MOSFET - Power, N-Channel, Shielded Gate

60 V, 5.2 mΩ, 78 A

NTTFS5D1N06HL

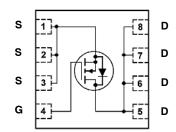
General Description

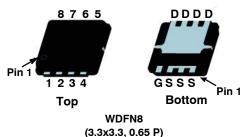
This N-Channel MOSFET is produced using ON Semiconductor's advanced MOSFET process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Features

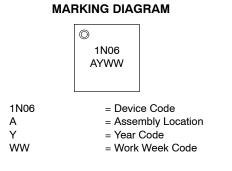
- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 5.2 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 16 \text{ A}$
- Max $r_{DS(on)} = 7.1 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 13 \text{ A}$
- Lowers Switching Noise/EMI
- MSL1 Robust Package Design
- 100% UIL Tested
- RoHS Compliant

Applications


- Primary DC–DC MOSFET
- Synchronous Rectifier in DC–DC and AC–DC
- Motor Drive


ON Semiconductor®

www.onsemi.com


ELECTRICAL CONNECTION

N-Channel MOSFET

3.3x3.3, 0.65 P) CASE 511DY

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter			Ratings	Unit	
V _{DS}	Drain to Source	Voltage			60	V
V _{GS}	Gate to Source \	/oltage			±20	V
I _D	Drain Current	-Continuous	$T_{C} = 25^{\circ}C$	(Note 5)	78	А
		-Continuous	$T_{C} = 100^{\circ}C$	(Note 5)	49	
		-Continuous	$T_A = 25^{\circ}C$	(Note 1a)	18	
		-Pulsed		(Note 4)	216	
E _{AS}	Single Pulse Ava	lanche Energy		(Note 3)	72	mJ
PD	Power Dissipatio	n	$T_{C} = 25^{\circ}C$		63	W
	Power Dissipatio	n	$T_A = 25^{\circ}C$	(Note 1a)	3.2	
T _J , T _{STG}	Operating and St	orage Junction Temper	rature Range		–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case	2	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a)	39	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
1N06	NTTFS5D1N06HL	WDFN8 (3.3x3.3)	7"	12 mm	1500 Units

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CHARACTERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, V_{GS} = 0 \ V$	60			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C		37		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 48 V, V_{GS} = 0 V$			10	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = +20 V, V _{DS} = 0 V			100	nA

ON CHARACTERISTICS

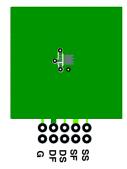
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 80 \ \mu A$	1.2	1.6	2.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 80 \ \mu A$, referenced to 25°C		-5.2		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 16 A		4.4	5.2	mΩ
	nesistarice	V _{GS} = 4.5 V, I _D = 13 A		5.6	7.1	

DYNAMIC CHARACTERISTICS

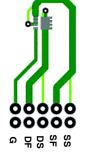
C _{ISS}	Input Capacitance	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$	1610	pF
C _{OSS}	Output Capacitance	f = 1 MHz	313	
C _{RSS}	Reverse Transfer Capacitance		12.2	
R _G	Gate Resistance		0.9	Ω

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Symbol	Parameter	Test Condit	ions	Min	Тур	Max	Units
SWITCHING CH	IARACTERISTICS						
t _{d(ON)}	Turn – On Delay Time	V _{DD} = 30 V, I _D = 16 A			14		ns
t _{rd(ON)}	Rise Time	V _{GS} = 4.5 V, R _{GEN} =	V_{GS} = 4.5 V, R_{GEN} = 2.5 Ω		24		
t _{d(OFF)}	Turn – Off Delay Time				41.3		
t _f	Fall Time	1			12.2		
Qg	Total Gate Charge	V_{GS} = 0V to 10 V			22.5		nC
Qg	Total Gate Charge	V_{GS} = 0V to 4.5 V			10.3		
Q _{gs}	Gate to Source Charge		V _{DD} = 30 V		5		
Q _{gd}	Gate to Drain "Miller" Charge		I _D = 16 A		3		


DRAIN-SOURCE DIODE CHARACTERISTICS

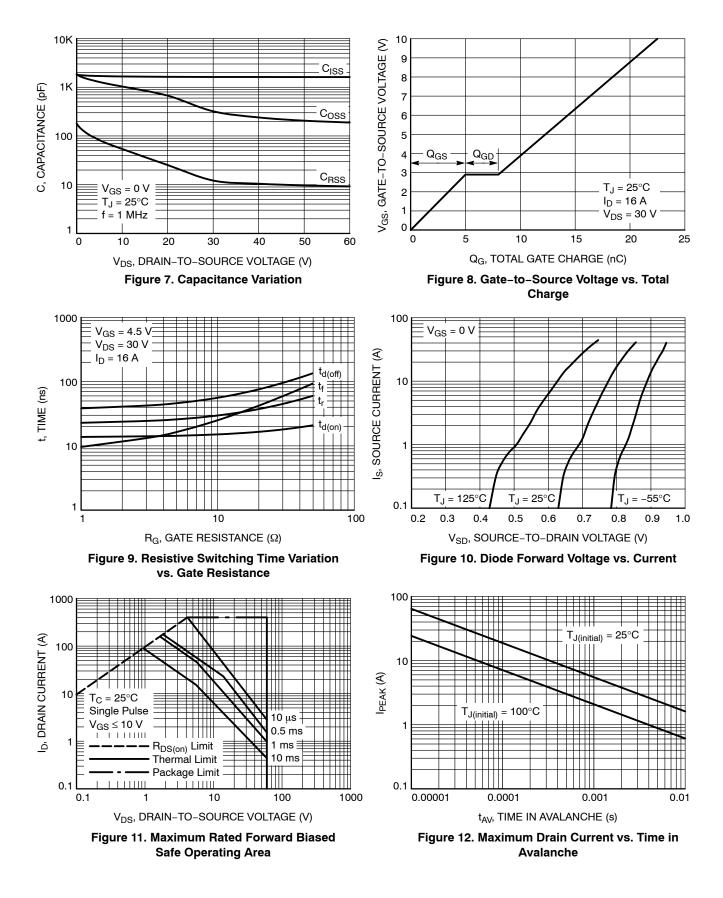
V _{SD}		V _{GS} = 0 V, I _S = 16 A (Note 2)	0.8	1.2	V
	Voltage	V _{GS} = 0 V, I _S = 16 A (Note 2)	0.66		
t _{rr}	Reverse Recovery Time	I _F = 16 A, di/dt = 100 A/μs	35.1		ns
Q _{rr}	Reverse Recovery Charge		37		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.


a) 53°C/W when mounted on a 1 in² pad of 2 oz copper.


b) 125°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 72 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 12 A, V_{DD} = 48 V, V_{GS} = 10 V. 100% test at L = 1 mH, I_{AS} = 12 A.
- 4. Pulsed I_D please refer to SOA graph for more details.
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

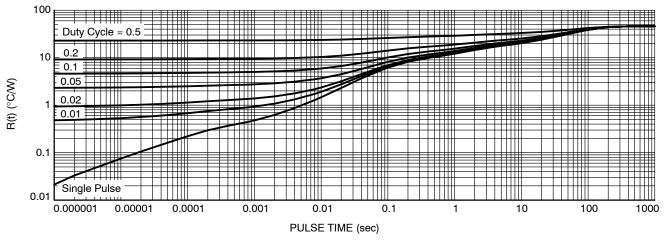
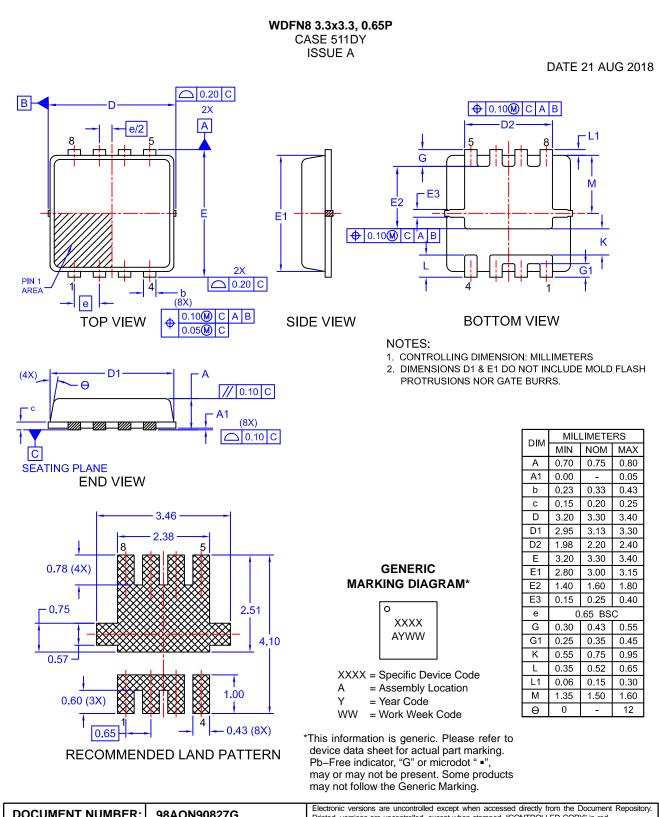



Figure 13. Transient Thermal Impedance

DOCUMENT NUMBER:	98AON90827G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WDFN8 3.3x3.3, 0.65P		PAGE 1 OF 1		

ON Semiconductor and unarts of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales