CMOSIC 4K-byte FROM and 128-byte RAM integrated

8-bit 1-chip Microcontroller

http://onsemi.com

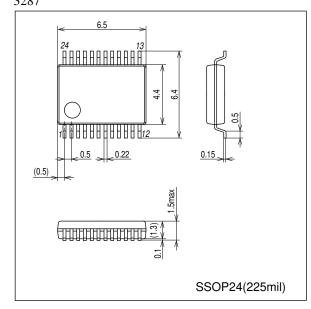
Overview

The LC87F2R04A is an 8-bit microcontroller that, integrates on a single chip a number of hardware features such as 4K-byte flash ROM, 128-byte RAM, an On-chip-debugger, 16-bit timers/counters, two 8-bit timers, an asynchronous/synchronous SIO interface, an 8-channel AD converter, an internal reset and an interrupt feature.

Features

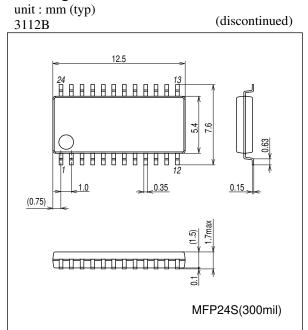
- ■Flash ROM
 - 4096×8 bits
 - Capable of on-board programming with wide range (2.2 to 5.5V) of voltage source.
 - Block-erasable in 128 byte units
 - Writable in 2-byte units

■RAM

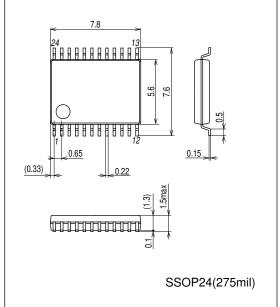

• 128×9 bits

■Package Form

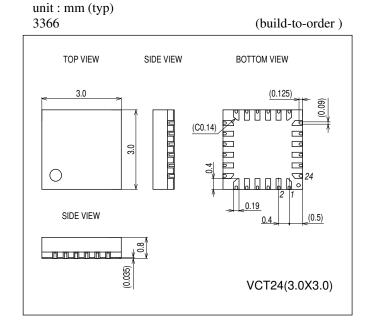
- SSOP24(225mil): Lead-/Halogen-free type
- MFP24S(300mil): Lead-/Halogen-free type (discontinued)
- SSOP24(275mil): Lead-/Halogen-free type (build-to-order)
- VCT24(3mm×3mm): Lead-/Halogen-free type (build-to-order)


Package Dimensions

unit: mm (typ) 3287


^{*} This product is licensed from Silicon Storage Technology, Inc. (USA).

Package Dimensions



Package Dimensions

unit: mm (typ) 3175C (build-to-order)

Package Dimensions

- ■Minimum Bus Cycle
 - 83.3ns (12MHz at V_{DD}=2.7V to 5.5V)
 - 100ns (10MHz at V_{DD}=2.2V to 5.5V) Note: The bus cycle time here refers to the ROM read speed.
- ■Minimum Instruction Cycle Time
 - 250ns (12MHz at V_{DD}=2.7V to 5.5V)
 - 300ns (10MHz at V_{DD}=2.2V to 5.5V)

■Ports

• Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1-bit units 11(P1n, P20, P21, P70)

Ports whose I/O direction can be designated in 4-bit units 8 (P0n)

• Dedicated oscillator ports/input ports 2 (CF1, CF2)

• Reset pin 1 (RES)

• Power pins 2 (V_{SS}1, V_{DD}1)

■Timers

• Timer 0: 16-bit timer/counter with a capture register.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)

• Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)

■SIO

• SIO1: 8-bit asynchronous/synchronous serial interface

Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)

Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)

Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)

Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■ AD Converter: 12 bits/8 bits \times 8 channels

• 12/8 bits AD converter resolution selectable

■Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)

Noise rejection function (noise filter time constant selectable from 1 tCYC/32 tCYC/128 tCYC)

■Watchdog Timer

- External RC watchdog timer
- Interrupt and reset signals selectable

■Interrupts

- 12 sources, 8 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3
5	00023H	H or L	ТОН
6	0002BH	H or L	None
7	00033H	H or L	None
8	0003BH	H or L	SIO1
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: 64levels (The stack is allocated in RAM.)

■High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
16 bits ÷ 16 bits
16 bits ÷ 16 bits
17 tCYC execution time
18 tCYC execution time
19 tCYC execution time
10 tCYC execution time
10 tCYC execution time
11 tCYC execution time
12 tCYC execution time

■Oscillation Circuits

• Internal oscillation circuits

Medium-speed RC oscillation circuit: For system clock (1MHz)
Multifrequency RC oscillation circuit: For system clock (8MHz)

• External oscillation circuits

Hi-speed CF oscillation circuit: For system clock, with internal Rf

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and 76.8μs (at a main clock rate of 10MHz).

■Internal reset function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V, and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use/disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, 4.28V).

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC and crystal oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4
 - * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.

■On-chip Debugger

- Supports software debugging with the IC mounted on the target board.
- Software break point setting for debugger.
- Stepwise execution on debugger.
- Real time RAM data monitoring function on debugger.

All the RAM data map can be monitored on screen when the program is running.

(The RAM & SFR data can be changed by screen patch when the program is running)

• Two channels of on-chip debugger pins are available to be compatible with small pin count devices. DBGP0 (P0), DBGP1 (P1)

■Data Security Function (flash versions only)

• Protects the program data stored in flash memory from unauthorized read or copy. Note: This data security function does not necessarily provide absolute data security.

■Development Tools

• On-chip debugger: TCB87 TypeB+LC87F2R04A

: TCB87 TypeC (3 wire version) +LC87F2R04A

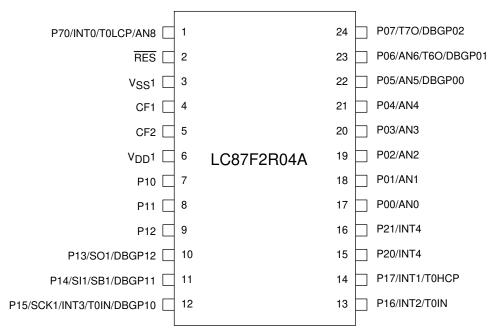
■Programming Boards

Package	Programming boards
MFP24S(300mil)	W87F2GM
SSOP24(225mil)	W87F2GS
SSOP24(275mil)	build-to-order
VCT24	build-to-order

■Flash ROM Programmer

Maker		Model	Supported Version	Device
		AF9708		LC87F2L08A
	Single	AF9709/AF9709B/AF9709C	Rev 03.11 or later	
Floob Cumpart Croup Inc		(including Ando Electric Co., Ltd. models)		
Flash Support Group, Inc.		AF9723/AF9723B(Main unit)		
(FSG)	Canaad	(including Ando Electric Co., Ltd. models)	-	-
	Ganged	AF9833(Unit)		
		(including Ando Electric Co., Ltd. models)	-	-
Flash Support Group, Inc.		AF9101/AF9103(Main unit)		
(FSG)	Onboard	(FSG)	(Note 2)	-
+	single/ganged	SIB87(Interface driver)	(Note 2)	
Our company (Note 1)		(Our company)		
	Cinale/genged	SKK/SKK Type B	Application version	
Our company	Single/ganged	(SANYO FWS)	1.05 or later	L C07F0D04A
Our company	Onboard	SKK-DBG Type B	Chip data version	LC87F2R04A
	single/ganged	(SANYO FWS)	2.22 or later	

For information about AF-Series:

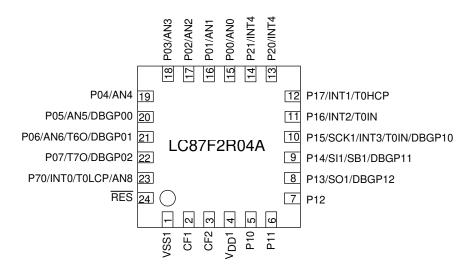

Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from Our company (SIB87) together

can give a PC-less, standalone on-board-programming capabilities.

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or Our company for the information.

Pin Assignment

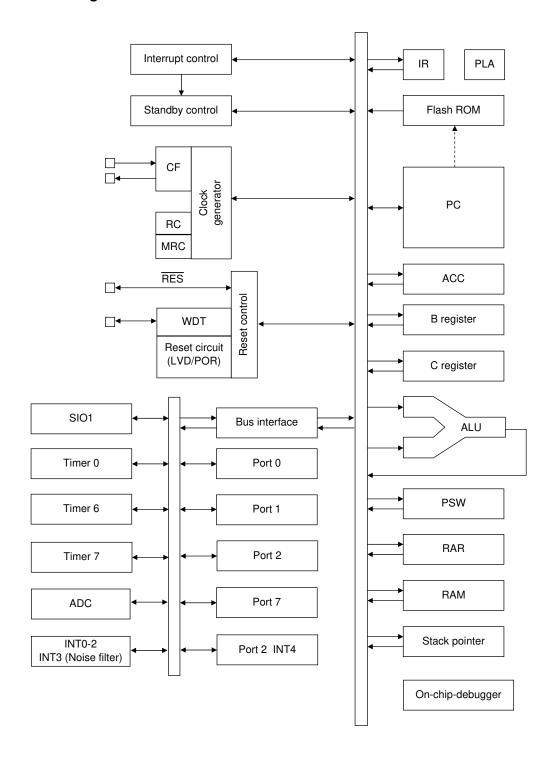

Top view

MFP24S(300mil) "Lead-/Halogen-free Type" (discontinued) SSOP24(225mil) "Lead-/Halogen-free Type"

SSOP24(275mil) "Lead-/Halogen-free Type" (build-to-order)

MFP24S SSOP24	NAME	
1	P70/INT0/T0LCP/AN8	
2	RES	
3	V _{SS} 1	
4	CF1	
5	CF2	
6	V _{DD} 1	
7	P10	
8	P11	
9	P12	
10	P13/SO1/DBGP12	
11	P14/SI1/SB1/DBGP11	
12	P15/SCK1/INT3/T0IN/DBGP10	

MFP24S SSOP24	NAME
13	P16/INT2/T0IN
14	P17/INT1/T0HCP
15	P20/INT4
16	P21/INT4
17	P00/AN0
18	P01/AN1
19	P02/AN2
20	P03/AN3
21	P04/AN4
22	P05/AN5/DBGP00
23	P06/AN6/T6O/DBGP01
24	P07/T7O/DBGP02


Top view

VCT24(3.0×3.0) "Lead-/Halogen-free Type" (build-to-order)

VCT24	NAME
1	V _{SS} 1
2	CF1
3	CF2
4	VDD1
5	P10
6	P11
7	P12
8	P13/SO1/DBGP12
9	P14/SI1/SB1/DBGP11
10	P15/SCK1/INT3/T0IN/DBGP10
11	P16/INT2/T0IN
12	P17/INT1/T0HCP

VCT24	NAME
13	P20/INT4
14	P21/INT4
15	P00/AN0
16	P01/AN1
17	P02/AN2
18	P03/AN3
19	P04/AN4
20	P05/AN5/DBGP00
21	P06/AN6/T6O/DBGP01
22	P07/T7O/DBGP02
23	P70/INT0/T0LCP/AN8
24	RES

System Block Diagram

Pin Description

Pin Name	I/O			Des	scription			Option
V _{SS} 1	-	- power supply pins					No	
V _{DD} 1	-	+ power supply	pin					No
Port 0	I/O	8-bit I/O port						
P00 to P07		HOLD reset in Port 0 interrup Pin functions P06: Timer 6 P07: Timer 7 P00(AN0) to 8	ors can be turned input of input toggle output toggle output P06(AN6): AD co	onverter input				Yes
Port 1	I/O) to P07(DBGP0	2): On-cnip debi	ugger u port			
P10 to P17		 8-bit I/O port I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units. Pin functions P13: SIO1 data output P14: SIO1 data input/bus I/O P15: SIO1 clock I/O/INT3 input (with noise filter)/timer 0 event input/timer 0H capture input P16: INT2 input/HOLD reset input/timer 0 event input/timer 0L capture input P17: INT1 input/HOLD reset input/timer 0H capture input P15(DBGP10) to P13(DBGP12): On-chip debugger 1 port 				Yes		
		interrupt ackin	owledge types Rising	Falling	Rising & Falling	H level	L level	
		INT1	enable	enable	disable	enable	enable	
		INT2	enable	enable	enable	disable	disable	
		INT3	enable	enable	enable	disable	disable	
P20 to P21		• Pin functions P20 to P21: If	ors can be turne		r 0L capture inpu Rising & Falling enable	nt/ timer 0H capt H level disable	ure input L level disable	Yes
								1
Port 7 P70	I/O	1-bit I/O port I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units. Pin functions P70: INT0 input/HOLD reset input/timer 0L capture input/watchdog timer output P70(AN8): AD converter input Interrupt acknowledge types				No		
			Rising	Falling	Rising &	H level	L level	
		INT0	enable	enable	Falling disable	enable	enable	
		IIVIU	enable	enable	uisable	enable	CITABLE	
RES	I/O	External reset I	nput/internal res	et output				No
		External reset Input/internal reset output Ceramic resonator oscillator input pin Pin function General-purpose input port				No		
CF1	I	Pin function		.put p				

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

User Option Table

Option Name	Option Type	Mask version *1	Flash Version	Option Selected in Units of	Option Selection
Port output type	P00 to P07	0	0	1 bit	CMOS
					Nch-open drain
	P10 to P17	0	0	1 bit	CMOS
					Nch-open drain
	P20 to P21	0	0	1 bit	CMOS
					Nch-open drain
Program start	-	×	0	-	00000h
address		*2			01E00h
Low-voltage	Detect function	0	0	-	Enable: Use
detection reset					Disable: Not Used
function	Detect level	0	0	-	7-level
Power-on reset function	Power-On reset level	0	0	-	8-level

^{*1:} Mask option selection-No change possible after mask is completed.

Recommended Unused Pin Connections

David Marria	Recommended Unused Pin Connections			
Port Name	Board	Software		
P00 to P07	Open	Output low		
P10 to P17	Open	Output low		
P20 to P21	Open	Output low		
P70	Open	Output low		
CF1	Pulled low with a $100k\Omega$ resistor or less	General-purpose input port		
CF2	Pulled low with a $100k\Omega$ resistor or less	General-purpose input port		

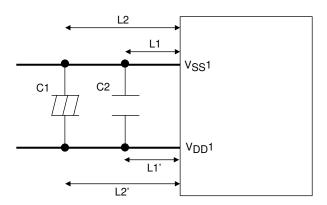
On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 on-chip debugger installation manual" and "LC872000 series on-chip debugger pin connection requirements"

Notes on CF1 and CF2 Pins

• When using as general-purpose input ports Since the CF1 and CF2 pins are configured as CF oscillator pins at system reset time, it is necessary to add a current limiting resistor of $1k\Omega$ or greater to the CF2 pin in series when using them as general-purpose input pins.

^{*2:} Program start address of the mask version is 00000h.


Differences between LC872G00 and LC872R00 Series.

		System Reset Time State	After System Reset is Released	
Flash ROM version	CF1/XT1	Set high via the internal Rf resistor	CF oscillation state	
LC87F2G08A	CF2/XT2	Set high	CF oscillation state	
Mask ROM version	CF1/XT1	Set low via the internal Rf resistor	CF oscillation state	
LC872G08A	CF2/XT2	Set low	CF oscillation state	
Flash ROM version	CF1	Set low via the internal Rf resistor	CF oscillation state	
LC87F2R04A Mask ROM version	CF2	High-impedance (OPEN)	CF oscillation state	
LC872R04A				

Power Pin Treatment Recommendations (VDD1, VSS1)

Connect bypass capacitors that meet the following conditions between the $V_{\mbox{DD}}1$ and $V_{\mbox{SS}}1$ pins:

- Connect among the V_{DD}1 and V_{SS}1 pins and bypass capacitors C1 and C2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as possible (L1=L1', L2=L2').
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should approximately 0.1μF.

Absolute Maximum Ratings at Ta = 25°C, $V_{SS}1 = 0$ V

	Parameter	Cumbal	Pin/Remarks	Conditions			Specif	ication	
	Parameter	Symbol	Pin/Hemarks	Conditions	V _{DD} [V]	min	typ	max	unit
	aximum supply Itage	V _{DD} max	V _{DD} 1			-0.3		+6.5	
Inp	out voltage	VI	CF1, CF2			-0.3		V _{DD} +0.3	٧
	out/output Itage	V _{IO}	Ports 0, 1, 2 P70			-0.3		V _{DD} +0.3	
ııt	Peak output current	IOPH	Ports 0, 1, 2	CMOS output select Per 1 applicable pin		-10			
High level output current	Mean output current (Note 1-1)	IOMH	Ports 0, 1, 2	CMOS output select Per 1 applicable pin		-7.5			
velo	Total output	ΣΙΟΑΗ(1)	P10 to P14	Total of all applicable pins		-20			
High le	current	ΣΙΟΑΗ(2)	P15 to P17 Ports 0, 2	Total of all applicable pins		-20			
		ΣΙΟΑΗ(3)	Ports 0, 1, 2	Total of all applicable pins		-25			
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2	Per 1 applicable pin				20	
		IOPL(2)	P00, P01	Per 1 applicable pin				30	mA
±		IOPL(3)	P70	Per 1 applicable pin				10	
Low level output current	Mean output current (Note 1-1)	IOML(1)	P02 to P07 Ports 1, 2	Per 1 applicable pin				15	
utbr		IOML(2)	P00, P01	Per 1 applicable pin				20	
velo		IOML(3)	P70	Per 1 applicable pin				7.5	
w le	Total output	ΣIOAL(1)	P10 to P14	Total of all applicable pins				50	
2	current	ΣIOAL(2)	Ports 0, 2 P15 to P17	Total of all applicable pins				60	
		ΣIOAL(3)	Ports 0, 1, 2	Total of all applicable pins				70	
		ΣIOAL(4)	P70	Total of all applicable pins				7.5	
	wer ssipation	Pd max(1)	MFP24S(300mil))	Ta=-40 to +85°C Package only				129	
		Pd max(2)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				229	
		Pd max(3)	SSOP24(225mil)	Ta=-40 to +85°C Package only				111	mW
		Pd max(4)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				334	
	perating ambient mperature	Topr				-40		+85	°C
	orage ambient nperature	Tstg				-55		+125	٠

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

Davasatav	O: ::==h = l	Diss (Described	O a madiki a ma			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1	0.245μs ≤ tCYC ≤ 200μs		2.7		5.5	
supply voltage (Note 2-1)	V _{DD} (2)		0.294μs ≤ tCYC ≤ 200μs		2.2		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1	RAM and register contents sustained in HOLD mode.		1.6			
High level input voltage	V _{IH} (1)	Ports 1, 2 P70 port input/ interrupt side		2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Port 0		2.2 to 5.5	0.3V _{DD} +0.7		V_{DD}	
	V _{IH} (3)	Port 70 watchdog timer side		2.2 to 5.5	0.9V _{DD}		V _{DD}	٧
	V _{IH} (4)	CF1, RES		2.2 to 5.5	0.75V _{DD}		v_{DD}	
Low level	V _{IL} (1)	Ports 1, 2,		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
input voltage	-	P70 port input/ interrupt side		2.2 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Port 0		4.0 to 5.5	V_{SS}		0.15V _{DD} +0.4	ĺ
				2.2 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 70 watchdog timer side		2.2 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	CF1, RES		2.2 to 5.5	V _{SS}		0.25V _{DD}	
Instruction	tCYC			2.7 to 5.5	0.245		200	
cycle time (Note 2-1)	(Note 2-2)			2.2 to 5.5	0.294		200	μs
External	FEXCF	CF1	CF2 pin open	2.7 to 5.5	0.1		12	
system clock frequency			System clock frequency division ratio=1/1 External system clock duty=50±5%	2.2 to 5.5	0.1		10	
			CF2 pin open System clock frequency division ratio=1/2 External system clock duty=50±5%	3.0 to 5.5	0.2		24.4	MHz
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation See Fig. 1.	2.7 to 5.5		12		
range (Note 2-3)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation See Fig. 1.	2.2 to 5.5		10		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1	2.2 to 5.5		4		
		4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	2.2 to 5.5		4		MHz	
	FmMRC		Frequency variable RC oscillation. 1/2 frequency division ration. (RCCTD=0) (Note 2-4)	2.7 to 5.5	7.6	8.0	8.4	
	FmRC		Internal medium-speed RC oscillation	2.2 to 5.5	0.5	1.0	2.0	

- Note 2-1: V_{DD} must be held greater than or equal to 2.2V in the flash ROM onboard programming mode.
- Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.
- Note 2-3: See Tables 1 and 2 for the oscillation constants.
- Note 2-4: When switching the system clock, allow an oscillation stabilization time of $100\mu s$ or longer after the multifrequency RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Electrical Characteristics at Ta = -40°C to +85°C, $V_{SS}1$ = 0V

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ation	
Farameter	Syllibol	Fill/Heiliaiks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2 P70 RES	Output disabled Pull-up resistor off V _{IN} =V _{DD} (Including output Tr's off leakage current)	2.2 to 5.5			1	
	I _{IH} (2)	CF1	V _{IN} =V _{DD}	2.2 to 5.5			15	
Low level input current	l <u> L(1)</u>	Ports 0, 1, 2 P70 RES	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.2 to 5.5	-1			μΑ
	I _{IL} (2)	CF1	V _{IN} =V _{SS}	2.2 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)		I _{OH} =-0.35mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.15mA	2.2 to 5.5	V _{DD} -0.4			
Low level output voltage	V _{OL} (1)	Ports 0, 1, 2	I _{OL} =10mA	4.5 to 5.5			1.5	
	V _{OL} (2)		I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (3)		I _{OL} =0.8mA	2.2 to 5.5			0.4	٧
	V _{OL} (4)	P70	I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (5)		I _{OL} =0.8mA	2.2 to 5.5			0.4	
	V _{OL} (6)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5	
	V _{OL} (7)		I _{OL} =4mA	2.7 to 5.5			0.4	
	V _{OL} (8)		I _{OL} =2mA	2.2 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2 P70	V _{OH} =0.9V _{DD} When Port 0 selected	4.5 to 5.5	15	35	80	
	Rpu(2)	170	low-impedance pull-up.	2.2 to 4.5	18	50	230	
	Rpu(3)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	2.2 to 5.5	100	210	400	kΩ
Hysteresis voltage	VHYS(1)	Ports 1, 2		2.7 to 5.5		0.1V _{DD}		
	VHYS(2)	P70 RES		2.2 to 5.5		0.07V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	2.2 to 5.5		10		pF

Serial I/O Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$ (Note 4)

		Parameter	Cumbal	Pin/	Conditions			Spec	ification	
		Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	¥	Frequency	tSCK(3)	SCK1(P15)	See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.2 to 5.5	1			
clock	'n	High level pulse width	tSCKH(3)				1			tCYC
Serial clock	충	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 5.		2			
	Output clock	Low level pulse width	tSCKL(4)			2.2 to 5.5		1/2		10014
	nO	High level pulse width	tSCKH(4)					1/2		tSCK
Serial input	Da	ata setup time	tsDI(2)	SB1(P14), SI1(P14)	 Must be specified with respect to rising edge of SIOCLK. See Fig. 5. 		(1/3)tCYC +0.01			
Serial	Da	ata hold time	thDI(2)			2.2 to 5.5	0.01			
Serial output	Oi	Itput delay time	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.	2.2 to 5.5			(1/2)tCYC +0.05	μѕ

Note 4: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

Parameter	Cumbal	Pin/Remarks	Conditions			Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	-(1) INT1(P17), • Event inputs for timer 0 or 1 are enabled. INT2(P16), enabled.		2.2 to 5.5	1			
	tPIH(2) INT3(P15) when noise • Interrupt source		Interrupt source flag can be set. Event inputs for timer 0 are enabled.	2.2 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P15) when noise filter time constant is 1/32	Interrupt source flag can be set.Event inputs for timer 0 are enabled.	2.2 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P15) when noise filter time constant is 1/128	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	2.2 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	2.2 to 5.5	200			μs

AD Converter Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

12bits AD Converter Mode

Davasatas	O was la sal	Dia /Damanda	O a malikia ma			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		2.4 to 5.5		12		bit
Absolute	ET	AN6(P06),	(Note 6-1)	2.7 to 5.5			±16	LOD
accuracy		AN8(P70)		2.4 to 5.5			±20	LSB
Conversion time	TCAD	n time TCAD	See Conversion time calculation	4.0 to 5.5	32		115	
			formulas.	2.7 to 5.5	64		115	μs
			(Note 6-2)	2.4 to 5.5	410		425	
Analog input voltage range	VAIN			2.4 to 5.5	V _{SS}		V _{DD}	V
Analog port		VAIN=V _{DD}	2.4 to 5.5			1		
input current	ut current IAINL		VAIN=V _{SS}	2.4 to 5.5	-1			μΑ

8bits AD Converter Mode

D	0	D' (D	O control con			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		2.4 to 5.5		8		bit
Absolute accuracy	ET	AN6(P06) AN8(P70)	(Note 6-1)	2.4 to 5.5			±1.5	LSB
Conversion time	time TCAD	See Conversion time calculation	4.0 to 5.5	20		90		
		formulas.	2.7 to 5.5	40		90	μs	
			(Note 6-2)	2.4 to 5.5	250		265	
Analog input voltage range	VAIN			2.4 to 5.5	V_{SS}		V _{DD}	٧
Analog port		VAIN=V _{DD}	2.4 to 5.5			1	0	
input current	ut current IAINL V		VAIN=V _{SS}	2.4 to 5.5	-1	•		μΑ

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time) = $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time) = $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio	AD conversion time (TCAD)		
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	(ADDIV)	12bit AD	8bit AD	
OF 10MH-	4.0V to 5.5V	1/1	250ns	1/8	34.8µs	21.5µs	
CF-12MHz	3.0V to 5.5V	1/1	250ns	1/16	69.5µs	42.8µs	
OF 10M11-	4.0V to 5.5V	1/1	300ns	1/8	41.8µs	25.8µs	
CF-10MHz	3.0V to 5.5V	1/1	300ns	1/16	83.4µs	51.4µs	
OF AMILE	3.0V to 5.5V	1/1	750ns	1/8	104.5μs	64.5µs	
CF-4MHz	2.4V to 5.5V	1/1	750ns	1/32	416.5μs	256.5μs	

- Note 6-1: The quantization error $(\pm 1/2LSB)$ must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

Power-on Reset (POR) Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
POR release	PORRL		Select from option.	1.67V	1.55	1.67	1.79	
voltage			(Note 7-1)	1.97V	1.85	1.97	2.09	
				2.07V	1.95	2.07	2.19	
				2.37V	2.25	2.37	2.49	
				2.57V	2.45	2.57	2.69	
				2.87V	2.75	2.87	2.99	V
				3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		Power supply rise time from 0V to 1.6V.				100	ms

Note7-1: The POR release level can be selected out of 4 levels only when the LVD reset function is disabled.

Note7-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = 0$ V

						Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset Voltage	LVDET		Select from option.	1.91V	1.81	1.91	2.01	
(Note 8-2)			(Note 8-1)	2.01V	1.91	2.01	2.11	
			(Note 8-3) • See Fig. 8.	2.31V	2.21	2.31	2.41	
			• See Fig. 6.	2.51V	2.41	2.51	2.61	V
				2.81V	2.71	2.81	2.91	
				3.79V	3.69	3.79	3.89	
				4.28V	4.18	4.28	4.38	
LVD hysteresis	LVHYS			1.91V		55		
width				2.01V		55		
				2.31V		55		
				2.51V		55		mV
				2.81V		60		
				3.79V		65		
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	٧
Low voltage detection minimum Width (Reply sensitivity)	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms

Note8-1: The LVD reset level can be selected out of 3 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

Consumption Current Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

Parameter	Symbol	Pin/	Conditions			Specif	ication	
Farameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1	FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal medium speed RC oscillation	2.7 to 5.5		6.1	10	
(Note 9-1) (Note 9-2)			stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		3.7	6.4	
	IDDOP(2)		FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal medium speed RC oscillation	2.2 to 5.5		5.3	9.1	
			stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.2 to 3.6		3.4	5.8	
	IDDOP(3)		FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal medium speed RC oscillation	2.2 to 5.5		2.6	5.5	
		IDDOR(4)	stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.2 to 3.6		1.9	3.4	
	IDDOP(4)		CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side	2.2 to 5.5		1.1	2.1	mA
			Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio	2.2 to 3.6		0.56	1.1	
	IDDOP(5)		External FmCF oscillation stopped. System clock set to internal medium speed RC oscillation.	2.2 to 5.5		0.47	1.2	
			Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.6		0.28	0.65	
	IDDOP(6)		External FmCF oscillation stopped. Internal medium speed RC oscillation stopped.	2.7 to 5.5		4.2	8.1	
			System clock set to 8MHz with frequency variable RC oscillation.(RCCTD=0) 1/1 frequency division ratio.	2.7 to 3.6		3.3	5.6	

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

Continued from	1	Pin/	O Fithere			Specit	fication	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode consumption current (Note 9-1)	IDDHALT(1)	V _{DD} 1	HALT mode FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal medium speed RC oscillation	2.7 to 5.5		2.3	4.1	
(Note 9-2)			stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		1.2	1.9	
	IDDHALT(2)		HALT mode FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal medium speed RC oscillation	2.2to 5.5		1.9	3.4	
	IDDUM T(0)	-	stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.2 to 3.6		1.0	1.6	
	IDDHALT(3)		HALT mode FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal medium speed RC oscillation	2.2 to 5.5		1.3	2.5	
			stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.2 to 3.6		0.53	1.0	
	IDDHALT(4)		HALT mode CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode	2.2 to 5.5		0.80	1.5	mA
			System clock set to 4MHz side Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio	2.2 to 3.6		0.31	0.62	
	IDDHALT(5)		HALT mode External FmCF oscillation stopped. System clock set to internal medium speed	2.2 to 5.5		0.28	0.73	
			RC oscillation • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	2.2 to 3.6		0.14	0.36	
	IDDHALT(6)		HALT mode External FmCF oscillation stopped. Internal medium speed RC oscillation stopped.	2.7 to 5.5		1.3	2.7	
			System clock set to 8MHz with frequency variable RC oscillation. (RCCTD=0) 1/1 frequency division ratio.	2.7 to 3.6		0.93	1.8	
HOLD mode consumption	IDDHOLD(1)	V _{DD} 1	HOLD mode • CF1=V _{DD} or open (External clock mode)	2.2 to 5.5		0.03	25	
current			5. 1-1DD of open (External clock filode)	2.2 to 3.6		0.02	5.9	
(Note 9-1) (Note 9-2)	IDDHOLD(2)		HOLD mode	5.0		0.03	1.2	
(14016 3-2)			• CF1=V _{DD} or open (External clock mode) • Ta=-10 to +50°C	3.3		0.02	0.56	
				2.5		0.01	0.40	
	IDDHOLD(3)		HOLD mode	2.2 to 5.5		3.0	29	μΑ
			CF1=V _{DD} or open (External clock mode) LVD option selected	2.2 to 3.6		2.3	10	
	IDDHOLD(4)	• LVD option selected	5.0		3.0	7.3		
	• 0	CF1=V _{DD} or open (External clock mode) Ta=-10 to +50°C	3.3		2.3 3.4			
			• LVD option selected	2.5		2.0	2.9	
<u> </u>	L	I	1	0		-		

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = 0V$

Danasatan	0	Dis /D a see a silva	O a maliki a ma		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Onboard	IDDFW(1)	V _{DD} 1	Only current of the flash block.					
programming				2.2 to 5.5		5	10	mA
current								
Programming	tFW(1)		Erasing time	0.04- 5.5		20	30	ms
time	tFW(2)		Programming time	2.2 to 5.5		40	60	μs

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

• CF oscillation normal amplifier size selected (CFLAMP=0)

■MURATA

Nominal Type	_	e Oscillator Name	Circuit Constant				Operating	Oscillation Stabilization Time		
	Type		C1	C2	Rf	Rd	Voltage Range	typ	max	Remarks
			[pF]	[pF]	[Ω]	[Ω]	[V]	[ms]	[ms]	
12MHz SMD	CMD	MD CSTCE12M0G52-R0	(10)	(10)	Open	680	2.2 to 5.5	0.1	0.5	
	SIVID				Open	1.0k	2.5 to 5.5	0.1	0.5	
10MHz	SMD	CSTCE10M0G52-R0	(10)	(10)	Open	680	2.0 to 5.5	0.1	0.5	Internal C1,C2
					Open	1.0k	2.1 to 5.5	0.1	0.5	
	LEAD	CSTLS10M0G53-B0	(15)	(15)	Open	680	2.2 to 5.5	0.1	0.5	
					Open	1.0k	2.4 to 5.5	0.1	0.5	
8MHz -	SMD	CSTCE8M00G52-R0	(10)	(10)	Open	1.0k	1.9 to 5.5	0.1	0.5	
					Open	1.5k	2.0 to 5.5	0.1	0.5	
	LEAD	CSTLS8M00G53-B0	(15)	(15)	Open	1.0k	2.0 to 5.5	0.1	0.5	
					Open	1.5k	2.2 to 5.5	0.1	0.5	
6MHz -	SMD	CSTCR6M00G53-R0	(15)	(15)	Open	1.5k	1.9 to 5.5	0.1	0.5	
					Open	2.2k	2.0 to 5.5	0.1	0.5	
	LEAD	CSTLS6M00G53-B0	(15)	(15)	Open	1.5k	2.0 to 5.5	0.1	0.5	
					Open	2.2k	2.1 to 5.5	0.1	0.5	
4MHz -	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1.5k	1.8 to 5.5	0.2	0.6	
					Open	3.3k	1.9 to 5.5	0.2	0.6	
	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	1.5k	1.8 to 5.5	0.2	0.6	
					Open	3.3k	1.9 to 5.5	0.2	0.6	

• CF oscillation low amplifier size selected (CFLAMP=1)

■MURATA

Nominal Ty	_	Oscillator Name	Circuit Constant				Operating	Oscillation Stabilization Time		
	Type		C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage Range [V]	typ [ms]	max [ms]	Remarks
4MHz -	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1.0k	1.9 to 5.5	0.2	0.6	Internal C1,C2
					Open	2.2k	2.1 to 5.5	0.2	0.6	
		CSTCR4M00G53095-R0	(15)	(15)	Open	1.0k	1.8 to 5.5	0.2	0.6	
					Open	2.2k	1.9 to 5.5	0.2	0.6	
	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	1.0k	2.0 to 5.5	0.2	0.6	
					Open	2.2k	2.1 to 5.5	0.2	0.6	
		CSTLS4M00G53095-B0	(15)	(15)	Open	1.0k	1.8 to 5.5	0.2	0.6	
					Open	2.2k	1.9 to 5.5	0.2	0.6	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 3).

- Time till the oscillation gets stabilized after the CPU reset state is released.
- Till the oscillation gets stabilized after the instruction for starting the main clock oscillation circuit is executed.
- Till the oscillation gets stabilized after the HOLD mode is reset. (Notes on the implementation of the oscillator circuit)
- Oscillation is influenced by the circuit pattern layout of printed circuit board. Place the oscillation-related components as close to the CPU chip and to each other as possible with the shortest possible pattern length.
- Keep the signal lines whose state changes suddenly or in which large current flows as far away from the oscillator circuit as possible and make sure that they do not cross one another.
- Be sure to insert a current limiting resistor (Rd) so that the oscillation amplitude never exceeds the input voltage level that is specified as the absolute maximum rating.
- The oscillator circuit constants shown above are sample characteristic values that are measured using the Our designated oscillation evaluation board. Since the accuracy of the oscillation frequency and other characteristics vary according to the board on which the IC is installed, it is recommended that the user consult the resonator vendor for oscillation evaluation of the IC on a user's production board when using the IC for applications that require high oscillation accuracy. For further information, contact your resonator vendor or Our company Semiconductor sales representative serving your locality.
- It must be noted, when replacing the flash ROM version of a microcontroller with a mask ROM version, that their operating voltage ranges may differ even when the oscillation constant of the external oscillator is the same.

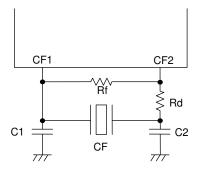


Figure 1 CF Oscillator Circuit

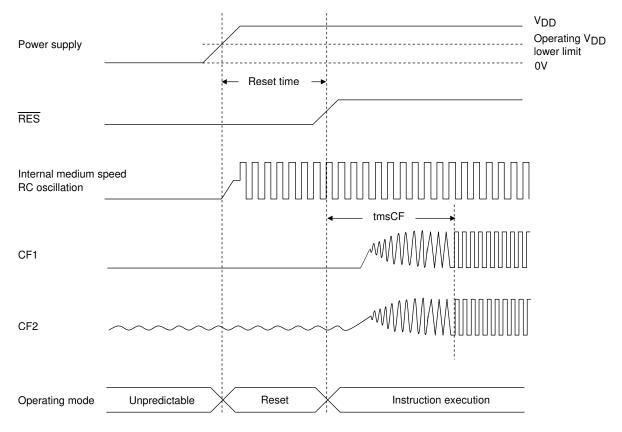
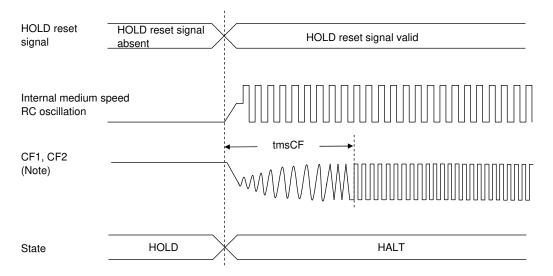
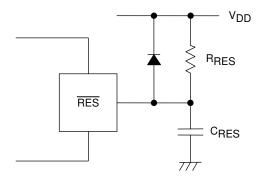




Figure 2 AC Timing Measurement Point


Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Note: External oscillation circuit is selected.

Figure 3 Oscillation Stabilization Times

Note:

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information..

Figure 4 Reset Circuit

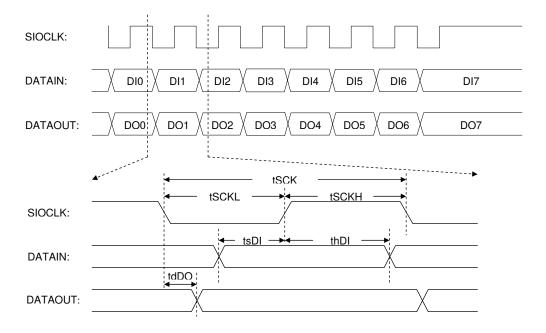


Figure 5 Serial I/O Output Waveforms

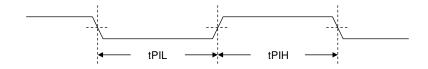


Figure 6 Pulse Input Timing Signal Waveform

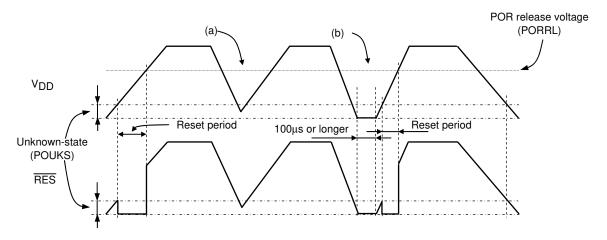


Figure 7 Waveform observed when only POR is used (LVD not used) (RESET pin: Pull-up resistor R_{RES} only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.

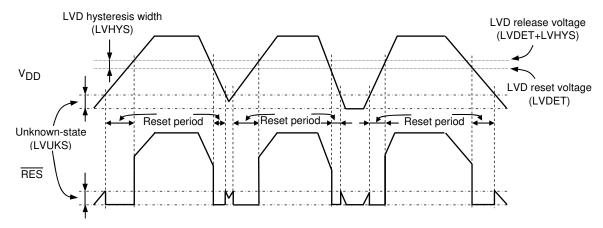


Figure 8 Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

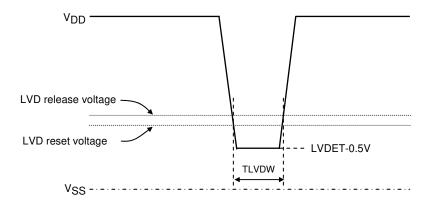


Figure 9 Low voltage detection minimum width (Example of momentary power loss / Voltage variation waveform)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa