SPECIFICATIONS

Customer								
Product Name		Wire Wound Molded SMD Power Inductors						
Sunlord Part N	umber			M	NLB-S Se	ries		
Customer Part	Number							
[∐New Release	d, ⊠Revi	sed]			SI	PEC N	o.: ES017-	10
This SPEC is total 9 ROHS Compliant P		luding s	specifi	cations and	l appendix.	1		
	Approve	d By	Che	cked By	Issued	d By	1	
Shenzheddress: Sunlord Indu	ıstrial Park,	Dafuyu	ıan Ind		, Guanlan,	Shenzh		51811
ddress: Sunlord Indu	ıstrial Park, 60 F	Dafuyu ax: 008	ıan Ind	ustrial Zone	, Guanlan,	Shenzh	en, China	51811
ddress: Sunlord Indu d: 0086-755-298326	ıstrial Park, 60 F roval Only∑ □ Fu	Dafuyu ax: 008	ian Indi 86-755	ustrial Zone -82269029 estricted	o, Guanlan, E-Mail Date: Rejec	Shenzh : sunlore	en, China d@sunlordir	51811
ddress: Sunlord Indu el: 0086-755-298326 For Customer app	ıstrial Park, 60 F roval Only∑ □ Fu	Dafuyu Fax: 008	ian Indi 86-755	ustrial Zone -82269029 estricted	e, Guanlan, E-Mail Date:	Shenzh : sunlore	en, China	51811
ddress: Sunlord Indu el: 0086-755-298326 For Customer app Qualification Status:	ıstrial Park, 60 F roval Only∑ □ Fu	Dafuyu ax: 008	ian Indi 86-755	ustrial Zone -82269029 estricted	o, Guanlan, E-Mail Date: Rejec	Shenzh : sunlore	en, China d@sunlordir	51811
ddress: Sunlord Indu el: 0086-755-298326 For Customer app Qualification Status:	ıstrial Park, 60 F roval Only∑ □ Fu	Dafuyu ax: 008	ian Indi 86-755	ustrial Zone -82269029 estricted	o, Guanlan, E-Mail Date: Rejec	Shenzh : sunlore	en, China d@sunlordir	51811

Sunlord Categories: general confidential Specifications for Wire Wound Molded SMD Power Inductors Page 2 of 9

【Version change history】

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
01	Jun. 15, 2020	New release	/	Simei Yu
02	Sep. 28, 2020	Add Item	/	Simei Yu

Caution:

All products listed in this specification are developed, designed and intended for use in general electronics equipment. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require especially high reliability, or whose failure, malfunction or trouble might directly cause damage to society, person, or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below. Please contact us for more details if you intend to use our products in the following applications.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. nuclear control equipment
- 5. military equipment
- 6. Power plant equipment
- 7. Medical equipment
- 8. Transportation equipment (automobiles, trains, ships,etc.)
- 9. Traffic signal equipment
- 10. Disaster prevention / crime prevention equipment
- 11. Data-processing equipment
- 12. Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

This specification applies to MWLB-S - wire wound molded SMD power Inductors

Product Description and Identification (Part Number)

Description

Wire Wound Molded SMD Type Power Inductor, MWLBXXXX, XX μ H \pm X% @XXX KHz/XXXV, XXXm Ω , XX A.

2) Product Identification (Part Number)

<u>MWLB</u>	XXXX	-XXX		<u>T</u>
1	2	3	4	(5)

1)	Туре
MWLB	Wire wound molded SMD power
IVIVVLD	Inductors

2	External Dimensions (mm)	
	0401S/0501S/0601S	

③ Nominal Inductance(µH)				
Example	Nominal Value			
2R2	2.2µH			
100	10μH			

④ Inductance Tolerance			
М	±20%		
N ±30%			

(5)	⑤ Packing		
Т	Tape Carrier Package		

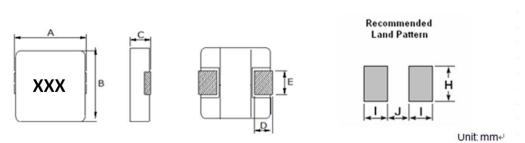
Electrical Characteristics

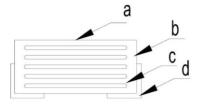
Please refer to Appendix A.

- Operating temperature range (Including self-heating): -55 $^{\circ}$ C ~+125 $^{\circ}$ C.
- Storage temperature and humidity range (product with tapping): -10 $^{\circ}$ C ~+40 $^{\circ}$ C, RH 70% Max.

Shape and Dimensions

Dimensions and recommended PCB pattern for reflow soldering: See Fig.4-1 and Table 4-1.




Fig. 4-1

Series	А	В	С	D	E	I Тур.	J Typ.	Н Тур.
MWLB0401S	4.1±0.30	4.1±0.20	0.80 ± 0.2	0.90±0.2	1.8±0.2	1.1	2.2	2.0
MWLB0501S	5.1±0.30	5.1±0.30	0.80±0.2	1.2±0.2	3.0±0.3	1.4	2.6	3.5
MWLB0601S	6.1±0.30	6.1±0.30	0.80±0.2	1.75±0.3	4.0±0.3	2.35	2.8	4.5

Structure and Components: See Table 4-2

Table 4-2

Symbol	Components	Material
а	MARKING	Ink(black)
b	CORE	Alloy Sponge Powder
С	WIRE	Polyurethane copper wire
d	Terminal	Copper plated with Sn

Test and Measurement Procedures

5.1 Test Conditions

- 5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:
 - a. Ambient Temperature: 20±15℃
 - Relative Humidity: 65±20% b.
 - Air Pressure: 86 KPa to 106 KPa C.

5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:

a. Ambient Temperature: 25 ± 2°C
b. Relative Humidity: 65±5%
c. Air Pressure: 86KPa to 106 KPa

5.2 Visual Examination

a. Inspection Equipment: 10 X magnifier

5.3 Electrical Test

5.3.1 DC Resistance (DCR)

a. Refer to Appendix A.

b. Test equipment (Analyzer): HIOKI3540 or equivalent.

5.3.2 Inductance (L)

- a. Refer to Appendix A.
- b. Test equipment: Wayne kerr3260+3265B or equivalent.

5.3.3 Rated Current

- a. Refer to Appendix A.
- b. Test equipment: Wayne kerr3260+3265B, Agilent E3633A, R2M-2H3 or equivalent.
- c. Definition of Rated Current (Ir): With the condition of the DC current pass, the inductance decrease approximate 30% of the standard value, compare to the temperature rise approximate 40°C, the smaller is Rated Current.(reference environment temperature:25°C)

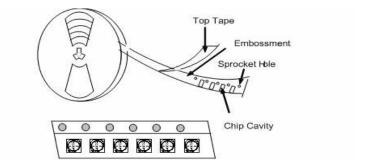
5.4 Reliability Test

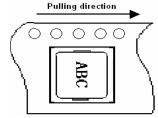
Mechanical Reliabil	ity	
Item	Specification and Requirement	Test Method
	The surface of terminal immersed shall be	Solder heat proof:
Solderability	minimum of 95% covered with a new coating of	1. Preheating: 160 \pm 10 $^{\circ}\mathrm{C}$
	solder	2. Retention time: 245 \pm 5 $^{\circ}$ C for 2 \pm 0.5 seconds
		1. Vibration frequency:
		(10 Hz to 55 Hz to 10Hz) in 60 seconds as a period
Vibration	Inductance change: Within ± 10% Without	2. Vibration time:
Vibration	mechanical damage such as break	Period cycled for 2 hours in each of 3 mutual perpendicular
		directions.
		3. Amplitude: 1.5 mm max.
		1. Peak value: 100 G
Shock	Inductance change: Within ± 10% Without	2. Duration of pulse: 11ms
SHOCK	mechanical damage such as break	3. 3 times in each positive and negative direction of 3 mutual
		perpendicular directions
Endurance Reliabili	ty	
Item	Specification and Requirement	Test Method
		1. Repeat 100 cycles as follow:
		(-55 ± 2 °C; 30 ± 3 min)
	Inductance change: Within ± 10% Without distinct	→(Room temp., 5 min)
Thermal Shock	damage in appearance	→ (+125 ± 2 $^{\circ}$ C, 30 ± 3 min)
	damage in appearance	\rightarrow (Room temp., 5 min)
		2. Recovery: 48 + 4 / -0 hours of recovery under the standard
		condition after the test.
High Temperature	Inductance change: Within ± 10% Without distinct	1. Environment condition: $85 \pm 2 ^{\circ}\mathbb{C}$
Resistance	damage in appearance	Applied Current: Rated current
riesistance	damage in appearance	2. Duration: 1000 + 4 / -0 hours
		1. Environment condition: 60 ± 2 $^{\circ}$ C
Humidity	Inductance change: Within ±10% Without distinct	Humidity: 90–95%
Resistance	damage in appearance	Applied Current: Rated current
		2. Duration: 1000 + 4 / -0 hours
Low Temperature	Inductance change: Within ± 10% Without distinct	Store temperature:

Sunlord Categories: general confidential Specifications for Wire Wound Molded SMD Power Inductors Page 6 of 9

Store	damage in appearance	-55 ± 2 °C,1000 + 4 / -0 hours
High Temperature	Inductance change: Within ± 10% Without distinct	Store temperature:
Store	damage in appearance	+125 ± 2 °C,1000 + 4 / -0 hours

6. Packaging, Storage and Transportation


6.1 Tape Carrier Packaging:


Packaging code: T

- (1) Tape carrier packaging are specified in attached figure Fig.6.1-1~2
- (2) Tape carrier packaging quantity:

Туре	Standard Quantity (pcs/reel)
MWLB0401S	3000
MWLB0501S	3000
MWLB0601S	3000

a. Taping Drawings (Unit: mm)

Remark: The sprocket holes are to the right as the tape is pulled toward the user.

Fig.6.1-1

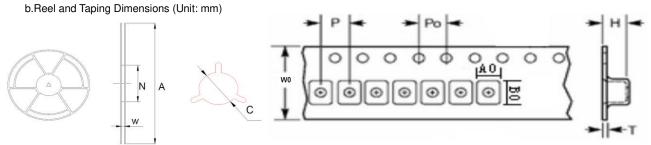
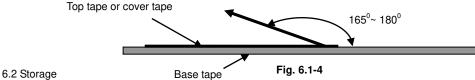



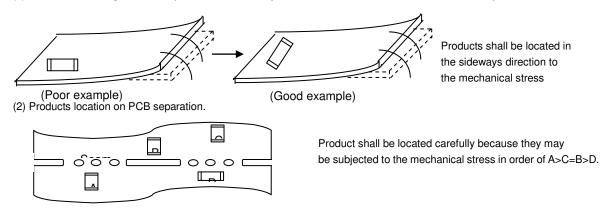
Fig.6.1-2

T	Reel dimensions (mm)				Tape dimensions (mm)						
Type	А	N	С	W	W0	Р	P0	Н	Т	A0	В0
MWLB0401S	330±2.0	97±0.5	13.2±0.2	12.8±0.2	12±0.3	8±0.1	4±0.1	1.1±0.1	0.30 ± 0.05	4.5±0.1	4.5±0.1
MWLB0501S	330±2.0	97±0.5	13.2±0.2	12.8±0.2	12±0.3	8±0.1	4±0.1	1.1±0.1	0.35±0.05	5.5±0.1	<i>5.</i> 85±0.1
MWLB0601S	330±2.0	97±0.5	13.2±0.2	16.8±0.2	16±0.3	12±0.1	4±0.1	1.1±0.1	0.35 ± 0.05	6.4±0.1	6.5±0.1

c.Peeling off force: 10gf to 70gf in the direction show below.

- (1) The solderability of the external electrodes may deteriorate if packages are stored in high humidity. Besides, to ensure packing material's good state, packages must be stored at -10℃ to 40℃ and 70% RH Max.
- (2) The solderability of the external electrodes may deteriorate if packages are exposed to dust of harmful gas (e.g. HCl, sulfurous gas of H₂S).
- (3) Packaging materials may deform if packages are exposed directly to sunlight.
- (4) Minimum packages, such as polyvinyl heat-seal packages shall not be opened until they are used. If opened, use the reels as soon as possible.

- (5) Solderability shall be guaranteed for a period of time from the date of delivery on condition that they are stored at the specified environment. For those parts, which passed more than the time shall be checked solderability before using.
- (6) For magnetic products, keep clear of anything that may generate magnetic fields to avoid change of products performance.
- (7) To avoid any damage to products, do not load mechanic force on products or place heavy goods on products, and exclude strong vibration or drop.
- (8)In case of storage over 12 months, solderability shall be checked before actual usage.


7. Warning and Attentions

- 7.1 Precautions on Use
 - (1) Always wear static control bands to protect against ESD.
 - (2) Any devices used with the products (soldering irons, measuring instruments) should be properly grounded.
 - (3) Keep bare hands and metal conductors (i.e., metal desk) away from electrodes or conductive areas that lead to electrodes.
 - (4) Preheat when soldering.
 - (5) Don't apply current in excess of the rated current value. It may reduce the impedance or inductance, or cause damage to components due to over-current.
 - (6) For magnetic products, keep clear of anything that may generate magnetic fields such as speakers and coils. Use non-magnetic tweezers when handing the chips.
 - (7) When soldering, the electrical characteristics may be varied due to hot energy and mechanical stress.
 - (8) When coating products with resin, the relatively high resin curing stress may change the electrical characteristics. For exterior coating, select resin carefully so that electrical and mechanical performance of the product is not affected. Before using, please evaluate reliability with the product mounted in your application set.
 - (9) When mount chips with adhesive in preliminary assembly, do appropriate check before the soldering stage, i.e., the size of land pattern, type of adhesive, amount applied, hardening of the adhesive on proper usage and amounts of adhesive to use.
 - (10) Mounting density: Add special attention to radiating heat of products when mounting other components nearby. The excessive heat by other products may cause deterioration at joint of this product with substrate.
 - (11) Since some products are constructed like an open magnetic circuit, narrow spacing between components may cause magnetic coupling.
 - (12) Please do not give the product any excessive mechanical shocks in transportation.
 - (13) Please do not touch wires by sharp terminals such as tweezers to avoid causing any damage to wires.
 - (14) Please do not add any shock and power to the soldered product to avoid causing any damage to chip body.
 - (15) Please do not touch the electrodes by naked hand as the solderability of the external electrodes may deteriorate by grease or oil on the skin.

7.2 PCB Bending Design

The following shall be considered when designing and laying out PCB's.

(1) PCB shall be designed so that products are not subjected to the mechanical stress from board warp or deflection.

- (3) When splitting the PCB board, or insert (remove) connector, or fasten thread after mounting components, care is required so as not to give any stress of deflection or twisting to the board. Because mechanical force may cause deterioration of the bonding strength of electrode and solder, even crack of product body. Board separation should not be done manually, but by using appropriate devices.
- 7.3 Recommended PCB Design for SMT Land-Patterns

When chips are mounted on a PCB, the amount of solder used (size of fillet) can directly affect chip performance. Therefore, the following items must be carefully considered in the design of solder land patterns:

- (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.
- (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed that each component's soldering point is separated by solder-resist.

Recommended land dimensions please refer to product specification.

8 Recommended Soldering Technologies

8.1Re-flowing Profile:

- △ Preheat condition: 150 ~200 °C/60~120sec.
- \triangle Allowed time above 217°C: 60~90sec.
- △ Max temp: 260°C
- △ Max time at max temp: 10sec.

- △ Solder paste: Sn/3.0Ag/0.5Cu
- \triangle Allowed Reflow time: 2x max

Please refer to Fig. 8.1

[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

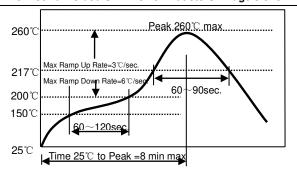


Fig. 8.1

8.2 Iron Soldering Profile

- △ Iron soldering power: Max. 30W
- △ Pre-heating: 150°C/60sec.
- △ Soldering Tip temperature: 350°C Max.
- △ Soldering time: 3sec. Max.
 △ Solder paste: Sn/3.0Ag/0.5Cu
 △ Max.1 times for iron soldering
 Please refer to Fig. 8.2.

[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]

8.3 Recommended Soldering Technologies

Heat Gun Profile

- △ Soldering tip temperature: 350°C Max.
- \triangle Hot air time: <5sec (over 5sec may cause wiring inductor short)
- \triangle When repairing or reworking the component near inductors, take over-heat protection for Inductors

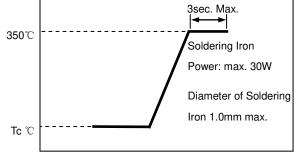
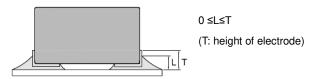



Fig. 8.2.

9. Solder Volume

Solder shall be used not to exceed as shown below. Exceeding solder volume may cause the failure of mechanical or electrical performance.

10. Supplier Information

- a) Supplier:
 - Shenzhen Sunlord Electronics Co., Ltd.
- b) Manufacturer:
 - Shenzhen Sunlord Electronics Co., Ltd.
- c) Manufacturing Address:

Sunlord Industrial Park, Dafuyuan Industrial Zone, Guanlan, Shenzhen, China

Zip: 518110

Appendix A: Electrical Characteristics

MWLB0401S-XXX TYPE

Part Number	Inductance	DC Resistance	Saturation Current*3		Heat Rating Current*4	
r ait Number	@100KHZ,1V	Max.	Мах. Тур.		Max.	Тур.
Units	μH	mΩ	Α		A	
Symbol	L	DCR	Isat		Irms	
MWLB0401S-1R0MT	1.0±20%	<i>50</i>	3.5	4.0	3.1	3.6
MWLB0401S-1R5MT	1.5±20%	70	3.3	3.8	2.9	3.5
MWLB0401S-2R2MT	2.2±20%	100	3.5	4.3	2.6	2.9
MWLB0401S-3R3MT	3.3±20%	130	2.4	2.8	2.0	2.3
MWLB0401S-4R7MT	4.7±20%	186	2.1	2.4	1.4	1.7
MWLB0401S-6R8MT	6.8±20%	280	1.9	2.2	1.3	1.5
MWLB0401S-8R2MT	8.2±20%	300	1.7	2.0	1.1	1.3
MWLB0401S-100MT	10±20%	320	1.6	1.8	1.3	1.5

MWLB0501S- XXX TYPE

Part Number	Inductance	DC Resistance	Saturation Current*3		Heat Rating Current*4		
i ait ivailibei	@100KHZ,1V	Max.	Max.	Тур.	Max.	Тур.	
Units	μH	mΩ	A		A		
Symbol	L	DCR	Isat		Irms		
MWLB0501S-1R0MT	1.0±20%	80	3.7	4.2	3.3	3.8	
MWLB0501S-1R5MT	1.5±20%	90	3.3	3.8	3.1	3.6	
MWLB0501S-2R2MT	2.2±20%	105	3.0	3.5	2.5	2.9	
MWLB0501S-3R3MT	3.3±20%	140	2.8	3.2	2.3	2.6	
MWLB0501S-4R7MT	4.7±20%	175	2.2	2.5	1.8	2.1	

MWLB0601S- XXX TYPE

Part Number	Inductance	DC Resistance	Saturation Current*3		Heat Rating Current*4		
i ait ivuilibei	@100KHZ,1V	Max.	Max.	Тур.	Max.	Тур.	
Units	μH	mΩ	Α		A		
Symbol	L	DCR	Isat		Irms		
MWLB0601S-1R5MT	1.5±20%	90	3.5	4.0	3.2	3.7	
MWLB0601S-2R2MT	2.2±20%	120	3.5	4.0	2.6	3.0	
MWLB0601S-3R3MT	3.3±20%	130	3.0	3.5	2.3	2.7	
MWLB0601S-4R7MT	4.7±20%	172	2.5	2.8	2.0	2.2	
MWLB0601S-6R8MT	6.8±20%	197	2.2	2.5	1.8	2.0	
MWLB0601S-8R2MT	8.2±20%	280	2.2	2.5	1.5	1.7	
MWLB0601S-100MT	10±20%	310	1.9	2.1	1.4	1.6	

^{%1:} All test data is referenced to 20°C ambient;

 $[\]mbox{\%2: Isat(Typ): DC current}$ at which the inductance drops approximate 30% from its value without current; $\mbox{\%3: Irms(Typ): DC}$ current that causes the temperature rise ($\mbox{\triangle}T$ =40°C) from 20°C ambient.