

150mA 36V Input LDO Regulator

NO.EA-258-140703

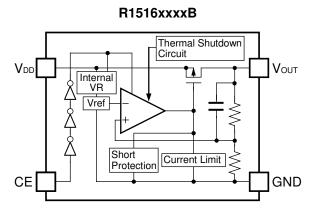
OUTLINE

The R1516x Series are CMOS-based high-voltage resistant and low supply current voltage regulator ICs that provide the minimum 150mA of output voltage. Internally, the R1516x Series consists of a Foldback Protection Circuit, and a Thermal Shutdown Circuit in addition to the basic regulator circuits. The operating temperature range is between -40°C to 105°C, and the maximum input voltage is 36V. All these features allow the R1516x Series to become an ideal power source of electric home appliances.

The R1516x Series are available in fixed output voltage options between 1.8V and 6.2V in 0.1V steps. The output voltage accuracy is \pm 1%.

The R1516x Series are available in two types of packages: SOT-89-5 that is for high-density mounting and HSOP-6J that is for high wattage.

FEATURES

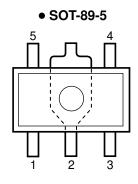

- Input Voltage Range······ 4V to 36V
- Supply Current Typ. 29µA
- Standby Current Typ. 0.1µA
- Output Voltage Temperature Coefficient Typ. ±100ppm/^oC
- Line Regulation Typ. 0.1%/V
- Output Voltage Accuracy ······ ±1% (Vour ≥ 3.2V, Topt=25°C)
- Packages ······ SOT-89-5, HSOP-6J
- Output Voltage Range ······ 1.8V to 6.2V (0.1V steps)
 - (For other voltages, please refer to MARK INFORMATIONS.)
- Built-in Foldback Protection Circuit 50mA (Current at short mode)
- Built-in Thermal Shutdown Circuit ······ Stops at 160°C

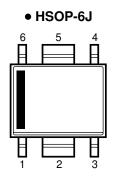
APPLICATIONS

- Power source for home appliances such as refrigerators, rice cookers, electric hot-water pot.
- Power source for notebook PCs, digital TVs, cordless phones, and private LAN system.
- Power source for office equipment machines such as copiers, printers, facsimiles, scanners, projectors.

NO.EA-258-140703

BLOCK DIAGRAMS




SELECTION GUIDE

The output voltage and the package for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1516HxxxB-T1-FE	SOT-89-5	1,000pcs	Yes	Yes
R1516SxxxB-E2-FE	HSOP-6J	1,000pcs	Yes	Yes
xxx : The output voltage can b (For other voltages, please			2V(062)in 0.1V s	teps.

PIN CONFIGURATIONS

PIN DESCRIPTIONS

• SOT-89-5

Pin No.	Symbol	Description
1	Vout	Output Pin
2	GND*	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	GND*	Ground Pin
5	Vdd	Input Pin

*) The GND pin must be wired together when it is mounted on board.

• HSOP-6J

Pin No.	Symbol	Description
1	Vout	Output Pin
2	GND*	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	GND*	Ground Pin
5	GND*	Ground Pin
6	Vdd	Input Pin

*) The GND pin must be wired together when it is mounted on board.

NO.EA-258-140703

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
VIN	Input Voltage	-0.3~50	V
VIN	Peak Input Voltage*1	60	V
VCE	Input Voltage (CE Pin)	-0.3∼V _{IN+} 0.3≦50	V
Vout	Output Voltage	-0.3∼V _{IN+} 0.3≦50	V
Ιουτ	Output Current	250	mA
Po	Power Dissipation (SOT-89-5)*2	900	mW
ΓD	Power Dissipation (HSOP-6J)*2	1700	11100
Topt	Operating Temperature Range	-40 to +105	°C
Tstg	Storage Temperature Range	-55 to +125	°C

*1) Duration time: 200ms

*2) For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

5

R1516x NO.EA-258-140703

ELECTRICAL CHARACTERISTICS

The specifications in \square are applicable under the condition of -40°C \leq Topt \leq 105°C.

● R1516xxxxB

Symbol	Item	с	ond	litions	Min.	Тур.	Max.	Unit
VIN	Input Voltage				4		36	V
lss	Supply Current	VIN=VOUT+3.0V, IOUT=0mA			29	45	μA	
Istandby	Standby Current	VIN=36V, VC	E=0\	/		0.1	1.0	μA
Vout	Output Voltage	VIN=VOUT+3.0	0V,	Vouт ≥ 3.2V	×0.99 ×0.98		×1.01 ×1.02	v
VOUT	Oulput Voltage	loυτ=1mA		Vout < 3.2V	×0.985 ×0.975		×1.015 ×1.025	v
Іоит	Output Current	Р	leas	e refer to "Output	Current by	y Output \	Voltage".	
ΔV out/ ΔI out	Load Regulation	Ple	ease	e refer to "Load Re	egulation b	by Output	Voltage".	
ΔV out/ ΔV in	Line Regulation	lout=1mA -	(Vo 4V	$\begin{array}{l} \text{r+1.5V} \leq V_{\text{IN}} \leq 36V, \\ \text{ut} \geq 2.5V) \\ \leq V_{\text{IN}} \leq 36V, \\ \text{ut} < 2.5V) \end{array}$		0.1	0.7	%/V
VDIF	Dropout Voltage	Pl	ease	e refer to "Dropout	Voltage b	y Output	Voltage".	1
ΔV out/ ΔT opt	Output Voltage Temperature Coefficient	$V_{\text{IN}} = V_{\text{OUT}} + 3.0$ $-40^{\circ}C \le T_{\text{OP}}$				±100		ppm/°C
lsc	Short Current Limit	Vout=0V				50		mA
VCEH	CE Input Voltage "H"				1.3		VIN	V
VCEL	CE Input Voltage "L"				0		0.35	V
Ttsd	Thermal Shutdown Temparature	Junction Ter	mep	rature	150	160		°C
T _{TSR}	Thermal Shutdown Released Temparature	Junction Ter	mep	rature		125		°C

• Output Current by Output Voltage

Topt=25ºC

Output Voltage	Output Curre	ent lout (mA)
Vout (V)	Condition	Min.
$1.8 \le V_{\text{OUT}} < 3.0$	VIN=VOUT+5.0V	
$3.0 \le V_{\text{OUT}} < 5.0$	VIN=VOUT+4.0V	150
$5.0 \leq V_{\text{OUT}} \leq 6.2$	VIN=VOUT+3.0V	

• Load Regulation by Output Voltage

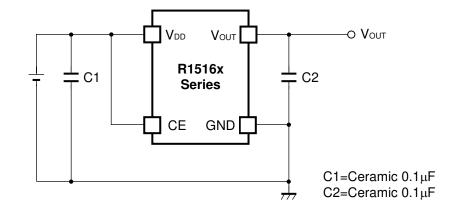
Load Regulation (mV) Output Voltage Vout (V) Condition Тур. Max. $1.8 \le V_{\text{OUT}} \le 3.0$ 30 (Vout=3.0V) 70 VIN=VOUT+3.0V $3.0 < V_{\text{OUT}} \le 5.0$ 105 40 (Vout=5.0V) $1mA \le I_{OUT} \le 40mA$ 50 (Vout=6.2V) $5.0 < V_{\text{OUT}} \le 6.2$ 125

Nisshinbo Micro Devices Inc.

Topt=25ºC

Topt=25ºC

NO.EA-258-140703


Dropout Voltage by Output Voltage

DUT=20mA) Topt=25 ^c Dropout Voltag	
Output Voltage	Voi⊧ (V)
V OUT (V)	Max.
Vout=1.8	2.30
Vout=1.9	2.20
Vout=2.0	2.10
Vout=2.1	2.00
Vout=2.2	1.90
Vout=2.3	1.80
Vout=2.4	1.70
Vout=2.5	1.60
Vout=2.6	1.50
Vout=2.7	1.40
Vout=2.8	1.30
Vout=2.9	1.20
Vout=3.0	1.10
Vout=3.1	1.06
Vout=3.2	1.02
Vout=3.3	0.98
Vout=3.4	0.94
Vout=3.5	0.90
Vout=3.6	0.86
Vout=3.7	0.82
Vout=3.8	0.78
Vout=3.9	0.74
Vout=4.0	0.70
Vout=4.1	0.69
Vout=4.2	0.68
Vout=4.3	0.67
Vout=4.4	0.66
Vout=4.5	0.65
Vout=4.6	0.64
Vout=4.7	0.63
Vout=4.8	0.62
Vout=4.9	0.61
$.0 \le V_{\text{OUT}} \le 6.2$	0.60

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

TYPICAL APPLICATION

TECHNICAL NOTES

When using the R1516x Series, please consider the following points.

Phase Compensation

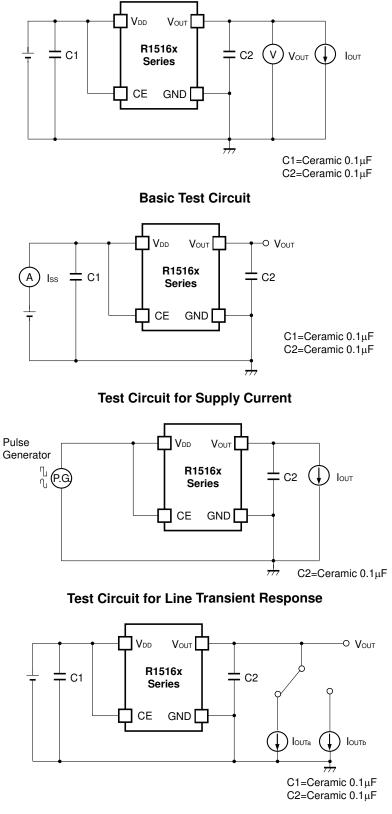
The R1516x Series provide the constant-voltage without using C1 and C2 capacitors. However, if the input line is too long, C1 should be connected. To minimize the input voltage fluctuation and the transient output voltage fluctuation that is caused by the load fluctuation, C2 size should be increased. Please refer to the Basic Test Circuit below when connecting a 0.1μ F to 20μ F C1 capacitor from V_{DD} to GND, and also connecting a 0.1μ F to 20μ F C2 capacitors, V_{DD}, GND and V_{OUT} should be connected as close as possible to each other.

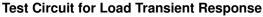
GND Wiring on Boards

For SOT-89-5 package, please connect the No.2 pin and the No.4 pin to the ground plane on the board.

For HSOP-6J package, please connect the No.2 pin, the No.4 pin and the No.5 pin to the ground plane on the board.

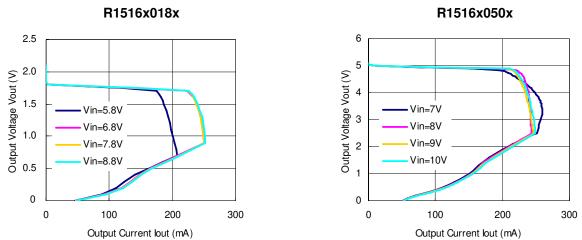
Thermal Shutdown

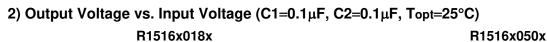

The thermal shutdown is included, which limits the junction temperature to a maximum 160°C (Typ.). Under extreme conditions when the junction temperature begins to rise above 160°C, the output is turned off, reducing the output current to zero. When the junction temperature drops below +125°C (Typ.), the output is turned on again and the output current is restored to its nominal value. The output repeats turning on and off to form a pulse shaped output unless the causes of the temperature rise are removed.

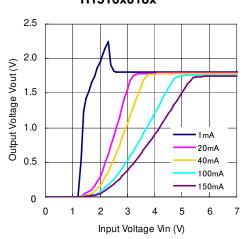

Chip Enable (CE) Circuit

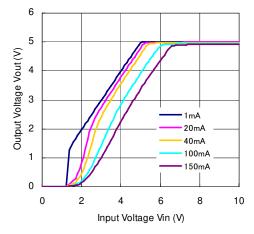
The electrical potential level of chip enable (CE) pin should not be set in between V_{CEH} and V_{CEL} . Using the electrical potentials in between V_{CEH} and V_{CEL} may cause the increase of supply current and may result in unstable output.

NO.EA-258-140703

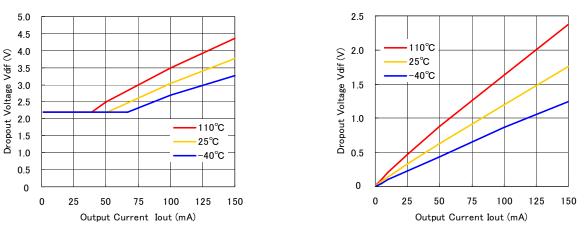

TEST CIRCUITS

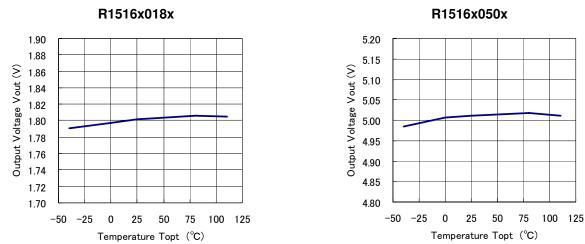


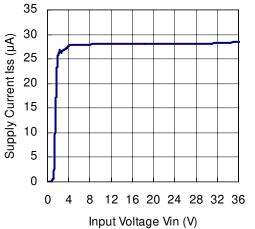


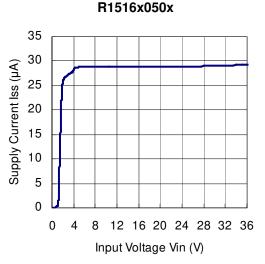

Typical Characteristics

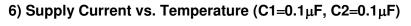


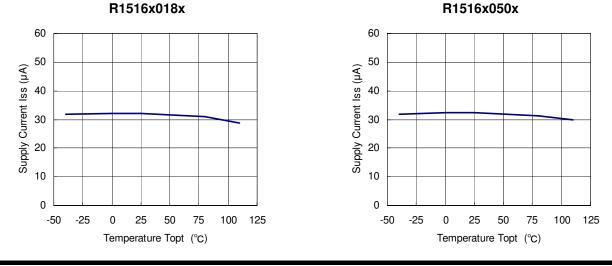


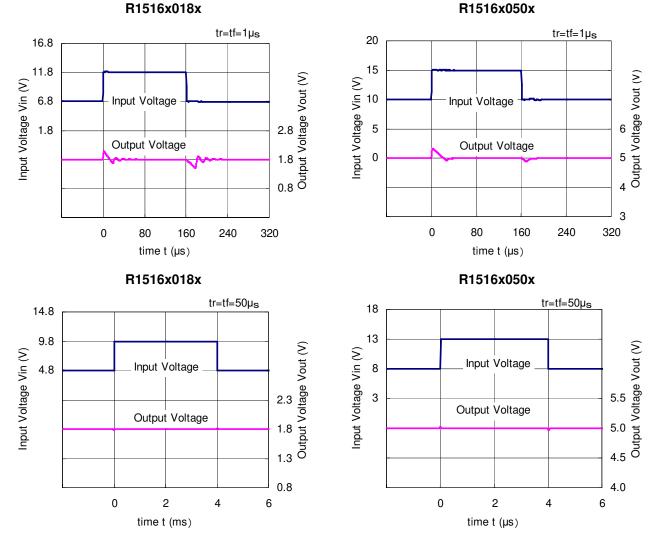


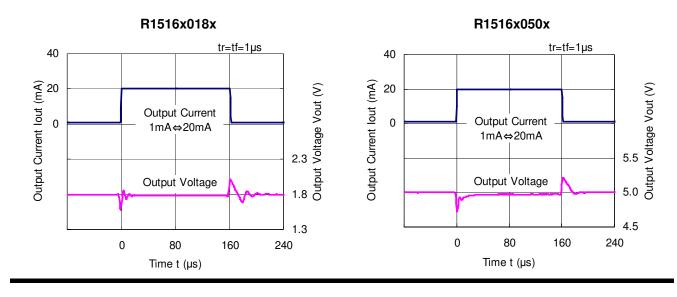

NO.EA-258-140703

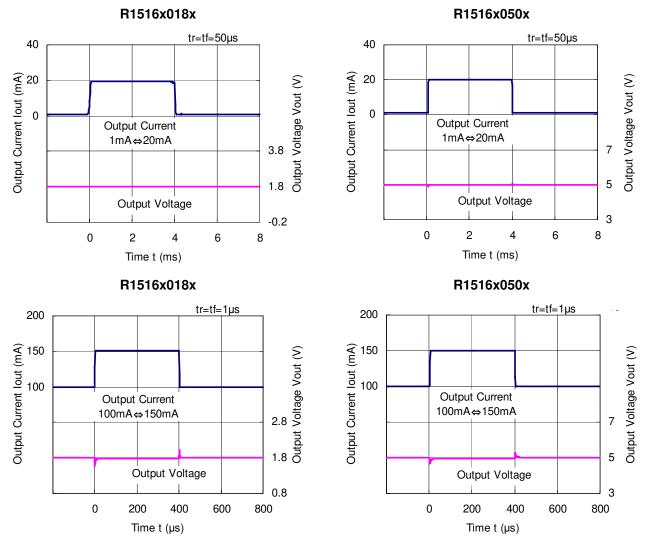

4) Output Voltage vs. Temperature (C1= 0.1μ F, C2= 0.1μ F)



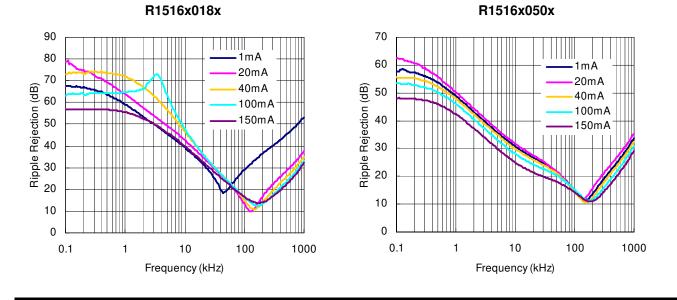


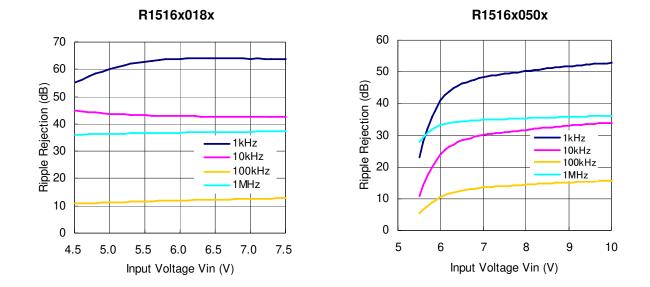

R1516x018x





7) Input Transient Response (C1=none, C2=Ceramic 0.1µF, IouT=1mA, Topt=25°C)


8) Load Transient Response (C₁=Ceramic 0.1µF, C₂=Ceramic 0.1µF, Topt=25°C)


NO.EA-258-140703

9) Ripple Rejection vs. Frequency (C1=none, C2=Ceramic 0.1µF, Ripple=0.5Vp-p, Topt=25°C)

R1516x NO.EA-258-140703

10) Ripple Rejection vs. Input Voltage (C1=none, C2=Ceramic 0.1µF, Iour=20mA, Ripple=0.5Vp-p, Topt=25°C)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

NSSHNBO

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/