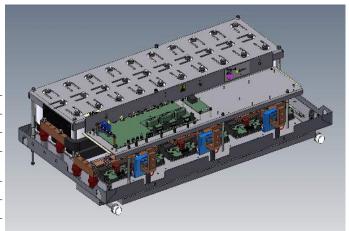
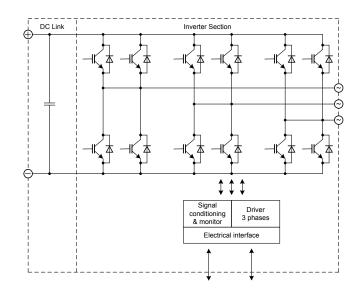
$\mathsf{ModSTACK^{TM}}$

6MS24017P43W39872

Preliminary data


General information


IGBT Stack for typical voltages up to 690 V_{RMS} Rated output current 1100 A_{RMS}

- High power converterWind powerMotor drives

- · IHM module with IGBT4
- · AlSiC baseplate

Topology	B6I
Application	Inverter
Load type	Resistive, inductive
Semiconductor (Inverter Section)	6x FF1200R17KP4_B2
DC Link	12 mF
Heatsink	Water cooled
Implemented sensors	Current, voltage, temperature
Driver signals IGBT	Electrical
Sales - name	6MS24017P43W39872
SP - No.	SP001151290

prepared by: OW	date of publication: 2016-02-09
approved by: YZ	revision: 2.0

 $\mathsf{ModSTACK^{TM}}$

6MS24017P43W39872

Preliminary data

Absolute maximum rated values

Collector-emitter voltage	IGBT; T _{vj} = 25°C	V _{CES}	1700	V
Repetitive peak reverse voltage	Diode; T _{vj} = 25°C	V _{RRM}	1700	V
DC link voltage	No switching; t= 5s, once a day	V _{DC}	1450	V
Insulation management	according to installation height of 2000 m	V _{line}	690	V _{RMS}
Insulation test voltage	according to EN 50178, f = 50 Hz, t = 5 s	V _{ISOL}	2.5	kV _{RMS}
Continuous current inverter section		I _{AC2}	1100	ARMS
Junction temperature	under switching conditions	T _{vjop}	150	°C
Storage temperature min.		T _{stor}	-40	°C
Storage temperature max.		T _{stor}	65	°C
Operational ambient temperature min.		T _{amb}	-25	°C
Operational ambient temperature max.		T _{amb}	55	°C
Inlet temperature coolant min.		T _{inlet}	-25	°C
Inlet temperature coolant max.		T _{inlet}	65	°C
Auxiliary voltage		V _{aux}	30	V
Switching frequency inverter section		f _{sw2}	3.5	kHz

Further maximum ratings are specified in the following dedicated sections

Characteristic values

DC Link			min.	typ.	max.	
Rated voltage		V _{DC}		1100		V
Over voltage shutdown	within 150 μs			1250		V
Capacitor	1 s, 30 p, rated tol. ±10 %	C _{DC}		12		mF
		type		Foil		
Maximum ripple current	per device, T _{amb} = 55 °C	I _{ripple}			49	A _{RMS}
Balance or discharge resistor	per DC link unit	R₀		6		kΩ

Operation above 1100 V subject to reduced operating time according to EN 61071

Inverter Section			min.	typ.	max.	
Rated continuous current	$\begin{array}{c} V_{DC} = 1050 \; V, \; V_{AC} = 690 \; V_{RMS}, \; cos(\phi) = 0.9, \\ f_{AC \; sine} = 50 \; Hz, \; f_{sw} = 2600 \; Hz, \; T_{inlet} = 40 ^{\circ}C, \; T_{j} \leq 150 \; ^{\circ}C \end{array}$	I _{AC}		1000		A _{RMS}
Continuous current at low frequency	$\begin{array}{c} V_{DC} = 1050 \; V, \; V_{AC} = 690 \; V_{RMS}, \; cos(\phi) = -0.85, \\ f_{AC \; sine} = 12 \; Hz, \; f_{sw} = 2300 \; Hz, \; T_{inlet} = 40 \; ^{\circ}C, \; T_{j} \leq 150 \; ^{\circ}C \end{array}$	I _{AC low}		1100		A _{RMS}
Rated continuous current for 150% overload capability	I _{AC 150%} = 1100 A _{RMS} , t _{on over} = 0.01 s, t _{recovery} = 135 s	I _{AC over1}			1767	A _{RMS}
Over current shutdown	within 15 μs	I _{AC} oc		2500		A _{peak}
Power losses	$\begin{array}{l} I_{AC} = 1000 \; A, \; V_{DC} = 1050 \; V, \; V_{AC} = 690 \; V_{RMS}, \\ cos(\phi) = 0.9, \; f_{AC \; sine} = 50 \; Hz, \; f_{sw} = 2600 \; Hz, \\ T_{inlet} = 40 \; ^{\circ}C, \; T_{j} \leq 150 \; ^{\circ}C \end{array}$	P _{loss}			14500	W

Notes
Continuous operation mode above 1200V / DC not allowed. Limited by the clamping diodes power losses.

prepared by: OW	date of publication: 2016-02-09
approved by: YZ	revision: 2.0

 $\mathsf{ModSTACK^{TM}}$

6MS24017P43W39872

Preliminary data

Controller interface

Driver and interface board	ref. to separate Application Note		DR111			
			min.	typ.	max.	
Auxiliary voltage		V _{aux}	18	24	30	V
Auxiliary power requirement	V _{aux} = 24 V	Paux		40		W
Digital input level	resistor to GND 1.8 kΩ, capacitor to GND 4 nF,	V _{in low}	0		4	V
	logic high = on, min. 15 mA	$V_{in\;high}$	11		15	V
Digital output level	open collector, logic low = no fault, max. 15 mA	V _{out low}	0		1.5	V
		V _{out high}		15		V
Analog current sensor output inverter section	load max 1 mA, @ 1100 A _{RMS}	VIU ana2 VIV ana2 VIW ana2		5		V
Analog DC link voltage sensor output	load max 1 mA, @ 1100 V	V _{DC} ana		7.9		V
Analog temperature sensor output inverter section (NTC)	$@T_{NTC} = 68 ^{\circ}C$, corresponds to $T_j = 137 ^{\circ}C$ at rated conditions	V _{Theta NTC2}		8.5		V
Analog temperature sensor output inverter section (Simulated)	$@T_{NTC} = 68 ^{\circ}C$, corresponds to $T_j = 137 ^{\circ}C$ at rated conditions	V _{Theta sim2}		9.4		V
Over temperature shutdown inverter section	load max 1 mA	V _{Error OT2}		9.9		V
				1		
Minimum on time (IGBT)		t _{on min}	10			μs
Minimum off time (IGBT)		t _{off min}	11			μs

System data

			min.	ιyp.	max.	
according to IEC 61800-3 at named	power	V_{Burst}		2		kV
interfaces	control	V_{Burst}		1		kV
	aux (24V)	V _{surge}		1		kV
	·	T_{stor}	-40		65	°C
PCB, DC link capacitor, bus bar, excludi medium	ng cooling	$T_{\text{op amb}}$	-25		55	°C
PCB, DC link capacitor, bus bar, standa	rd atmosphere	V_{air}	2			m/s
no condensation		Rel. F	0		85	%
according to IEC 60721					10	m/s²
according to IEC 60721					100	m/s²
				IP00		
				2		
width x depth x height			1090	596	260	mm
					105	kg
	PCB, DC link capacitor, bus bar, excludi medium PCB, DC link capacitor, bus bar, standa no condensation according to IEC 60721 according to IEC 60721	interfaces control control aux (24V)	interfaces control V _{Burst} aux (24V) V _{surge} T _{stor} PCB, DC link capacitor, bus bar, excluding cooling medium T _{op amb} PCB, DC link capacitor, bus bar, standard atmosphere V _{air} no condensation Rel. F according to IEC 60721 according to IEC 60721	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	according to IEC 61800-3 at named power V _{Burst} 2	according to IEC 61800-3 at named interfaces

prepared by: OW	date of publication: 2016-02-09
approved by: YZ	revision: 2.0

 $\mathsf{ModSTACK^{TM}}$

6MS24017P43W39872

Preliminary data

Heatsink water cooled			min.	typ.	max.	
Water flow	according to coolant specification from Infineon	ΔV/Δt	20			dm³/min
Water pressure					8	bar
Coolant inlet temperature		T _{inlet}	-40		45	°C
Thermal resistance heatsink to ambient	per switch	R _{th,ha}		0.03		K/W
Cooling channel material			P	Numinur	n	

Notes

Composition of coolant: Water and 52 vol. % Antifrogen N

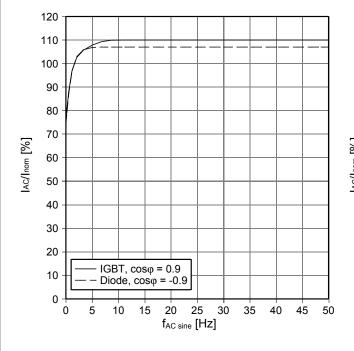
Overview of optional components	Unit 1 (not installed	Inverter Section	Unit 3 (not installed)
Voltage sensor		×	
Current sensor		×	
Temperature sensor		×	
Temperature simulation		×	
DC link capacitors		×	
Collector-emitter Active Clamping		×	

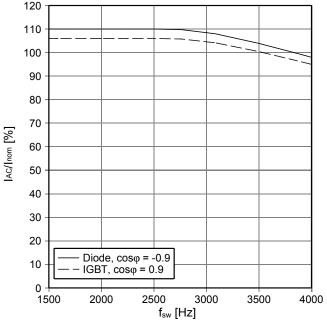
Notes

Setting of Active Clamping TVS-Diodes: V_Z = 1200V/1600V MA111. Reduce short circuit protection above 1200V DC.

prepared by: OW	date of publication: 2016-02-09
approved by: YZ	revision: 2.0

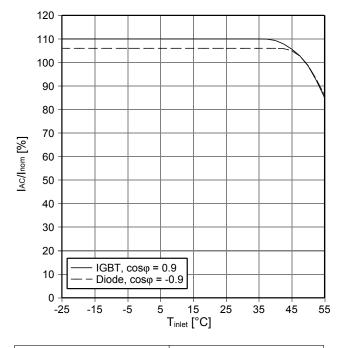
ModSTACK™

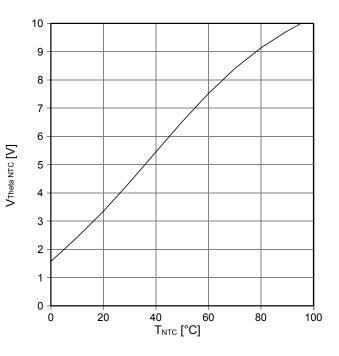

6MS24017P43W39872



Preliminary data

 $f_{\text{AC sine}}$ - derating curve IGBT (motor), Diode (generator) V_{DC} = 1050 V, V_{AC} = 690 V, f_{sw} = 2.6 kHz, $cos\phi$ = 0.9 T_{inlet} = 40 °C and nom. cooling conditions


 $\begin{array}{l} f_{\text{sw}} \text{ - derating curve IGBT (motor), Diode (generator)} \\ V_{\text{DC}} = 1050 \text{ V}, \text{ V}_{\text{AC}} = 690 \text{ V}, \text{ f}_{\text{AC sine}} = 50 \text{Hz}, \text{ cos} \phi = 0.9 \\ T_{\text{inlet}} = 40 \text{ °C and nom. cooling conditions} \end{array}$

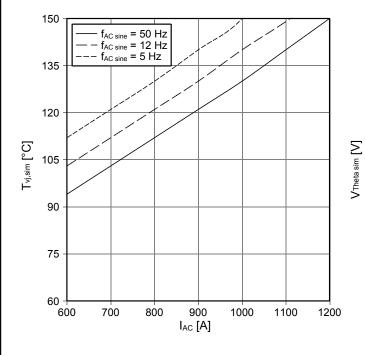


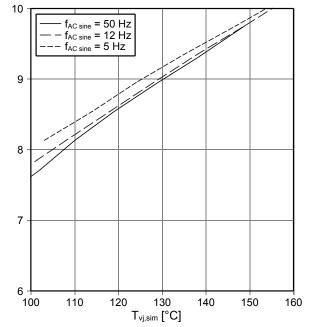
 T_{inlet} - derating curve IGBT (motor), Diode (generator) V_{DC} = 1050 V, V_{AC} = 690 V_{RMS} , $f_{\text{AC sine}}$ = 50 Hz, $\cos\phi$ = 0.9 nom. cooling conditions

Analog temperature sensor output $V_{\text{Theta NTC}}$ Sensing NTC of heatsink

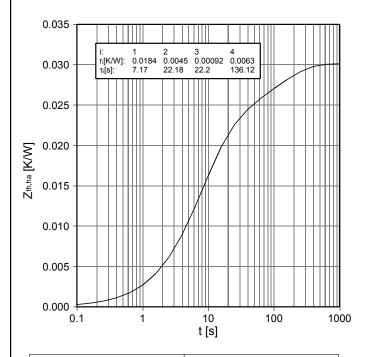
prepared by: OW	date of publication: 2016-02-09
approved by: YZ	revision: 2.0

ModSTACK™


6MS24017P43W39872



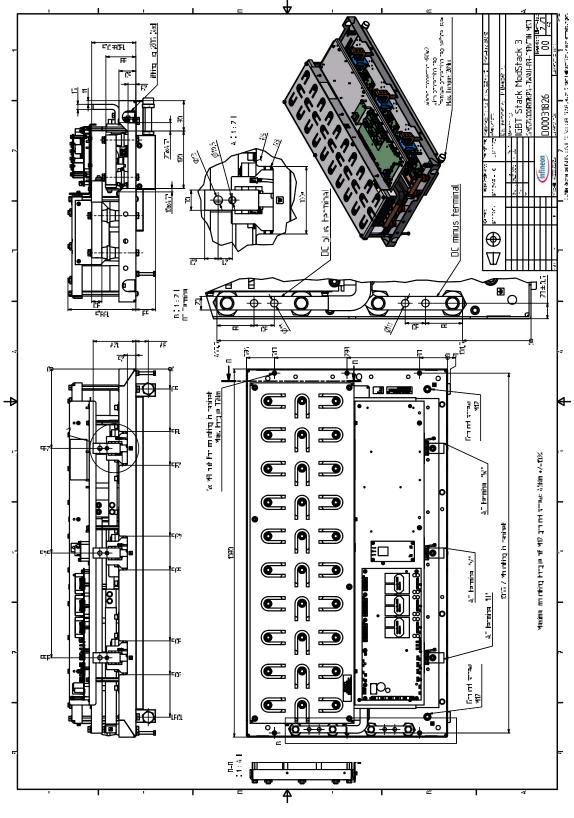
Preliminary data


 $T_{vj,sim}$ vs. I_{AC} - Simulated junction temperatur V_{DC} = 1050 V, V_{AC} = 690 $V_{RMS},\,f_{sw}$ = 2.6 kHz, T_{inlet} = 40 °C and nom. cooling conditions

Analog temperature sensor output $V_{\text{Theta sim}}$ V_{DC} = 1050 V, V_{AC} = 690 V_{RMS} , f_{sw} = 2.6 kHz, nom. cooling conditions

 $Z_{\text{th,ha}}$ - thermal impedance heatsink to ambient per switch nom. cooling conditions

prepared by: OW	date of publication: 2016-02-09
approved by: YZ	revision: 2.0

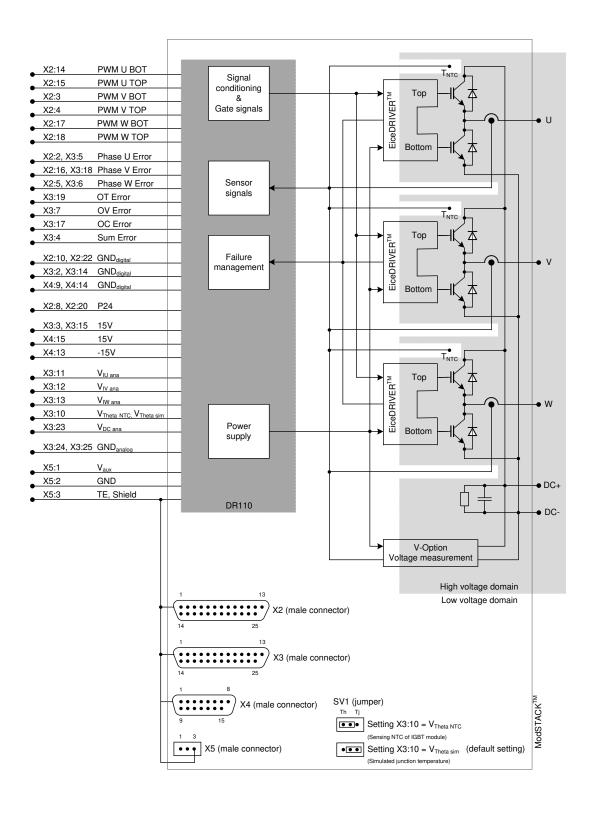

ModSTACK™

6MS24017P43W39872

Preliminary data

Mechanical drawing

prepared by: OW	date of publication: 2016-02-09
approved by: YZ	revision: 2.0


ModSTACK™

6MS24017P43W39872

Preliminary data

Circuit diagram

prepared by: OW	date of publication: 2016-02-09
approved by: YZ	revision: 2.0

ModSTACK™

6MS24017P43W39872

Preliminary data

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitabity of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any hid for the product and its characteristics.

Should you reqire product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see wwwinfineoncom, sales&contact). For those that are specifically interested we may provide application notes.

Due to technical regirements our product may contain dangerous subtances. For information on the types in qestion please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. Please note, that for any such applications we urgently recommend to perform joint Risland (ality Assessments; the conclusion of (ality Agreements; the conclusion of (ality Agreements; to estatish joint measures of an ongoing product survey, and that we may mak delivery depended on the realiation of any such measures.

If and to the extent necessary, please forward eqivalent notices to your customers.

Changes of this product data sheet are reserved.

Safety Instructions

Prior to installation and operation, all safety notices and warnings and all warning signs attached to the eqipment have to b carefully read. Make sure that all warning signs remain in a legille condition and that missing or damaged signs are replaced. To installation and operation, all safety notices and warnings and all warning signs attached to the eqipment have to b carefully read. Make sure that all warning signs remain in a legille condition and that missing or damaged signs are replaced.

prepared b: OW	date of pulication: 2016-02-09
approved b: X	revision: 20