

100324

Low Power Hex TTL-to-ECL Translator

The 100324 is a hex translator designed to convert TTL logic levels to 100K ECL logic levels. The inputs are compatible with standard or Schottky TTL. A common Enable (E), when LOW, holds all inverting outputs HIGH and holds all true outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver. The output levels are voltage compensated over the full -4.2V to -5.7V range.

When the circuit is used in the differential mode, the 100324, due to its high common mode rejection, over-comes voltage gradients between the TTL and ECL ground systems. The V_{EE} and V_{TTL} power may be applied in either order.

The 100324 is pin and function compatible with the 100124 with similar AC performance, but features power dissipation roughly half of the 100124 to ease system cooling requirements.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

July 1988 Revised March 2001

100324

Low Power Hex TTL-to-ECL Translator

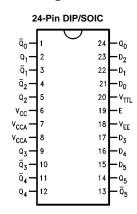
General Description

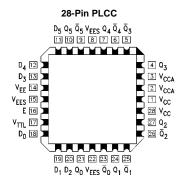
The 100324 is a hex translator, designed to convert TTL logic levels to 100K ECL logic levels. The inputs are compatible with standard or Schottky TTL. A common Enable (E), when LOW, holds all inverting outputs HIGH and holds all true outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator, or as a differential line driver. The output levels are voltage compensated over the full -4.2V to -5.7V range.

When the circuit is used in the differential mode, the 100324, due to its high common mode rejection, overcomes voltage gradients between the TTL and ECL ground systems. The $\rm V_{EE}$ and $\rm V_{TTL}$ power may be applied in either order.

The 100324 is pin and function compatible with the 100124 with similar AC performance, but features power dissipation roughly half of the 100124 to ease system cooling requirements.

Features


- Pin/function compatible with 100124
- Meets 100124 AC specifications
- 50% power reduction of the 100124
- Differential outputs
- 2000V ESD protection
- -4.2V to -5.7V operating range
- Available to MIL-STD-883
- Available to industrial grade temperature range (PLCC package only)

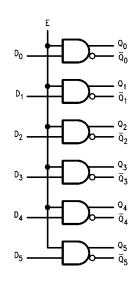

Ordering Code:

Order Number	Package Number	Package Description
100324SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100324PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100324QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100324QI	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Pin Descriptions


Pin Names	Description
D ₀ –D ₅	Data Inputs
E	Enable Input
Q ₀ -Q ₅	Data Outputs
$\overline{Q}_0 - \overline{Q}_5$ $\overline{Q}_0 - \overline{Q}_5$	Complementary
	Data Outputs

Truth Table

Inp	uts	Outputs			
D _n	E	Q _n	$\overline{\mathbf{Q}}_{\mathbf{n}}$		
Х	L	L	Н		
L	Н	L	Н		
Н	Н	Н	L		

H = HIGH Voltage Level L = LOW Voltage Level

Logic Diagram

Absolute Maximum Ratings(Note 1)

 $\begin{tabular}{lll} Storage Temperature (T_{STG}) & -65°C to $+150^\circ$C \\ Maximum Junction Temperature (T_{J}) & $+150^\circ$C \\ V_{EE} Pin Potential to Ground Pin & -7.0V to $+0.5$V \\ V_{TTL} Pin Potential to Ground Pin & -0.5V to $+6.0$V \\ Input Voltage (DC) & -0.5V to $+6.0$V \\ Output Current (DC Output HIGH) & -50 mA \\ ESD (Note 2) & ≥ 2000V \\ \end{tabular}$

Recommended Operating Conditions

Case Temperature (T_C)

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0^{\circ}C \text{ to } +85^{\circ}C, V_{TTL} = +4.5V \text{ to } +5.5V \text{ to } +$

Symbol	Parameter	Min	Тур	Max	Units	Conditions			
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} =V _{IH (Max)}	Loading with		
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	IIIV	or V _{IL (Min)}	50Ω to $-2.0V$		
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH(Min)}$	Loading with		
V _{OLC}	Output LOW Voltage			-1610	IIIV	or V _{IL (Max)}	50Ω to $-2.0V$		
V _{IH}	Input HIGH Voltage	2.0		5.0	V	Guaranteed HIGH	•		
						Signal for All Inputs			
V _{IL}	Input LOW Voltage	0		0.8	V	Guaranteed LOW			
						Signal for All Inputs			
V _{CD}	Input Clamp Diode Voltage	-1.2			V	$I_{IN} = -18 \text{ mA}$			
I _{IH}	Input HIGH Current					$V_{IN} = +2.4V,$			
	Data			20	μΑ	All Other Inputs V _{IN} =	GND		
	Enable			120					
	Input HIGH Current			1.0	1.0	4.0	mA	$V_{IN} = +5.5V,$	
	Breakdown Test, All Inputs			1.0	mA	All Other Inputs = GN	ID		
I _{IL}	Input LOW Current					$V_{IN} = +0.4V,$			
	Data	-0.9			mA	All Other Inputs V _{IN} =	· V _{IH}		
	Enable	-5.4							
I _{EE}	V _{EE} Power Supply Current	-70	-45	-22	mA	All Inputs V _{IN} = +4.0V	1		
I _{TTL}	V _{TTL} Power Supply Current		25	38	mA	All Inputs V _{IN} = GND			

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electric Characteristics

 $V_{EE} = -4.2 V$ to -5.7 V, $V_{CC} = V_{CCA} = GND$, $V_{TTL} = +4.5 V$ to +5.5 V

Symbol	Parameter	$T_C = 0^{\circ}C$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
- Cyllibol		Min	Max	Min	Max	Min	Max	Oilles	Conditions
t _{PLH}	Propagation Delay	0.50	3.00	0.50	2.90	0.50	3.00	ns	
t _{PHL}	Data and Enable to Output	0.30	3.00	0.30	2.90	0.50	3.00	113	Figures 1, 2
t _{TLH}	Transition Time	0.45	1.80	0.45	1.80	0.45	1.80	ns	
t _{THL}	20% to 80%, 80% to 20%	0.43	1.00	0.43	1.00	0.45	1.00	113	

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, V_{TTL} = +4.5V to +5.5V

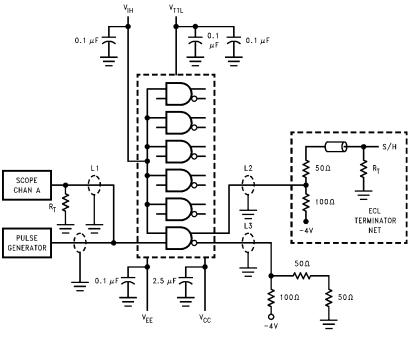
Symbol	Parameter	$T_C = 0^{\circ}C$		T _C = +25°C		$T_C = +85^{\circ}C$		Units	Conditions
Cyllibol		Min	Max	Min	Max	Min	Max	Onits	Conditions
t _{PLH}	Propagation Delay	0.50	2.80	0.50	2.70	0.50	2.80	ns	
t_{PHL}	Data and Enable to Output	0.50	2.00	0.50	2.70	0.50	2.00	115	Figures 1, 2
t _{TLH}	Transition Time	0.45	1.70	0.45	1.70	0.45	1.70	ns	
t_{THL}	20% to 80%, 80% to 20%	0.43	1.70	0.43	1.70	0.43	1.70	115	
toshl	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		0.95		0.95		0.95	ns	(Note 4)
	Data to Output Path								
toslh	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		0.70		0.70		0.70	ns	(Note 4)
	Data to Output Path								
tost	Maximum Skew Opposite Edge								PLCC Only
	Output-to-Output Variation		1.60		1.60		1.60	ns	(Note 4)
	Data to Output Path								
t _{PS}	Maximum Skew								PLCC Only
	Pin (Signal) Transition Variation		1.20		1.20		1.20	ns	(Note 4)
	Data to Output Path								

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Industrial Version

DC Electrical Characteristics (Note 5) $\rm V_{EE} = -4.2V~to~-5.7V,~V_{CC} = V_{CCA} = GND,~T_C = -40^{\circ}C~to~+85^{\circ}C,~V_{TTL} = +4.5V~to~+5.5V$

Combal	Parameter	T _C =	–40°C	$T_C = 0^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Symbol	Parameter	Min	Max	Min	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} =V _{IH (Max)} Loading with		
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	IIIV	or $V_{IL~(Min)}$ 50 Ω to -2.0V		
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH(Min)}$ Loading with		
V _{OLC}	Output LOW Voltage		-1565		-1610	IIIV	or $V_{IL~(Max)}$ 50 Ω to -2.0 V		
V _{IH}	Input HIGH Voltage	2.0	5.0	2.0	5.0	V	Guaranteed HIGH		
							Signal for All Inputs		
V _{IL}	Input LOW Voltage	0	8.0	0	0.8	V	Guaranteed LOW		
							Signal for All Inputs		
V _{CD}	Input Clamp Diode Voltage	-1.2		-1.2		V	$I_{IN} = -18 \text{ mA}$		
I _{IH}	Input HIGH Current						$V_{IN} = +2.4V,$		
	Data		20		20	μΑ	All Other Inputs V _{IN} = GND		
	Enable		120		120				
	Input HIGH Current		1.0		1.0	mA	$V_{IN} = +5.5V,$		
	Breakdown Test, All Inputs		1.0		1.0	IIIA	All Other Inputs = GND		
I _{IL}	Input LOW Current						$V_{IN} = +0.4V,$		
	Data	-0.9		-0.9		mA	All Other Inputs $V_{IN} = V_{IH}$		
	Enable	-5.4		-5.4					
I _{EE}	V _{EE} Power Supply Current	-70	-22	-70	-22	mA	All Inputs V _{IN} = +4.0V		
I _{TTL}	V _{TTL} Power Supply Current		38		38	mA	All Inputs V _{IN} = GND		


Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

 $\mbox{V}_{\mbox{\footnotesize EE}} = -4.2\mbox{V to} \; -5.7\mbox{V}, \; \mbox{V}_{\mbox{\footnotesize CC}} = \mbox{V}_{\mbox{\footnotesize CCA}} = \mbox{GND}, \; \mbox{V}_{\mbox{\footnotesize TTL}} = +4.5\mbox{V to} \; +5.5\mbox{V}$

Symbol	Parameter	T _C = -40°C		T _C = +25°C		T _C = +85°C		Units	Conditions
Cymbol		Min	Max	Min	Max	Min	Max	Oilles	Conditions
t _{PLH} t _{PHL}	Propagation Delay Data and Enable to Output	0.50	2.80	0.50	2.70	0.50	2.80	ns	Figures 1, 2
t _{TLH} t _{THL}	Transition Times 20% to 80%, 80% to 20%	0.35	1.80	0.45	1.70	0.45	1.70	ns	Figures 1, 2

Test Circuit

Note:

- $\bullet \quad \text{$V_{CC}$, $V_{CCA} = 0V$, $V_{EE} = -4.5V$, $V_{TTL} = +5.0V$, $V_{IH} = +3.0V$}$
- L1, L2 and L3 = equal length 50Ω impedance lines
- $R_T = 50\Omega$ terminator internal to scope
- Decoupling 0.1 μF from GND to $V_{\text{CC}},\,V_{\text{EE}}$ and V_{TTL}
- All unused outputs are loaded with 50Ω to $-2\mbox{V}$ or with equivalent ECL terminator network
- C_L = Fixture and stray capacitance $\leq 3 \text{ pF}$

FIGURE 1. AC Test Circuit

Switching Waveform

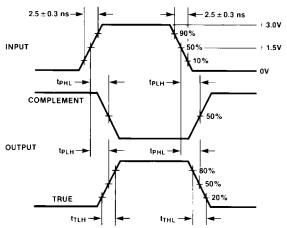
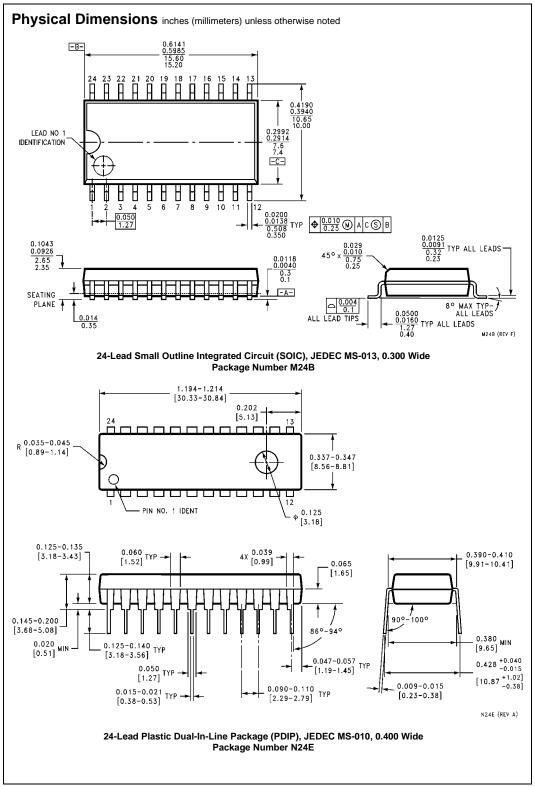
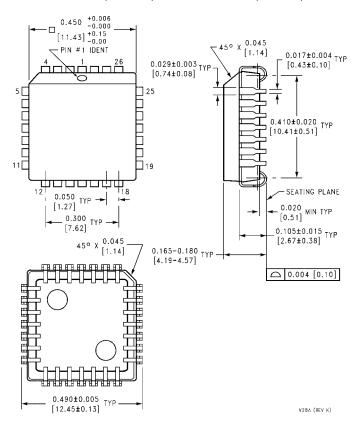




FIGURE 2. Propagation Delay and Transition Times

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com