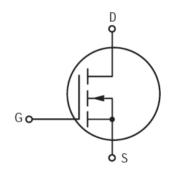

Rev. V1


Designed primarily for wideband large—signal output and driver from 30–500MHz.

N-Channel enhancement mode MOSFET

- MRF166C Guaranteed performance at 500 MHz, 28 Vdc
 Output power = 20 W
 Gain = 13.5 dB
 Efficiency = 50%
- Replacement for industry standards such as MRF136, V2820, BLF244, SD1902, and ST1001
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- · Facilitates manual gain control, ALC and modulation techniques
- · Excellent thermal stability, ideally suited for Class A operation
- Low Crss 4.0 pF @ VDS = 28 V

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	V _{DSS}	65	Vdc
Drain-Gate Voltage (RGS = 1.0 MΩ)	VDGR	65	Vdc
Gate-Source Voltage	V _{GS}	±20	Adc
Drain Current — Continuous	ΙD	4.0	Adc
Total Device Dissipation @ T _C = 25°C Derate Above 25°C	PD	70 0.4	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to 150	°C
Operating Junction Temperature	TJ	200	°C

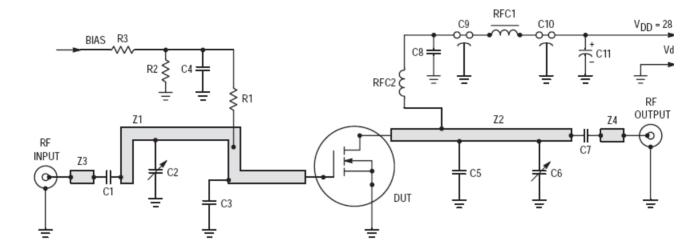
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	2.5	°C/W

 $\label{eq:NOTE-Delta-CAUTION} \textbf{MOS}\ devices\ are\ susceptible\ to\ damage\ from\ electrostatic\ charge.\ Reasonable\ precautions\ in\ handling\ and\ packaging\ MOS\ devices\ should\ be\ observed.$

1

MRF166C


The RF MOSFET Line 20W, 500MHz, 28V

Rev. V1

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Drain-Source Breakdown Voltage (V _{GS} = 0 V, I _D = 5.0 mA)	V _{(BR)DSS}	65	_	_	٧
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0 V)	IDSS	_	_	0.5	mA
Gate-Source Leakage Current (VGS = 20 V, VDS = 0 V)	IGSS	_	_	1.0	μА
ON CHARACTERISTICS					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 25 mA)	VGS(th)	1.5	3.0	4.5	٧
Forward Transconductance (VDS = 10 V, ID = 1.5 A)	9fs	0.8	1.1	_	mhos
DYNAMIC CHARACTERISTICS					
Input Capacitance (VDS = 28 V, VGS = 0 V, f = 1.0 MHz)	C _{iss}	_	28	_	pF
Output Capacitance (VDS = 28 V, VGS = 0 V, f = 1.0 MHz)	C _{oss}	_	30	_	pF
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0 V, f = 1.0 MHz)	C _{rss}	_	4.0	_	pF
FUNCTIONAL CHARACTERISTICS			•	•	•
Common Source Power Gain (V _{DD} = 28 V, P _{out} = 20 W, f = 500 MHz, I _{DQ} = 25 mA)	G _{ps}	13.5	16	_	dB
Drain Efficiency (V _{DD} = 28 V, P _{out} = 20 W, f = 500 MHz, I _{DQ} = 25 mA)	η	50	55	_	%
Electrical Ruggedness (V _{DD} = 28 V, P _{out} = 20 W, f = 500 MHz, I _{DQ} = 25 mA, Load VSWR 30:1 at All Phase Angles)	Ψ	No Degradation in Output Power			

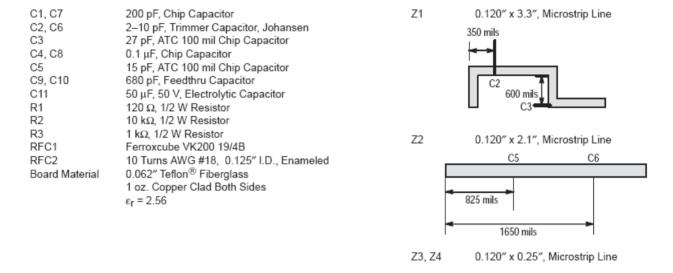


Figure 1. MRF166C 500 MHz Test Circuit

Rev. V1

TYPICAL CHARACTERISTICS

Figure 2. Capacitance versus Drain-Source Voltage

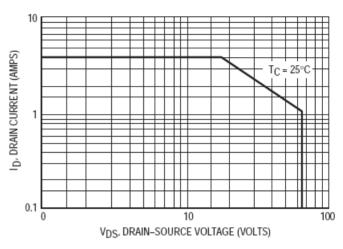


Figure 3. DC Safe Operating Area

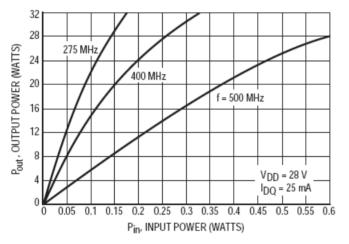


Figure 4. Output Power versus Input Power

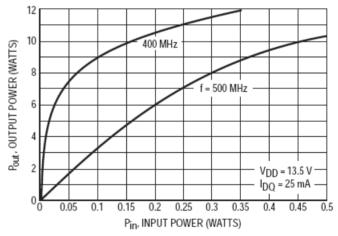
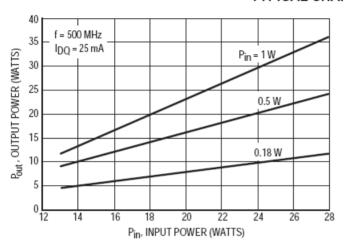



Figure 5. Output Power versus Input Power

Rev. V1

TYPICAL CHARACTERISTICS

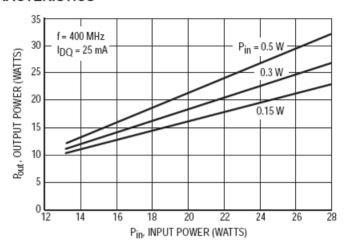
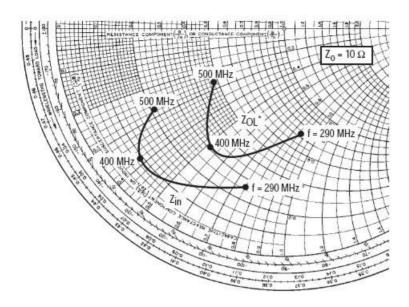



Figure 6. Output Power versus Supply Voltage

Figure 7. Output Power versus Supply Voltage

f MHz	Z _{in} Ohms	Z _{OL} * Ohms
500	2.09 – j2.77	4.87 – j2.63
400	0.93 – j3.80	3.09 – j5.24
290	2.63 - j7.58	7.35 – j8.67

Z_{OL}* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 8. Series Equivalent Input and Output Impedance

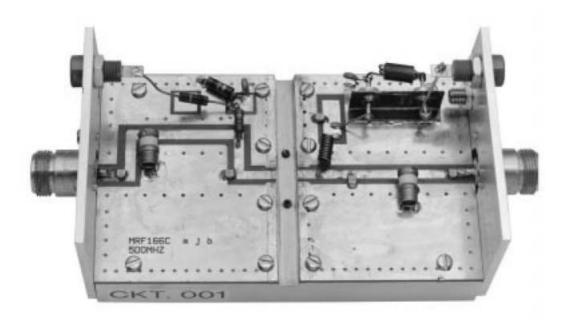


Figure 9. MRF166C Test Fixture

Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 1.25 A)

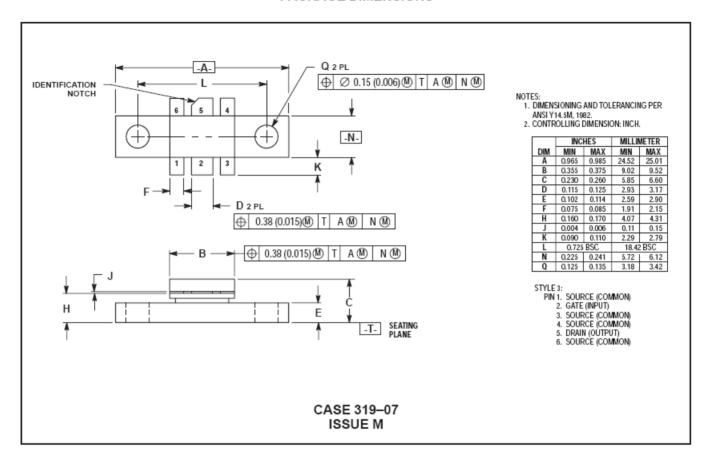
f		11		21	S ₁₂		S	s ₂₂		
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф		
30	0.840	-142	22.59	105	0.025	20	0.727	-155		
40	0.836	-151	17.4	100	0.025	17	0.743	-161		
50	0.832	-156	14.1	97	0.026	15	0.751	-164		
60	0.829	-159	12.0	94	0.026	14	0.764	-166		
70	0.826	-162	10.4	91	0.026	14	0.763	-168		
80	0.822	-164	9.09	90	0.026	14	0.763	-169		
90	0.818	-165	8.07	89	0.027	14	0.765	-170		
100	0.819	-167	7.28	87	0.027	14	0.774	-171		
110	0.821	-168	6.61	85	0.027	14	0.773	-172		
120	0.821	-169	6.00	83	0.026	15	0.771	-172		
130	0.820	-169	5.56	83	0.027	16	0.778	-172		
140	0.818	-170	5.22	82	0.027	17	0.785	-172		
150	0.820	-170	4.86	80	0.027	17	0.786	-173		
160	0.821	-171	4.52	79	0.027	17	0.781	-173		
170	0.820	-171	4.23	79	0.027	20	0.774	-172		
180	0.820	-171	4.03	78	0.027	20	0.799	-173		
190	0.820	-172	3.86	76	0.027	20	0.799	-174		
200	0.821	-172	3.62	75	0.027	20	0.784	-175		
210	0.822	-173	3.39	75	0.027	22	0.780	-174		
220	0.823	-173	3.25	74	0.027	24	0.795	-173		
230	0.825	-173	3.12	72	0.028	23	0.823	-175		
240	0.827	-173	2.96	71	0.026	24	0.791	-175		
250	0.827	-174	2.83	70	0.027	26	0.789	-174		
260	0.827	-174	2.71	70	0.026	27	0.791	-174		
270	0.829	-174	2.62	69	0.027	28	0.801	-174		
280	0.831	-174	2.52	68	0.027	29	0.807	-175		
290	0.832	-174	2.42	66	0.027	30	0.788	-175		
300	0.832	-174	2.32	66	0.027	32	0.792	-175		
310	0.831	-174	2.25	66	0.027	33	0.797	-174		
320	0.833	-175	2.18	65	0.027	34	0.810	-174		
330	0.836	-175	2.10	63	0.028	35	0.812	-175		
340	0.837	-175	2.00	62	0.027	35	0.789	-176		
350	0.838	-175	1.95	62	0.028	39	0.806	-173		
360	0.839	-175	1.90	61	0.028	39	0.817	-174		
370	0.840	-176	1.84	60	0.028	40	0.817	-175		
380	0.843	-176	1.77	59	0.028	41	0.811	-175		
390	0.845	-176	1.71	59	0.028	42	0.805	-175		
400	0.846	-176	1.66	58	0.029	46	0.801	-172		
410	0.846	-176	1.64	57	0.030	46	0.845	-174		
420	0.847	-176	1.59	56	0.030	46	0.836	-176		
430	0.848	-176	1.52	56	0.030	47	0.823	-176		
440	0.850	-176	1.48	56	0.030	49	0.816	-174		

Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 1.25 A) (continued)

f	S.	11	S	s ₂₁		s ₁₂ s ₂₂		
MHz	S ₁₁	ф	\$ ₂₁	ф	\$ ₁₂	ф	\$ ₂₂	ф
450	0.851	-176	1.47	54	0.032	51	0.851	-174
460	0.853	-177	1.42	53	0.032	48	0.849	-178
470	0.853	-177	1.37	53	0.031	51	0.830	-176
480	0.856	-177	1.34	53	0.032	53	0.834	-176
490	0.857	-177	1.32	52	0.033	54	0.841	-175
500	0.859	-177	1.28	51	0.034	54	0.847	-175
600	0.857	178	0.988	41	0.032	73	0.877	180
700	0.884	176	0.789	34	0.047	65	0.881	179
800	0.881	173	0.684	30	0.031	83	0.890	174
900	0.890	172	0.580	26	0.069	71	0.885	176
1000	0.897	170	0.503	24	0.090	60	0.931	173

Table 2. Common Source S-Parameters (VDS = 28 V, ID = 1.25 A)

f	S	s ₁₁		21	§ ₁₂		s ₂₂	
MHz	S ₁₁	ф	S ₂₁	ф	S ₁₂	ф	\$ ₂₂	ф
30	0.842	-125	29.6	113	0.024	28	0.586	-136
40	0.831	-136	23.2	106	0.025	22	0.607	-145
50	0.822	-143	19.0	101	0.026	19	0.613	-151
60	0.816	-148	16.2	98	0.026	17	0.626	-155
70	0.812	-152	14.1	95	0.027	16	0.635	-157
80	0.806	-155	12.4	92	0.026	15	0.643	-159
90	0.801	-157	11.1	90	0.027	14	0.650	-160
100	0.802	-159	9.97	88	0.027	13	0.656	-161
110	0.805	-161	9.04	86	0.027	13	0.654	-163
120	0.805	-162	8.22	84	0.026	13	0.654	-163
130	0.803	-163	7.59	83	0.026	14	0.663	-163
140	0.801	-164	7.09	82	0.026	14	0.673	-164
150	0.803	-165	6.61	80	0.026	14	0.675	-164
160	0.804	-165	6.16	79	0.026	14	0.674	-164
170	0.803	-166	5.77	78	0.026	16	0.672	-164
180	0.804	-166	5.49	77	0.026	17	0.697	-164
190	0.806	-166	5.25	75	0.026	16	0.700	-165
200	0.806	-167	4.92	73	0.025	16	0.688	-166
210	0.807	-168	4.60	73	0.025	17	0.680	-165
220	0.809	-168	4.40	72	0.025	19	0.689	-165
230	0.812	-168	4.21	70	0.025	19	0.713	-167
240	0.814	-169	3.99	69	0.024	20	0.701	-167
250	0.815	-169	3.83	68	0.024	21	0.707	-166
260	0.816	-169	3.66	67	0.024	22	0.711	-166
270	0.818	-169	3.52	66	0.024	23	0.715	-166
280	0.821	-169	3.39	65	0.025	24	0.718	-167
290	0.822	-170	3.25	63	0.024	26	0.708	-168
300	0.823	-170	3.11	62	0.023	28	0.715	-167


Table 2. Common Source S-Parameters (VDS = 28 V, ID = 1.25 A) (continued)

f	f \$ ₁₁		s ₂₁		s	s ₁₂		s ₂₂	
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф	
310	0.822	-170	2.99	62	0.023	29	0.725	-166	
320	0.825	-170	2.89	61	0.024	31	0.734	-166	
330	0.828	-171	2.78	60	0.024	33	0.736	-167	
340	0.830	-171	2.66	59	0.024	33	0.724	-168	
350	0.832	-171	2.59	58	0.024	37	0.739	-166	
360	0.834	-171	2.52	57	0.024	39	0.757	-166	
370	0.836	-171	2.44	56	0.023	39	0.755	-167	
380	0.839	-172	2.34	55	0.023	38	0.745	-167	
390	0.840	-172	2.26	54	0.024	40	0.738	-168	
400	0.841	-172	2.19	54	0.024	46	0.735	-166	
410	0.842	-172	2.14	53	0.025	46	0.787	-167	
420	0.844	-172	2.09	51	0.026	46	0.790	-168	
430	0.845	-173	1.99	51	0.027	49	0.777	-168	
440	0.846	-173	1.93	51	0.026	52	0.770	-167	
450	0.849	-173	1.91	49	0.027	53	0.794	-167	
460	0.853	-173	1.84	48	0.027	51	0.803	-171	
470	0.855	-173	1.77	47	0.027	54	0.787	-170	
480	0.857	-174	1.72	47	0.027	57	0.789	-169	
490	0.857	-174	1.68	47	0.027	56	0.796	-168	
500	0.859	-174	1.64	46	0.029	57	0.802	-169	
600	0.862	-179	1.18	33	0.036	77	0.851	-173	
700	0.893	178	0.921	26	0.043	75	0.856	-175	
800	0.890	175	0.771	22	0.043	78	0.880	-178	
900	0.895	173	0.635	17	0.065	74	0.882	-178	
1000	0.905	171	0.544	14	0.086	69	0.931	178	

Rev. V1

PACKAGE DIMENSIONS

MRF166C

The RF MOSFET Line 20W, 500MHz, 28V

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.