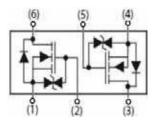


2N7002DS6

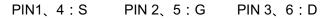
Descriptions

Double N-CHANNEL MOSFET in a SOT-363 Plastic Package.


Features

- Sensitive gate trigger current and Low Holding current.ESD protected diode.
- ESD rating:2200V HBM
- Halogen-free

Applications

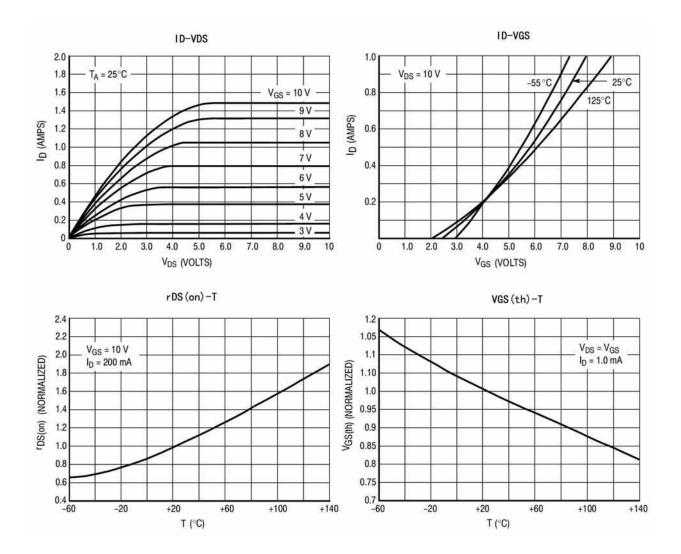

Intended for use in general purpose switching and phase control applications.

Equivalent Circuit

Pinning

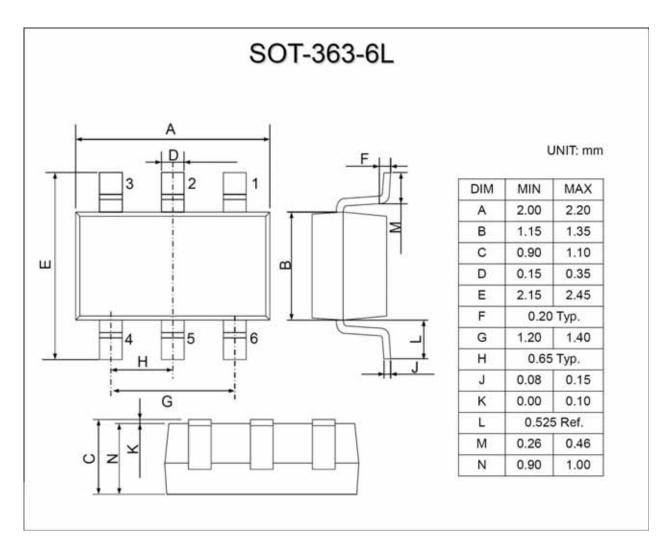
2019-11/33 REV:F

Absolute Maximum Ratings(Ta=25 °C)

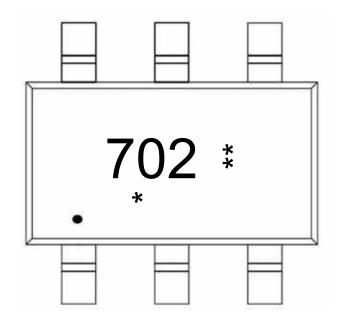

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DSS}	60	V
Drain-Gate Voltage	V _{DGR}	60	V
Maximum Drain Current - Continuous	I _D	250	mA
Maximum Drain Current - Pulsed	I _{DM}	800	mA
Gate-Source Voltage - Continuous	V _{GSS}	±20	V
Maximum Power Dissipation	P _D	350	mW
Storage Temperature Range	T _{stg}	-55~150	°C

Electrical Characteristics(Ta=25 °C)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Drain–Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0	I _D =10μΑ	60			V
Zero Gate Voltage Drain Current	$\begin{array}{c c} \mbox{Current} & I_{DSS} & V_{GS} \mbox{=} 0 & V_{DS} \mbox{=} 60V \\ T_{j} \mbox{=} 25^{\circ}\mbox{C} \end{array}$		V _{DS} =60V			1.0	μA
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} =0 Tj=125℃	V _{DS} =60V			500	μA
Gate - Body Leakage	I _{GSS}	V _{GS} =±20V	V _{DS} =0V			±10	nA
Ctatia Drain Source On Desistance	R _{DS(on)(1)}	V _{GS} =5V	I _D =0.05A		1.5	5	Ω
Static Drain-Source On-Resistance	R _{DS(on)(2)}	V _{GS} =10V	I _D =0.5A		1.3	5	Ω
Forward Transconductance	g fs	V _{DS} =10V	I _D =0.2A	80			mS
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0V	I _S =250mA			1.5	V
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS}	I _D =250μΑ	1.0		1.9	V
On-State Drain Current	I _{D(on)}	V _{DS} ≥2.0V _{DS(on)} V _{GS} =10V		500			mA
	V _{DS(on)(1)}	V _{GS} =10V	I _D =500mA			2.5	V
Drain-Source On-Voltage	V _{DS(on)(2)}	V _{GS} =5.0V	I _D =50mA			0.27 5	V
Turn-On Time	t _{d(on)}	V _{DD} =30V	D -050		7.5	20	ns
Turn-Off Time	$t_{d(off)}$	I _D =200mA R _L =150 Ω	R _G =25Ω V _{gen} =10V		11	20	ns



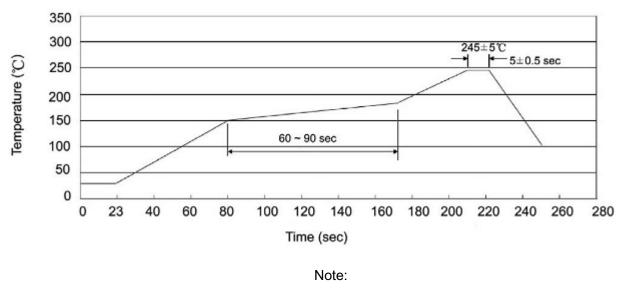
RATING AND CHARACTERISTICS CURVES (2N7002DS6)


CRECTRON -

Package Dimensions

CRECTRON -

Marking Instructions



Note:

- 702 : Product Type Code
- ***: Lot No. Code, code change with Lot No.

1.Preheating:25~150 °C, Time:60~90sec.

2.Peak Temp.:245 \pm 5°C, Duration:5 \pm 0.5sec.

3.Cooling Speed: 2~10°C/sec.

Resistance to Soldering Heat Test Conditions

Temp.:260±5 ℃ Time:10±1 sec

Packaging SPEC.

Package Type	Units				Dimension		(unit: mm ³)	
r donago Typo	Units/Reel	Reels/Inner Box	Units/Inner Box	Inner Boxes/Outer Box	Units/Outer Box	Reel	Inner Box	Outer Box
SOT-363	3,000	10	30,000	8	240,000	7″×8	180×120×180	385×257×392

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

