

RM50N30DN

Description

RM50N30DN seriesarefromAdvancedPowerinnovateddesignand silicon process technology to achieve the lowest possible onresistance and fast switching performance. It provides the designer with an extreme efficient device for use in a wide range of power applications.

The DFN 3 x 3 package is special for voltage conversion application using standard infrared reflow technique with the backside heat sink to achieve the good thermal performance.

- Simple Drive Requirement
- Small Size & Lower Profile
- RoHS Compliant & Halogen-Free

BV _{DSS}	30V
R _{DS(ON)}	$4.1 \mathrm{m}\Omega$
I _D	50A

DFN 3 x 3

Package Marking and Ordering Information

V	<u> </u>	<u> </u>			
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
50N30	RM50N30DN	DFN 3x3	-	-	-

Absolute Maximum Ratings@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	30	V
V _{GS}	Gate-Source Voltage	<u>+</u> 20	V
I _D @T _A =25℃	Drain Current ³ , V _{GS} @ 10V	50	А
I _D @T _A =70℃	Drain Current ³ , V _{GS} @ 10V	42	А
I _{DM}	Pulsed Drain Current ¹	72	А
P _D @T _A =25℃	Total Power Dissipation	25	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Value	Unit
Rthj-c	Maximum Thermal Resistance, Junction-case	4	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	35	°C/W

Electrical Characteristics@T_j=25°C(unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
Static Characteristics						
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D =250µA	30	-	-	V
Zero gate voltage drain current	DSS	V _{DS} =30V, V _{GS} = 0V	-	-	1	μA
Gate-body leakage current	GSS	$V_{GS} = \pm 20 V, V_{DS} = 0 V$	-	-	±100	nA
Gate threshold voltage ⁽³⁾	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250μA	1	1.5	2.5	V
Drain-source on-resistance ⁽³⁾	Para	V _{GS} =10V, I _D =30A	-	4.1	4.8	mΩ
	TDS(on)	V _{GS} =4.5V, I _D =20A	-	7.2	9.5	
Dynamic characteristics						
Input Capacitance	C _{iss}		-	1614	-	
Output Capacitance	C _{oss}	V _{DS} =15V, V _{GS} =0V, f =1MHz	-	245	-	pF
Reverse Transfer Capacitance	C _{rss}		-	215	-	
Switching characteristics						
Turn-on delay time	t _{d(on)}		-	7.5	-	
Turn-on rise time	tr	V _{DD} =15V, I _D =30A,	-	14.5	-	20
Turn-off delay time	t _{d(off)}	V_{GS} =10V, R _G =3 Ω	-	35.2	-	115
Turn-off fall time	t _f		-	9.6	-	
Total Gate Charge	Qg		-	33.7	-	
Gate-Source Charge	Qgs	VDS=15V, ID=30A,	-	8.5	-	nC
Gate-Drain Charge	Qgd	100	-	7.5	-	
Source-Drain Diode characteristics						
Diode Forward voltage ⁽³⁾	V _{DS}	V _{GS} =0V, I _S =1A	-	-	1.2	V
Diode Forward current ⁽⁴⁾	s		-	-	70	А

Notes:

1. Repetitive Rating: pulse width limited by maximum junction temperature

2. EAS Condition:TJ=25 $^{\circ}$ C,VDD=15V,RG=25 $^{\Omega}$,L=0.5mH,IAS=15A

3. Pulse Test: pulse width≤300µs, duty cycle≤2%

4. Surface Mounted on FR4 Board,t≤10 sec

RATING AND CHARACTERISTICS CURVES (RM50N30DN)

Figure 3:On-resistance vs. Drain Current RDS(ON) (m Ω)

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 2: Typical Transfer Characteristics

RATING AND CHARACTERISTICS CURVES (RM50N30DN)

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Package Mechanical Data

CVMDOL	MILLIMETER			
SYMBOL	MIN	Тур.	MAX	
А	0.700	0.800	0.900	
A1		0.152 REF.		
A2	0~0.05			
D	3.000	3.100	3.200	
D1	2.300	2.450	2.600	
Е	2.900	3.000	3.100	
E1	3.150	3.300	3.450	
E2	1.320	1.520	1.720	
b	0.200	0.300	0.400	
е	0.550	0.650	0.750	
L	0.300	0.400	0.500	
L1	0.180	0.330	0.480	
L2	0~0.100			
L3	0~0.100			
Н	0.315	0. 415	0.515	
θ	8°	10°	12°	

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

