# F<sup>2</sup>MC-16L/16LX EMULATOR PGA-299P ADAPTER BOARD <u>MB2147-20-E</u> OPERATION MANUAL



# PREFACE

The MB2147-20-E<sup>\*1</sup> is an optional tool of the MB2147-01-E, which is a development support tool used to develop and evaluate application products based on the FUJITSU MICROELECTRONICS  $F^2MC^{*2}$ -16L/16LX microcontroller.

This manual is intended for engineers who use the MB2147-20-E (called the adapter board in this manual) to develop  $F^2MC-16LX$  application products. The manual explains how to handle and connect the adapter board.

- \*1: Referred to as "adapter board"
- \*2: F<sup>2</sup>MC is the abbreviation of FUJITSU Flexible Microcontroller.

#### Using the product safely

This manual provides important information for using this product safely. Be sure to read this manual carefully before using the product to ensure correct use. In particular, read carefully "■ Caution of the products described in this document" in this "PREFACE" before using the product so that you comprehend the requirements for safe use of the product. After reading this manual, keep it handy for reference.

#### Caution of the products described in this document

The specifications of this product may be changed without prior notice. The publisher assumes no liability for any loss or damage whatsoever directly or indirectly arising out of the use of the product.

#### Related manuals

Along with manual, also read the following manuals:

- Emulator OPERATION MANUAL
- Evaluation MCU HARDWARE MANUAL
- Probe cable OPERATION MANUAL
- Probe header OPERATION MANUAL
- "SOFTUNE Workbench OPERATION MANUAL"

#### European RoHS compliance

Products with a -E suffix on the part number are European RoHS compliant products.

#### Notice on this document

All information included in this document is current as of the date it is issued. Such information is subject to change without any prior notice.

Please confirm the latest relevant information with the sales representatives.

# ■ Caution of the products described in this document

The following precautions apply to the product described in this manual.

|                 | Indicates a potentially hazardous situation which could result in death or serious injury and/or a fault in the user's system if the product is not used correctly. |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electric shock, | Before performing any operation described in this manual, turn off all the power supplies to the system.                                                            |
| Damage          | Performing such an operation with the power on may cause an electric shock or device fault.                                                                         |
| Electric shock, | Once the product has been turned on, do not touch any metal part of it.                                                                                             |
| Damage          | Doing so may cause an electric shock or device fault.                                                                                                               |

| Indicates the presence of a hazard that may cause a minor or moderate injury, dam-  |
|-------------------------------------------------------------------------------------|
| ages to this product or devices connected to it, or may cause to loose software re- |
|                                                                                     |

| Cuts, Damage | Before moving the product, be sure to turn off all the power supplies and unplug the cables. Watch your step when carrying the product. Do not use the product in an unstable location such as a place exposed to strong vibration or a sloping surface. Doing so may cause the product to fall, resulting in an injury or fault.                                               |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cuts         | The product contains sharp edges that are left unavoidably exposed, such as jump-<br>er plugs.<br>Handle the product with due care not to get injured with such pointed parts.                                                                                                                                                                                                  |
| Damage       | Do not place anything on the product or expose the product to physical shocks. Do<br>not carry the product after the power has been turned on.<br>Doing so may cause a malfunction due to overloading or shock.                                                                                                                                                                 |
| Damage       | Since the product contains many electronic components, keep it away from direct<br>sunlight, high temperature, and high humidity to prevent condensation. Do not use<br>or store the product where it is exposed to much dust or a strong magnetic or elec-<br>tric field for an extended period of time.<br>Inappropriate operating or storage environments may cause a fault. |
| Damage       | Use the product within the ranges given in the specifications.<br>Operation over the specified ranges may cause a fault.                                                                                                                                                                                                                                                        |
| Damage       | To prevent electrostatic breakdown, do not let your finger or other object come into contact with the metal parts of any of the connectors. Before handling the product, touch a metal object (such as a door knob) to discharge any static electricity from your body.                                                                                                         |
| Damage       | Before turning the power on, in particular, be sure to finish making all the required connections. Furthermore, be sure to configure and use the product by following the instructions given in this document.<br>Using the product incorrectly or inappropriately may cause a fault.                                                                                           |
| Damage       | Always turn the power off before connecting or disconnecting any cables from the product. When unplugging a cable, unplug the cable by holding the connector part without pulling on the cable itself. Pulling the cable itself or bending it may expose or disconnect the cable core, resulting in a fault.                                                                    |
| Damage       | Because the structure of the MCU socket does not allow an evaluation MCU to be<br>mounted in the incorrect orientation, be very careful of the orientation of the evalu-<br>ation MCU when mounting it.<br>Inserting the evaluation MCU in the wrong orientation may damage the MCU, caus-<br>ing the MCU to become faulty.                                                     |
| Damage       | Because the product has no casing, it is recommended that it be stored in the orig-<br>inal packaging. Transporting the product may cause a damage or fault. Therefore,<br>keep the packaging materials and use them when re-shipping the product.                                                                                                                              |

• The contents of this document are subject to change without notice.

- Customers are advised to consult with sales representatives before ordering.
- The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS semiconductor device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
- Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICRO-ELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
- The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
- Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
- Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
- Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
- The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Copyright ©2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved

# **1. PRODUCT OUTLINE**

# Checking the items packaged

Check that the package contains all of the following items before using the product.

Adapter board : 1
Operation manual (Japanese version) : 1
Operation manual (English version: this manual) : 1

# Optional parts

The adapter board itself cannot operate alone. As required, purchase the options listed in Table 1 to build an emulator system for the evaluation MCU being used.

| Name                      | Part number  |  |  |  |
|---------------------------|--------------|--|--|--|
| Evaluation MCU*1          | MB90Vxxx     |  |  |  |
| Emulator unit             | MB2147-01-E  |  |  |  |
| Probe cable* <sup>2</sup> | MB2132-xxx   |  |  |  |
| Probe header*2            | MB2147-xxx-E |  |  |  |

\*1: The part number varies depends on the evaluation MCU used. For details, contact the sales dept. or support dept.

\*2: An FPC probe cable is used for connecting the user system to the emulator.

A probe header is a board that uses a flat cable to connect the user system to the emulator. Select a probe cable and probe header that are suitable for the package of the mass-production MCU to be used. Contact the sales or support representative for information on how to select a suitable probe cable and probe header.

See the probe cable operation manual and probe header operation manual of the relevant products for information on how to handle and safely use the probe cable and probe header.

# ■ Appearance and part names

Figure 1 shows the adapter board and gives the names of all of its parts.



| No.  | Name                                                | Description                                                                                                                                                         |
|------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)  | Probe connector B                                   | Connects to a flat cable.                                                                                                                                           |
| (2)  | Probe connector A                                   | Connects to a probe cable.                                                                                                                                          |
| (3)  | User data bus switch                                | Used to switch the user data bus probing circuit.                                                                                                                   |
| (4)  | Function switch                                     | Used to switch functions.<br>• Clock switch<br>• C-pin switch                                                                                                       |
| (5)  | IC socket for mounting a<br>crystal unit oscillator | Used to mount a crystal unit.                                                                                                                                       |
| (6)  | Sub clock setting jumper                            | Used to set the sub clock (X0A/X1A).                                                                                                                                |
| (7)  | Emulator connector                                  | Connects to the emulator unit.                                                                                                                                      |
| (8)  | IC socket for mounting an evaluation MCU            | Used to mount an evaluation MCU.                                                                                                                                    |
| (9)  | Power supply setting jumper                         | <ul><li>Used to set the evaluation MCU power supply.</li><li>Emulator-dedicated power supply setting jumper</li><li>User port power supply setting jumper</li></ul> |
|      | EXEC LED                                            | Goes on when the evaluation MCU is executing a user program.                                                                                                        |
|      | HOLD LED                                            | Goes on when the evaluation MCU is in HOLD mode.                                                                                                                    |
| (10) | SLEEP LED                                           | Goes on when the evaluation MCU is in SLEEP mode.                                                                                                                   |
|      | STOP LED                                            | Goes on when the evaluation MCU is in STOP mode.                                                                                                                    |
|      | RESET LED                                           | Goes on when the evaluation MCU is being reset.                                                                                                                     |

Figure 1 Appearance of the adapter board (top view)

# 2. CONNECTING THE PRODUCT

# 2.1 System Configuration

The adapter board can be used as an emulator when it is connected to the emulator unit. Figure 2 shows the emulator system configuration.



Figure 2 System configuration

# 2.2 Connecting the Adapter Board to the Emulator Unit

Connect the adapter board to the adapter board connector in the emulator unit, as shown in Figure 3.



Figure 3 Connecting the adapter board to the emulator unit

# 2.3 Connecting a Probe to the User System

Connect a probe to the user system.

The type of connection between a probe and the user system varies depending on the configuration of the probe to be used. Table 2 summarizes the applicable probe configurations.

| Cable used  | Probe configuration          | Method of connecting to the user system                                                |
|-------------|------------------------------|----------------------------------------------------------------------------------------|
| Probe cable | Probe cable                  | Connect the connector* of the probe cable header to the connector* of the user system. |
| Flat cable  | Flat cable +<br>probe header | Connect the connector* of the probe header to the con-<br>nector* of the user system.  |
| That Cable  | Flat cable                   | Connect the connector of the flat cable to the connector of the user system.           |

Table 2 Probe configurations

\*: The shape of the header connector varies depending on the product. Example: IC socket, connector (NQPACK)

Note : Before connecting the adapter board to the user system using a probe, remove the mass-production MCU from the user system.

## ■ Connecting to the user system (using a probe cable)

Connect the corresponding probe cable of the mass-production MCU package to be used to the connector of the user system, as shown in Figure 4.

See the probe cable operation manual of the relevant product for information on how to connect the connector of the probe cable header.



Figure 4 Connecting to the user system (using a probe cable)

#### ■ Connecting to the user system (using flat cables and a probe header)

Connect the corresponding probe header of the mass-production MCU package to be used to the connector of the user system, as shown in Figure 5.

See the probe cable operation manual of the relevant product for information on how to connect the connector of the probe header.



Figure 5 Connecting to the user system (using flat cables and a probe header)

# ■ Using a flat cable to connect a probe to the user system

If the same connectors as probe connector B1/B2 of the adapter board are mounted on the user system, the adapter board can be connected to the user system via a flat cable.

See "4. SPECIFICATIONS ■ User I/F specifications", for details on the I/F specifications of probe connector B1/B2.

Connect a flat cable to probe connector B1/B2 of the user system, as shown in Figure 6.



# 2.4 Connecting a Probe to the Adapter Board

Connect a probe to the adapter board.

Note: Two pairs (A1/A2 and B1/B2) of connectors are mounted on the adapter board. Please use only one pair of probe connector when you debug it, and do not use both pairs simultaneously.

# Connecting a probe to the adapter board (using a probe cable)

Connect a probe cable to probe connector A1/A2 of the adapter board, as shown in Figure 7.



Figure 7 Connecting a probe to the adapter board (using a probe cable)

# ■ Connecting a probe to the adapter board (using a flat cable)

Connect a flat cable to probe connector B1/B2 of the adapter board, as shown in Figure 8.



Figure 8 Connecting a probe to the adapter board (using a flat cable)

# **3. OPERATING THE PRODUCT**

# Mounting an evaluation MCU

Pull up the lever of an IC socket (SC1) to mount an evaluation MCU on the adapter board. Align the No. 1 pin index ( $\Box$  or  $\bigcirc$ ) of the evaluation MCU with that ( $\triangle$ ) of the IC socket. Place the lever of the IC socket back to its original position.



Note : Do not use the shaded IC socket holes () shown in the figure. If the pins of an evaluation MCU are forcibly inserted into the shaded holes, the pins will be damaged.

Clock is supplied to the evaluation MCU.

Figure 10 shows how to mount a crystal oscillator unit in an IC socket (SC2) on the adapter board. Figure 11 shows the clock peripheral circuit configuration. Figure 12 shows examples of sub clock setting jumper settings. Table 3 lists the settings of the main clock switch. Table 4 lists the settings of the sub clock switch.



Figure 10 Mounting a crystal oscillator unit

Note : For a capacitor that is mounted with the oscillator, use a capacitor about 10pF smaller than the recommended value of the oscillator.

When a capacitor of the recommended value of the oscillator is mounted, an oscillator stabilization time becomes longer than the standard time due to the parasitic capacitance of a socket and the influence of an interconnect load and that may cause a failure such as instability of clock switching operation etc.





Figure 12 Examples of sub clock setting jumper settings

Table 3 Settings of the main clock switch

|                          | Setting of FC SEL (SW3) |     |  |  |
|--------------------------|-------------------------|-----|--|--|
| Main clock supply source | 1                       | 2   |  |  |
| Clock area               | OFF                     | OFF |  |  |
| User system              | ON                      | ON  |  |  |

Table 4 Settings of the sub clock switch

| Sub clock        |                    | Setting of<br>FC SEL<br>(SW3)             |     | Setting of SUB XTAL (S2) |                                        |                                        |
|------------------|--------------------|-------------------------------------------|-----|--------------------------|----------------------------------------|----------------------------------------|
| Availability     | Supply<br>source*1 | Corresponding pin on the evaluation MCU*2 | 3   | 4                        |                                        |                                        |
| Available        | Clock              | X1A: Pin 267<br>X0A: Pin 217              | OFF | OFF                      | X1A:B-X1A:C connected<br>Figure 12 (a) | X0A:B-X0A:C connected<br>Figure 12 (a) |
| Available        | area               | X1A: Pin 217<br>X0A: Pin 267              | OFF | OFF                      | X1A:B-X0A:B connected<br>Figure 12 (b) | X1A:C-X0A:C connected<br>Figure 12(b)  |
| Not<br>available |                    | -                                         | ON  | ON                       | X1A:A-X1A:B connected<br>Figure 12 (c) | X0A:A-X0A:B connected<br>Figure 12 (c) |

\*1: Oscillation with a crystal unit mounted on the user system is not supported.

\*2: The correspondence between the number of the evaluation MCU pins and the sub clock signal (X0A, X1A) varies depending on the evaluation MCU used. Note that the correct pins must be used for the setting.

Contact the sales or support representative for number of the evaluation MCU pin that provides the sub clock signal.

Note : To supply the main clock from the user system, add an oscillator to the user system and have the main clock supplied after buffering using COMS or another type of buffer.

## Setting of the emulator-dedicated power supply

Using the emulator-dedicated power supply setting jumper on the adapter board, set the tool interface power supply on the evaluation MCU to operate with the user power supply (UVcc1) or the development tool power supply (+5 V).

On an evaluation MCU that has an emulator-dedicated power supply, the development tool power supply must supply power to the evaluation MCU as a tool interface power supply.

For an evaluation MCU that has an emulator-dedicated power supply, set the development tool power supply (+5 V). For an evaluation MCU that does not have a emulator-dedicated power supply, set the user power supply (UVcc1).

For details on an evaluation MCU with a emulator-dedicated power supply, see the Evaluation MCU hardware manual of the relevant product, or contact the sales or support representative.

Figure 13 shows the emulator-dedicated power supply setting jumper. Table 5 lists the settings of the jumper.



\*3 : Power supply setting jumper of user port 1 (For details, see "■ User port power supply setting".)

Figure 13 Emulator-dedicated power supply setting jumper

Table 5 Settings of the emulator-dedicated power supply setting jumper

| Emulator-dedicated power supply pin | Setting of VCC SEL (S1)         |
|-------------------------------------|---------------------------------|
| Available                           | TOOL VCC: B-C connected (+5 V)  |
| Not available                       | TOOL VCC: A-B connected (UVcc1) |

# Setting of the user port power supply

Use the user port power supply setting jumper on the adapter board to set the reference voltage of the user data bus probing circuit.

The user data bus for which the reference voltage is set corresponds to user port 0 or 1. Set the user port reference voltage for each user port power supply.

See "
User data bus setting," for details on the user data bus probing circuit.

UVcc1: Main power of the evaluation MCU

UVcc2: Secondary power of the evaluation MCU

Table 6 lists the settings of the user port power supply setting jumper.

| Table 0 Settings of the user port power supply setting jumpe | Table 6 Settings | s of the user | port power | supply | setting | jumper |
|--------------------------------------------------------------|------------------|---------------|------------|--------|---------|--------|
|--------------------------------------------------------------|------------------|---------------|------------|--------|---------|--------|

| Llear power sup- | Setting of VCC SEL (S1)                             |       |                                                     |                       |  |
|------------------|-----------------------------------------------------|-------|-----------------------------------------------------|-----------------------|--|
| ply source       | User port 0 power supply setting jumper (P0V)*1     |       | User port 1 power supply setting jumper (P1V)*1     |                       |  |
| Single source    | A-B connected (UV                                   | Vcc1) | A-B connected (UVcc1)                               |                       |  |
| Dual source      | Target power supply circuit with jumper connected*2 |       | Target power supply circuit with jumper connected*2 |                       |  |
|                  | A-B connected B-C connected (UVcc1) UVcc2)          |       | A-B connected<br>(UVcc1)                            | B-C connected (UVcc2) |  |

\*1: See Figure 13 for the position of the user port power supply setting jumper.

\*2: Short-circuit the Vcc that corresponds to the user port power supply.
Example: When UVcc1 corresponds to user port 0 and UVcc2 corresponds to user port 1: User port 0 power supply setting jumper (P0V): A-B connected (UVcc1) User port 1 power supply setting jumper (P1V): B-C connected (UVcc2)

# Settings of the C-pin switch

Use the C-pin switch on the adapter board to switch the C-pin setting.

Figure 14 shows the peripheral circuit configuration of the C-pin switch. Table 7 lists the settings of the switch.



Figure 14 Peripheral circuit configuration of the C-pin switch

| C nin         | Setting of FC SEL (SW3) |     |  |  |  |  |
|---------------|-------------------------|-----|--|--|--|--|
| С-ріп         | 5                       | 6   |  |  |  |  |
| Available     | OFF                     | ON  |  |  |  |  |
| Not available | ON                      | OFF |  |  |  |  |

Table 7 Settings of the C-pin switch

#### Settings of the user data bus switch

If the probing target pins (P00 to P07, P10 to P17) have a special specification, such as for a high-voltage port, set the user data bus probing circuit to "Disconnect."

When the external bus of the evaluation MCU is not used, "Disconnect" is the recommended setting for the user data bus probing circuit.

Using the user data bus switch on the adapter board, set the user data bus probing circuit to "Connect" or "Disconnect."

Figure 15 shows the peripheral circuit configuration of the user data bus switch. Table 8 lists the settings of the switch.

| Probing target pin                           |            | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
|----------------------------------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|
| P00 to P07<br>(Setting of P0 SENSE<br>(SW2)) | Connect    | ON  |
|                                              | Disconnect | OFF |
| P10 to P17                                   | Connect    | ON  |
| (Setting of P1 SENSE<br>(SW1))               | Disconnect | OFF |

Table 8 Settings of the user data bus switch

Note : This circuit has a function equivalent to that of a high-resistance pull-up resistor.

When all buses of the evaluation MCU and user system are in the Hi-Z state, approximately 3.0V appears on the bus.



Figure 15 Peripheral circuit configuration of the user data bus switch

# 4. SPECIFICATIONS

# General specifications

Table 9 lists the general specifications of the adapter board.

- The following names used in this manual have the following definitions:
  - Emulator: Emulator unit + adapter board
  - Emulator system:Emulator unit + adapter board + probe

#### Table 9 General specifications

| Item                                                                                     | Specification                                                                                                                                            |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Name                                                                                     | F <sup>2</sup> MC-16L/16LX emulator PGA-299P adapter board                                                                                               |  |  |  |  |  |  |
| Part number                                                                              | MB2147-20-E                                                                                                                                              |  |  |  |  |  |  |
| Evaluation MCU<br>power supply                                                           | Emulator interface power supply output:<br>+3.3V or +5.0V (supplied from the emulator)                                                                   |  |  |  |  |  |  |
|                                                                                          | User power supply input:<br>+1.8V to +5.5V* <sup>1</sup> 10mA or less* <sup>2</sup><br>Dual source power supply supported: Supplied from the user system |  |  |  |  |  |  |
| Operating frequency                                                                      | High-speed I/F: 8kHz to 33MHz*3                                                                                                                          |  |  |  |  |  |  |
| Temperature                                                                              | Operation: +5 °C to +35 °C<br>Storage: 0 °C to +70 °C                                                                                                    |  |  |  |  |  |  |
| HumidityOperation: 30% to 80% (No condensation)<br>Storage: 20% to 90% (No condensation) |                                                                                                                                                          |  |  |  |  |  |  |
| External dimensions                                                                      | (W) 110mm × (D) 199mm (protruding sections are not included.)                                                                                            |  |  |  |  |  |  |
| Weight                                                                                   | 200g                                                                                                                                                     |  |  |  |  |  |  |

\*1: The upper and lower voltage limits vary depending on the evaluation MCU used. For details, contact the sales or support representative.

\*2: The current consumption of the evaluation MCU is not included.

\*3: The upper and lower frequency limits vary depending on the evaluation MCU used. The upper and lower frequency limits may vary depending on the operating voltage of the evaluation MCU used.

For details, contact the sales or support representative.

## User I/F specifications

Table 10 and Table 11 summarize the correspondence between pin numbers of probe connector A/B and the evaluation MCU.

The evaluation MCU signal names in the tables are temporary names. Note that the actual signal names vary depending on the model. Evaluation MCU signal names can be determined from evaluation MCU pin numbers. For details, contact the sales or support representative.

Descriptions of evaluation MCU signal names and relevant precautions are given below:

- PIDA: Probe connection detection signal of probe connector A. This signal is connected to GND on the probe cable. When connecting a flat cable to probe connector B, leave this pin open (NC) on the user system.
- PIDB: Probe connection detection signal of probe connector B. When connecting a flat cable, connect this pin on the user system to GND.
- UVcc1: Main power supply of the evaluation MCU.
- UVcc2: Secondary power supply of the evaluation MCU. This power supply is connected to Vcc2 (Pin 228) of the evaluation MCU.
- GND: Ground of the evaluation MCU.

## Notes:

- To control the evaluation MCU, additional circuits are added to the pins whose evaluation MCU signal names are underlined. Therefore, its electrical characteristics differ from those of an actual MCU. See the following sections for details on an additional circuit for each signal:
  - X0/X1 : "3. OPERATING THE PRODUCT Clock supply"
  - PA1/PA2 (X0A/X1A) : "3. OPERATING THE PRODUCT Clock supply"
  - P70 (C-pin) : "3. OPERATING THE PRODUCT Settings of the C-pin switch"
  - P00 to P07/P10 to P17 : "3. OPERATING THE PRODUCT Settings of the user data bus"
- On the emulator, UVcc1 and UVcc2 are mainly used as evaluation MCU power supplies. On other devices, they are used only for detecting voltage, no circuits consume a large amount of power.
- Use of the flat cable (standard) supplied with the emulator unit is recommended in order to prevent noise problems. Probe connector B1/B2 and the flat cable connector have the following part numbers:
  - Probe connector B1/B2 : 8930E-100-178MS-F (KEL company product)
  - Flat cable connector : 8925E-100-179-F (KEL company product)
- Regarding mounting of probe connector B1/B2 on the user system, note the layout of pin numbers of probe connector B1/B2 on the user system. Figure 16 shows the correspondence between probe connector B1/B2 pin numbers on the adapter board and those on the user system when a flat cable is used.



Figure 16 Correspondence between probe connector B1/B2 pin numbers on the adapter board and user system

| Connector | Connector | Evaluation  | Evaluation | Connector | Connector | Evaluation  | Evaluation |
|-----------|-----------|-------------|------------|-----------|-----------|-------------|------------|
| A1 pin    | B1 pin    | MCU         | MCU        | A1 pin    | B1 pin    | MCU         | MCU        |
| number    | number    | signal name | pin number | number    | number    | signal name | pin number |
| -         | 100       | GND         | -          | -         | 99        | GND         | -          |
| 96        | 98        | GND         | -          | 48        | 97        | AN6         | 80         |
| 95        | 96        | AN7         | 208        | 47        | 95        | AN5         | 148        |
| 94        | 94        | AN4         | 259        | 46        | 93        | GND         | -          |
| 93        | 92        | AN3         | 79         | 45        | 91        | AN2         | 207        |
| 92        | 90        | AN1         | 147        | 44        | 89        | AVss        | 258        |
| 91        | 88        | AN0         | 78         | 43        | 87        | AVR-        | 206        |
| 90        | 86        | GND         | -          | 42        | 85        | AVcc        | 77         |
| 89        | 84        | AVR+        | 146        | 41        | 83        | P97         | 160        |
| 88        | 82        | P96         | 223        | 40        | 81        | GND         | -          |
| 87        | 80        | P95         | 26         | 39        | 79        | P94         | 268        |
| 86        | 78        | P93         | 94         | 38        | 77        | P91         | 269        |
| 85        | 76        | P92         | 219        | 37        | 75        | P90         | 95         |
| 84        | 74        | GND         | -          | 36        | 73        | P87         | 33         |
| 83        | 72        | UVcc1       | -          | 35        | 71        | P86         | 169        |
| 82        | 70        | P85         | 226        | 34        | 69        | GND         | -          |
| 81        | 68        | P84         | 275        | 33        | 67        | P83         | 34         |
| 80        | 66        | P82         | 105        | 32        | 65        | P80         | 167        |
| 79        | 64        | P81         | 224        | 31        | 63        | P77         | 35         |
| 78        | 62        | GND         | -          | 30        | 61        | P75         | 225        |
| 77        | 60        | P76         | 274        | 29        | 59        | P74         | 32         |
| 76        | 58        | P73         | 104        | 28        | 57        | GND         | -          |
| 75        | 56        | P72         | 170        | 27        | 55        | P71         | 106        |
| 74        | 54        | P70         | 227        | 26        | 53        | P67         | 163        |
| 73        | 52        | GND         | -          | 25        | 51        | P66         | 162        |
| 72        | 50        | GND         | -          | 24        | 49        | P64         | 96         |
| 71        | 48        | P65         | 220        | 23        | 47        | P63         | 270        |
| 70        | 46        | P62         | 100        | 22        | 45        | GND         | -          |
| 69        | 44        | P61         | 97         | 21        | 43        | P60         | 221        |
| 68        | 42        | P57         | 164        | 20        | 41        | P55         | 273        |
| 67        | 40        | P56         | 98         | 19        | 39        | P54         | 271        |
| 66        | 38        | GND         | _          | 18        | 37        | P52         | 222        |
| 65        | 36        | P53         | 23         | 17        | 35        | P51         | 99         |
| 64        | 34        | P50         | 165        | 16        | 33        | GND         | _          |
| 63        | 32        | P47         | 276        | 15        | 31        | P46         | 107        |
| 62        | 30        | P45         | 108        | 14        | 29        | P43         | 277        |
| 61        | 28        | P44         | 172        | 13        | 27        | P42         | 109        |
| 60        | 26        | GND         | _          | 12        | 25        | P40         | 173        |
| 59        | 24        | P41         | 229        | 11        | 23        | UVcc2       | (228)      |
| 58        | 22        | P37         | 130        | 10        | 21        | GND         | -          |
| 57        | 20        | P36         | 292        | 9         | 19        | P35         | 193        |
| 56        | 18        | P34         | 131        | 8         | 17        | P32         | 194        |
| 55        | 16        | P33         | 247        | 7         | 15        | P31         | 132        |
| 54        | 14        | GND         |            | 6         | 13        | GND         | -          |
| 53        | 12        | P30         | 293        | 5         | 11        | P27         | 61         |
| 52        | 10        | P26         | 275        | <u> </u>  | Q         | GND         | -          |
| 51        | 8         | P25         | 133        | 3         | 7         | P24         | 105        |
| 50        | 6         | P23         | 62         | 2         | 5         | P21         | 63         |
| 49        | 4         | P23         | 134        | 1         | 3         | P20         | 294        |
| -         | 2         | GND         | -          | -         | 1         | GND         | -          |
| I         | -         | OND         |            |           | 1         | OND         |            |

Table 10 Probe connector A1/B1 pin array

| Connector | Connector | Evaluation  | Evaluation | Connector | Connector | Evaluation  | Evaluation |
|-----------|-----------|-------------|------------|-----------|-----------|-------------|------------|
| A2 pin    | B2 pin    | MCU         | MCU        | A2 pin    | B2 pin    | MCU         | MCU        |
| number    | number    | signal name | pin number | number    | number    | signal name | pin number |
| -         | 100       | PIDB        | -          | -         | 99        | GND         | -          |
| 96        | 98        | PIDA        | -          | 48        | 97        | PA0         | 159        |
| 95        | 96        | GND         | -          | 47        | 95        | PAI         | 217        |
| 94        | 94        | PA2         | 267        | 46        | 93        | GND         | -          |
| 93        | 92        | PA3         | 149        | 45        | 91        | PA4         | 81         |
| 92        | 90        | PA5         | 260        | 44        | 89        | PA/         | 82         |
| 91        | 88        | PA6         | 209        | 43        | 87        | PB0         | 83         |
| 90        | 86        | GND         | -          | 42        | 85        | PB2         | 87         |
| 89        | 84        | PBI         | 218        | 41        | 83        | PB3         | 212        |
| 88        | 82        | PB4         | 263        | 40        | 81        | GND         | -          |
| 87        | 80        | PB5         | 153        | 39        | 79        | PB6         | 86         |
| 86        | 78        | PB7         | 8          | 38        | 77        | PC0         | 150        |
| 85        | 76        | UVcc1       | -          | 37        | 75        | PC1         | 84         |
| 84        | 74        | GND         | -          | 36        | 73        | PC3         | 272        |
| 83        | 72        | PC2         | 5          | 35        | 71        | PC4         | 168        |
| 82        | 70        | PC5         | 103        | 34        | 69        | GND         | -          |
| 81        | 68        | PC6         | 166        | 33        | 67        | PC7         | 7          |
| 80        | 66        | GND         | -          | 32        | 65        | PD1         | 210        |
| 79        | 64        | PD0         | 151        | 31        | 63        | PD2         | 261        |
| 78        | 62        | GND         | -          | 30        | 61        | PD4         | 158        |
| 77        | 60        | PD3         | 6          | 29        | 59        | PD5         | 216        |
| 76        | 58        | PD6         | 92         | 28        | 57        | GND         | -          |
| 75        | 56        | PD7         | 266        | 27        | 55        | PE0         | 157        |
| 74        | 54        | PE1         | 91         | 26        | 53        | PE3         | 156        |
| 73        | 52        | PE2         | 215        | 25        | 51        | PE4         | 155        |
| 72        | 50        | GND         | -          | 24        | 49        | PE6         | 88         |
| 71        | 48        | PE5         | 16         | 23        | 47        | PE7         | 15         |
| 70        | 46        | PG0         | 264        | 22        | 45        | GND         | -          |
| 69        | 44        | PG1         | 213        | 21        | 43        | PG2         | 154        |
| 68        | 42        | PG3         | 14         | 20        | 41        | PG5         | 255        |
| 67        | 40        | PG4         | 203        | 19        | 39        | PG6         | 143        |
| 66        | 38        | GND         | -          | 18        | 37        | PH0         | 202        |
| 65        | 36        | PG7         | 299        | 17        | 35        | PH1         | 142        |
| 64        | 34        | PH2         | 201        | 16        | 33        | GND         | -          |
| 63        | 32        | PH3         | 141        | 15        | 31        | MD3         | 101        |
| 62        | 30        | MD2         | 110        | 14        | 29        | MD0         | 230        |
| 61        | 28        | MD1         | 278        | 13        | 27        | RST         | 262        |
| 60        | 26        | GND         | -          | 12        | 25        | <u>X0</u>   | 140        |
| 59        | 24        | GND         | -          | 11        | 23        | <u>X1</u>   | 200        |
| 58        | 22        | UVcc1       | -          | 10        | 21        | GND         | -          |
| 57        | 20        | <u>P00</u>  | 252        | 9         | 19        | <u>P01</u>  | 199        |
| 56        | 18        | <u>P02</u>  | 71         | 8         | 17        | <u>P04</u>  | 70         |
| 55        | 16        | <u>P03</u>  | 138        | 7         | 15        | <u>P05</u>  | 251        |
| 54        | 14        | GND         | -          | 6         | 13        | <u>P07</u>  | 198        |
| 53        | 12        | <u>P06</u>  | 296        | 5         | 11        | <u>P10</u>  | 137        |
| 52        | 10        | <u>P11</u>  | 136        | 4         | 9         | GND         | -          |
| 51        | 8         | P12         | 197        | 3         | 7         | P13         | 295        |
| 50        | 6         | P14         | 250        | 2         | 5         | P16         | 64         |
| 49        | 4         | P15         | 135        | 1         | 3         | P17         | 196        |
| -         | 2         | GND         | -          | -         | 1         | GND         | -          |

Table 11 Probe connector A2/B2 pin array

SS01-71100-1E

# FUJITSU MICROELECTRONICS • SUPPORT SYSTEM

F<sup>2</sup>MC-16L/16LX EMULATOR PGA-299P ADAPTER BOARD MB2147-20-E OPERATION MANUAL

August 2008 the first edition

# Published FUJITSU MICROELECTRONICS LIMITED

Edited Business & Media Promotion Dept.

