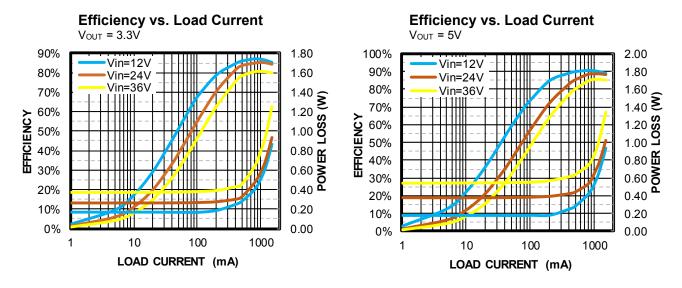
Reference for FB divider selection

V _{OUT} (V)	R6 (kΩ)	R5 (kΩ)
5	41.2(1%)	7.68(1%)
2.5	41.2(1%)	19.6(1%)
1.8	41.2(1%)	33.5(1%)

Figure 2: Evaluation Board Schematic

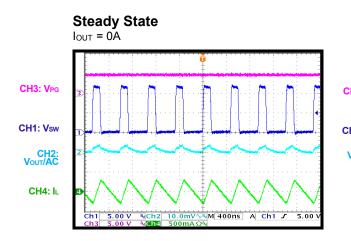
PACKAGE REFERENCE

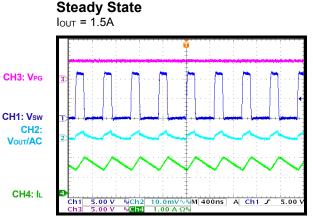
EVBL4415A-QB-00A BILL OF MATERIALS

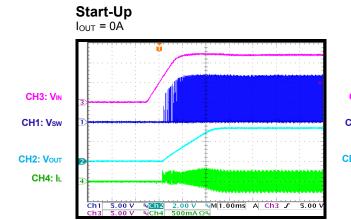

Qty	Designator	Value	Description	Package	Manufacture	Manufacturer PN
5	CIN1, CIN2, CIN3, CIN4, CIN5	NS				
2	C1A, C1B	10µF	Ceramic capacitor, 50V, X5R	1206	Murata	GRM31CR61H106KA12L
1	C1C	0.1µF	Ceramic capacitor, 50V, X7R	0603	Murata	GRM188R71H104KA93D
2	C2, C3	0.1µF	Ceramic capacitor, 16V, X7R	0603	Murata	GRM188R71C104KA01D
1	C4	33pF	Ceramic capacitor, 50V, C0G	0603	Murata	GRM1885C1H330JA01D
1	C5	47µF	Ceramic capacitor, 10V, X5R	1210	Murata	GRM32ER61A476KE20L
3	C6, C7, C8	NS				
1	D1	NS				
1	FB1	NS				
1	L1	NS				
1	L2	2.2µH	Inductor, 70mΩ DCR, 2.5A	SMD	MPS	MPL-AT2514-2R2
1	L3	NS				
1	R1	1MΩ	Film resistor, 5%	0603	Yageo	RC0603JR-071ML
1	R3	20Ω	Film resistor, 1%	0603	Yageo	RC0603FR-0720RL
1	R4	51kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0751KL
1	R5	13kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0713KL
1	R6	41.2kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0741K2L
1	R7	100kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-07100KL
1	R2	NS				
1	U1	MP4415A	Step-down converter	QFN-13 (2mmx 3mm)	MPS	MP4415AGQB
5	VIN, VEMI, GND, GND, VOUT	2.0	2.0 golden pin	DIP	MPS ⁽¹⁾	
4	PG, GND, EN/SYNC, GND	2.54mm	2.54mm test pin	DIP	Any	

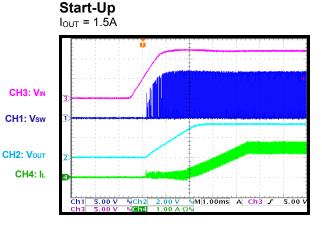
Note:

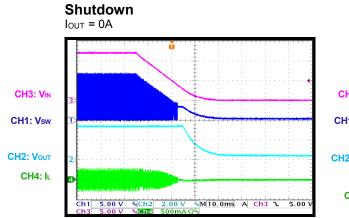
1) Contact an MPS FAE for more information regarding these pins.

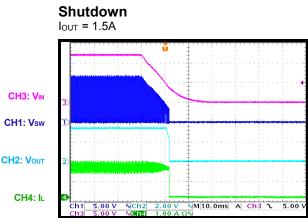

EVB TEST RESULTS

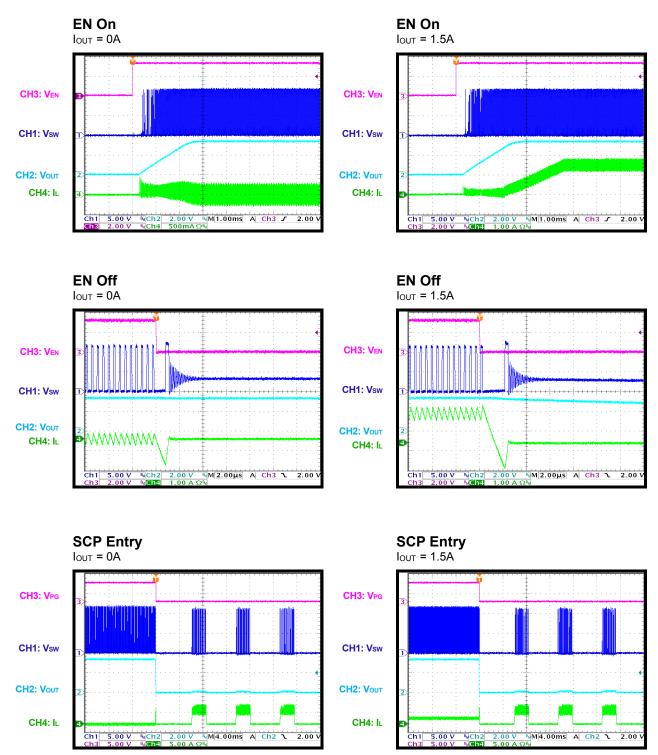

 V_{IN} = 12V, V_{OUT} = 3.3V, L = 2.2µH, f_{SW} = 2.2MHz, T_A = 25°C, unless otherwise noted.



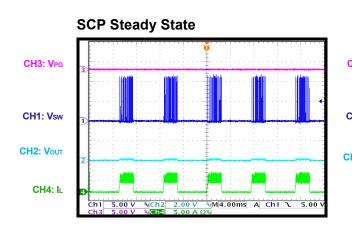

EVB TEST RESULTS (continued)

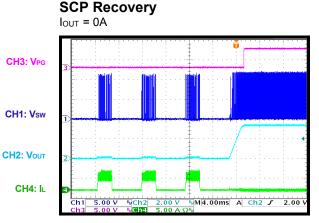

 V_{IN} = 12V, V_{OUT} = 3.3V, L = 2.2µH, f_{SW} = 2.2MHz, T_A = 25°C, unless otherwise noted.

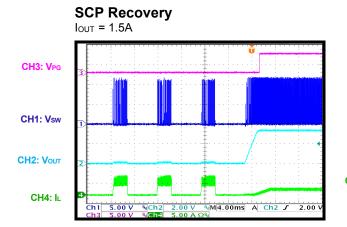




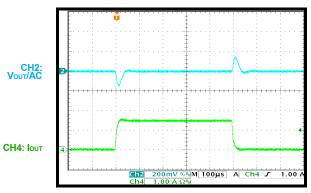
EVBL4415A-QB-00A Rev. 1.1 MonolithicPower.com 9/10/2021 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2021 MPS. All Rights Reserved.

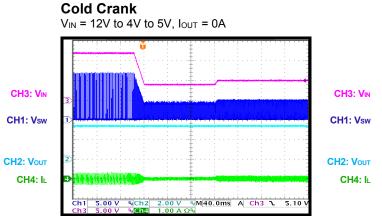

EVB TEST RESULTS (continued)

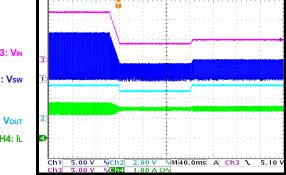

 V_{IN} = 12V, V_{OUT} = 3.3V, L = 2.2µH, f_{SW} = 2.2MHz, T_A = 25°C, unless otherwise noted.

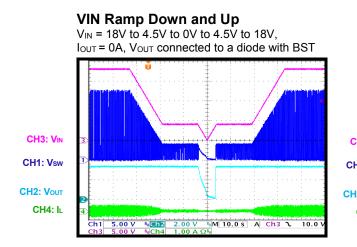


EVB TEST RESULTS (continued)

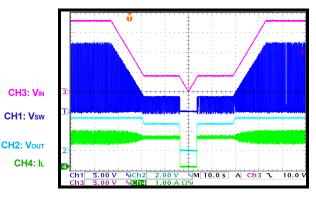

 V_{IN} = 12V, V_{OUT} = 3.3V, L = 2.2µH, f_{SW} = 2.2MHz, T_A = 25°C, unless otherwise noted.



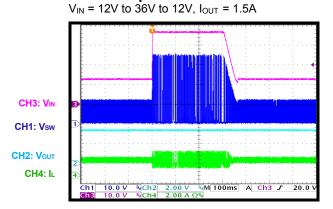




EVBL4415A-QB-00A Rev. 1.1 MonolithicPower.com 9/10/2021 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2021 MPS. All Rights Reserved.


EVB TEST RESULTS (continued)

 V_{IN} = 12V, V_{OUT} = 3.3V, L = 2.2µH, f_{SW} = 2.2MHz, T_A = 25°C, unless otherwise noted.



VIN Ramp Down and Up

 V_{IN} = 18V to 4V to 0V to 4V to 18V, I_{OUT} = 1.5A

Load Dump

PCB LAYOUT

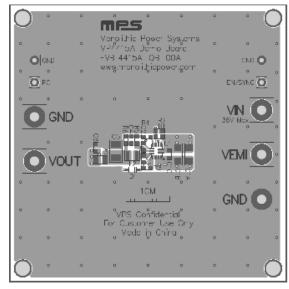


Figure 3: Top Silk Layer and Top Layer

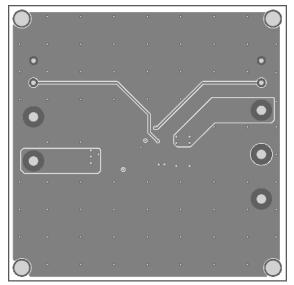


Figure 5: Inner Layer 2

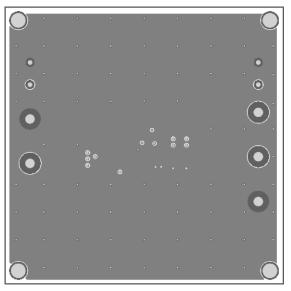


Figure 4: Inner Layer 1

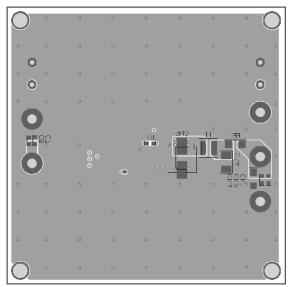


Figure 6: Bottom Silk Layer and Bottom Layer

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	10/8/2019	Initial Release	-
1 1	9/10/2021	Updated BOM	Page 5
1.1	9/10/2021	Grammatical and clerical updates	All

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.