

CY7C1365CV33

9-Mbit (256K × 32) Flow-Through Sync SRAM

Features

- 256K × 32 common I/O
- 3.3 V core power supply (V_{DD})
- 2.5 V/3.3 V I/O power supply (V_{DDQ})
- Fast clock-to-output times □ 6.5 ns (133-MHz version)
- Provide high-performance 2-1-1-1 access rate
- User-selectable burst counter supporting Intel[®] Pentium[®] interleaved or linear burst sequences
- Separate processor and controller address strobes
- Synchronous self-timed write
- Asynchronous output enable
- Supports 3.3 V I/O level
- Available in JEDEC-standard lead-free 100-pin TQFP package
- TQFP Available with 3-Chip Enable
- "ZZ" Sleep Mode option

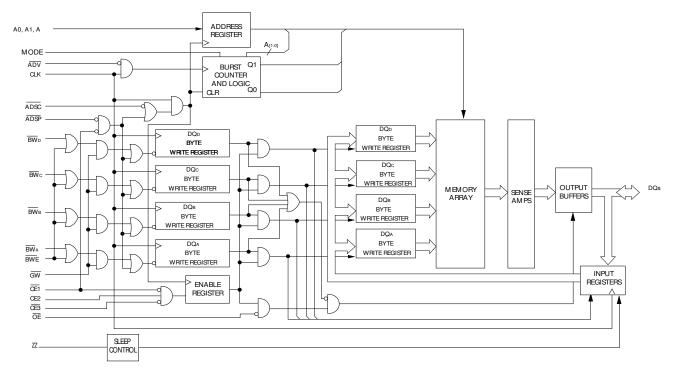
Functional Description

The CY7C1365CV33 is a 256K × 32 synchronous cache RAM designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 6.5 ns (133-MHz version). A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access. All synchronous inputs are gated by registers controlled by a positive-edge-triggered Clock Input (CLK). The synchronous inputs include all addresses, all data inputs, address-pipelining Chip Enable (\overline{CE}_1), depth-expansion Chip Enables (\overline{CE}_2 and \overline{CE}_3), Burst Control inputs (ADSC, ADSP, and ADV), Write Enables (\overline{BW} [A:D], and \overline{BWE}), and Global Write (\overline{GW}). Asynchronous inputs include the Output Enable (\overline{OE}) and the ZZ pin.

The CY7C1365CV33 allows either interleaved or linear burst sequences, selected by the MODE input pin. A HIGH selects an interleaved burst sequence, while a LOW selects a linear burst sequence. Burst <u>accesses</u> can be initiated with the Processor <u>Address</u> Strobe (ADSP) or the cache Controller Address Strobe (ADSC) inputs. Address <u>advancement</u> is controlled by the Address Advancement (ADV) input.

Addresses and Chip Enables are registered at rising edge of clock when either Address Strobe Processor (ADSP) or Address Strobe Controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the Advance pin (ADV).

The CY7C1365CV33 operates from a +3.3 V core power supply while all outputs may operate with either a +2.5 or +3.3 V supply. All inputs and outputs are JEDEC-standard JESD8-5-compatible.


For a complete list of related documentation, click here.

Selection Guide

Description	133 MHz	Unit
Maximum Access Time	6.5	ns
Maximum Operating Current	250	mA
Maximum Standby Current	40	mA

Logic Block Diagram – CY7C1365CV33

Contents

Pin Configurations	4
Pin Descriptions	
Functional Overview	
Single Read Accesses	6
Single Write Accesses Initiated by ADSP	6
Single Write Accesses Initiated by ADSC	6
Burst Sequences	7
Sleep Mode	7
Interleaved Burst Address Table	7
Linear Burst Address Table	7
ZZ Mode Electrical Characteristics	7
Truth Table	8
Truth Table for Read/Write	9
Maximum Ratings	10
Operating Range	10
Electrical Characteristics	
Capacitance	
Thermal Resistance	11

AC Test Loads and Waveforms	11
Switching Characteristics	
Timing Diagrams	
Ordering Information	
Ordering Code Definitions	
Package Diagram	
Acronyms	
Document Conventions	
Units of Measure	
Document History Page	
Sales, Solutions, and Legal Information	21
Worldwide Sales and Design Support	
Products	
PSoC®Solutions	
Cypress Developer Community	21
Technical Support	

Pin Configurations

Pin Descriptions

Name	100-pin TQFP	I/O	Description
A0, A1, A	37, 36, 32, 33, 34, 35, 44, 45, 46, 47, 48, 49, 50, 81, 82, 99, 100, 92 (for 2 Chip Enable Version), 43 (for 3 Chip Enable Version)	Input- Synchronous	Address Inputs used to <u>select</u> on <u>e of the 256K address locations</u> . Sample <u>d at</u> the rising edge of the CLK if ADSP or ADSC is active LOW, and CE_1 , CE_2 , and CE_3 are sampled active. $A_{[1:0]}$ feed the 2-bit counter.
BW _{A,} BW _{B,} BW _{C,} BW _D	93, 94, 95, 96	Input- Synchronous	Byte Write Select Inputs, active LOW. Qualified with BWE to conduct Byte Writes to the SRAM. Sampled on the rising edge of CLK.
GW	88	Input- Synchronous	Global Write Enable Input, active LOW . When asserted LOW on the rising edge of CLK, a global write is conducted (ALL bytes are written, regardless of the values on $\overline{BW}_{[A:D]}$ and \overline{BWE}).
BWE	87	Input- Synchronous	Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a Byte Write.
CLK	89	Input-Clock	Clock Input . Used to capture al <u>l synchronous</u> inputs to the device. Also used to increment the burst counter when ADV is asserted LOW, during a burst operation.
CE ₁	98	Input- Synchronous	Chip Enable 1 Input, active LOW . Sampled on the rising edge of CLK. Used in conjunction with CE_2 and \overline{CE}_3 to select/deselect the device. ADSP is ignored if \overline{CE}_1 is HIGH. \overline{CE}_1 is sampled only when a new external address is loaded.
CE ₂	97	Input- Synchronous	Chip Enable 2 <u>Input</u> , <u>active HIGH</u> . Sampled on the rising edge of CLK. Used in conjunction with CE_1 and CE_3 to select/deselect the device. CE_2 is sampled only when a new external address is loaded.
CE ₃	92 (for 3 Chip Enable Version)	Input- Synchronous	Chip Enable 3 <u>Input</u> , active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_1 and CE_2 to select/deselect the device. CE_3 is sampled only when a new external address is loaded.
OE	86	Input- Asynchronous	Output Enable, asynchronous input, active LOW . Controls the direction of the I/O pins. When LOW, the I/O pins behav <u>e as outputs</u> . When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during the first clock of a Read cycle when emerging from a deselected state.
ADV	83	Input- Synchronous	Advance Input signal, sampled on the rising edge of CLK. When asserted, it automatically increments the address in a burst cycle.
ADSP	84	Input- Synchronous	Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when \overline{CE}_1 is deasserted HIGH.
ADSC	85		Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. $A_{[1:0]}$ are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.
ZZ	64	Input- Asynchronous	ZZ "sleep" Input, active HIGH. When asserted HIGH places the device in a non-time-critical "sleep" condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an internal pull-down.

Pin Descriptions (continued)

Name	100-pin TQFP	I/O	Description
DQs	52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72, 73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29	Synchronous	Bidirectional Data I/O lines . As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented <u>dur</u> ing the <u>pre</u> vious clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs are placed in a tri-state condition.
V _{DD}	15, 41, 65, 91	Power Supply	Power supply inputs to the core of the device.
V _{SS}	17, 40, 67, 90	Ground	Ground for the core of the device.
V _{DDQ}	4, 11, 20, 27, 54, 61, 70, 77	I/O Power Supply	Power supply for the I/O circuitry.
V _{SSQ}	5, 10, 21, 26, 55, 60, 71, 76	I/O Ground	Ground for the I/O circuitry.
MODE	31	Input- Static	Selects Burst Order . When tied to GND selects linear burst sequence. When tied to V_{DD} or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. Mode Pin has an internal pull-up.
NC	1, 30, 51, 80, 14, 16, 38, 39, 42, 66, 43 (for 2 Chip Enable Version)		No Connects. Not Internally connected to the die.

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{CDV}) is 6.5 ns (133-MHz device).

The CY7C1365CV33 supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and i486 processors. The linear burst sequence is suited for processors that utilize a linear burst sequence. The burst order is user-selectable, and is determined by sampling the MODE input. Acce<u>sses</u> can be initiated with either the Process<u>or Address</u> Strobe (ADSP) or the Controller Address Strobe (ADSC). Address <u>advancement</u> through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address for the rest of the burst access.

Byte write operations are qualified with the Byte Write Enable (BWE) and Byte Write Select (BW[A:D]) inputs. A Global Write Enable (GW) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry.

Three synchronous Chip Selects (\overline{CE}_1 , CE_2 , \overline{CE}_3) and an asynchronous Output Enable (\overline{OE}) provide for easy bank selection and output tri-state control. ADSP is ignored if \overline{CE}_1 is HIGH.

Single Read Accesses

A single read access is initiated when the <u>following</u> conditions are satisfied at <u>clock</u> rise: (1) \overline{CE}_1 , CE_2 , and CE_3 are all asserted active, and (2) ADSP or ADSC is asserted LOW (if the access is initiated by $\overline{\text{ADSC}}$, the write inputs must be deasserted during this first cycle). The address presented to the address inputs is latched into the address register and the burst counter/control logic and presented to the memory core. If the $\overline{\text{OE}}$ input is asserted LOW, the requested data will be available at the data outputs a maximum to t_{CDV} after clock rise. ADSP is ignored if $\overline{\text{CE}}_1$ is HIGH.

Single Write Accesses Initiated by ADSP

This access is initiated when the following conditions are satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted active, and (2) ADSP is asserted LOW. The addresses presented are loaded into the address register and the burst inputs (GW, BWE, and BW[A:D]) are ignored during this first clock cycle. If the write inputs are asserted active (see Write Cycle Descriptions table for appropriate states that indicate a write) on the next clock rise, the appropriate data will be latched and written into the device.Byte writes are allowed. During byte writes, BWA controls DQA and BWB controls DQB, BWC controls DQC, and BWD controls DQD. All I/Os are tri-stated during a byte write. Since this is a common I/O device, the asynchronous OE input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated once a write cycle is detected, regardless of the state of OE.

Single Write Accesses Initiated by ADSC

This write access is initiated when the following conditions are satisfied at <u>clock</u> rise: (1) \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are all asserted active, (2) ADSC is asserted LOW, (3) <u>ADSP</u> is deasserted HIGH, and (4) the write input signals (GW, <u>BWE</u>, and BW[A:D]) indicate a write access. ADSC is ignored if ADSP is active LOW.

The addresses presented are loaded into the address register and the burst counter/control logic and delivered to the memory core. The information presented to DQ[D:A] will be written into the specified <u>address</u> location. Byte writes are allowed. During byte writes, BWA <u>controls</u> DQA, BWB controls DQB, BWC controls DQC, and BWD controls DQD. All I/Os are tri-stated when a write is detected, even a byte write. Since this is a common I/O device, the asynchronous OE input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-<u>stat</u>ed once a write cycle is detected, regardless of the state of OE.

Burst Sequences

The CY7C1365CV33 provides an on-chip two-bit wraparound burst counter inside the SRAM. The burst counter is fed by A[1:0], and can follow either a linear or interleaved burst order. The burst order is determined by the state of the MODE input. A LOW on MODE will select a linear burst sequence. A HIGH on MODE will select an interleaved burst order. Leaving MODE unconnected will cause the device to default to a interleaved burst sequence.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the "sleep" mode. CEs, ADSP, and ADSC must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW.

Interleaved Burst Address Table

(MODE = Floating or V_{DD})

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Address Table

(MODE = GND)

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
I _{DDZZ}	Sleep mode standby current	$ZZ \ge V_{DD} - 0.2 V$	_	50	mA
t _{ZZS}	Device operation to ZZ	$ZZ \ge V_{DD} - 0.2 V$	_	2t _{CYC}	ns
t _{ZZREC}	ZZ recovery time	ZZ <u><</u> 0.2 V	2t _{CYC}	-	ns
t _{ZZI}	ZZ Active to Sleep current	This parameter is sampled	_	2t _{CYC}	ns
t _{RZZI}	ZZ Inactive to exit Sleep current	This parameter is sampled	0	-	ns

Truth Table

The truth table for CY7C1365CV33 follows. [1, 2, 3, 4, 5]

Cycle Description	Address Used	CE ₁	$\overline{\text{CE}}_3$	CE_2	ZZ	ADSP	ADSC	ADV	WRITE	OE	CLK	DQ
Deselected Cycle, Power-down	None	Н	Х	Х	L	Х	L	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power-down	None	L	Х	L	L	L	Х	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power-down	None	L	Н	Х	L	L	Х	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power-down	None	L	Х	L	L	Н	L	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power-down	None	Х	Х	Н	L	Н	L	Х	Х	Х	L–H	Tri-State
Sleep Mode, Power-down	None	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Tri-State
Read Cycle, Begin Burst	External	L	L	Н	L	L	Х	Х	Х	L	L–H	Q
Read Cycle, Begin Burst	External	L	L	Н	L	L	Х	Х	Х	Н	L–H	Tri-State
Write Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	L	Х	L–H	D
Read Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	Н	L	L–H	Q
Read Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	Н	Н	L–H	Tri-State
Read Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	Н	L	L–H	Q
Read Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	Н	Н	L–H	Tri-State
Read Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	Н	L	L–H	Q
Read Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	Н	Н	L–H	Tri-State
Write Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	L	Х	L–H	D
Write Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	L	Х	L–H	D
Read Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	Н	L	L–H	Q
Read Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	Н	Н	L–H	Tri-State
Read Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	Н	L	L–H	Q
Read Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	Н	Н	L–H	Tri-State
Write Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	L	Х	L–H	D
Write Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	L	Х	L–H	D

Notes

Notes

 X = "Don't Care." H = Logic HIGH, L = Logic LOW.
 WRITE = L when any one or more Byte Write Enable signals (BW_A, BW_B, BW_C, BW_D) and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals (BW_A, BW_B, BW_C, BW_D), BWE, BW_C, BW_D), BWE, GW = H.

 The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.
 The <u>SRAM</u> always initiates a Read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW_A: DI. Writes may occur only on subsequent clocks after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care for the remainder of the Write cycle.
 OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a read cycle all data bits are Tri-State when OE is inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).

Truth Table for Read/Write

The Truth Table for Read/Write for CY7C1365CV33 follows. [6, 7]

Function	GW	BWE	BWD	BW _C	BWB	BWA
Read	Н	Н	Х	Х	Х	Х
Read	Н	L	Н	Н	Н	Н
Write Byte (A, DQP _A)	Н	L	Н	Н	Н	L
Write Byte (B, DQP _B)	Н	L	Н	Н	L	Н
Write Bytes (B, A, DQP _A , DQP _B)	Н	L	Н	Н	L	L
Write Byte (C, DQP _C)	Н	L	Н	L	Н	Н
Write Bytes (C, A, DQP _C , DQP _A)	Н	L	Н	L	Н	L
Write Bytes (C, B, DQP _C , DQP _B)	Н	L	Н	L	L	Н
Write Bytes (C, B, A, DQP _C , DQP _B , DQP _A)	Н	L	Н	L	L	L
Write Byte (D, DQP _D)	Н	L	L	Н	Н	Н
Write Bytes (D, A, DQP _D , DQP _A)	Н	L	L	Н	Н	L
Write Bytes (D, B, DQP _D , DQP _A)	Н	L	L	Н	L	Н
Write Bytes (D, B, A, DQP _D , DQP _B , DQP _A)	Н	L	L	Н	L	L
Write Bytes (D, B, DQP _D , DQP _B)	Н	L	L	L	Н	Н
Write Bytes (D, B, A, DQP _D , DQP _C , DQP _A)	Н	L	L	L	Н	L
Write Bytes (D, C, A, DQP _D , DQP _B , DQP _A)	Н	L	L	L	L	Н
Write All Bytes	Н	L	L	L	L	L
Write All Bytes	L	Х	Х	Х	Х	Х

Notes
<u>X = "Don't Care.</u>" H = Logic HIGH, L = Logic LOW.
<u>WRITE = L when any one or more Byte Write Enable signals (BW_A, BW_B, BW_C, BW_D) and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals (BW_A, BW_B, BW_C, BW_D), BWE, GW = H.
</u>

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. User guidelines are not tested.

Storage Temperature65 °C to +150 °C
Ambient Temperature with Power Applied
Supply Voltage on V_{DD} Relative to GND–0.5 V to +4.6 V
Supply Voltage on V_{DDQ} Relative to GND –0.5 V to +V_{DD}
DC Voltage Applied to Outputs in Tri-State0.5 V to V_{DDQ} + 0.5 V

DC Input Voltage	–0.5 V to V _{DD} + 0.5 V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001 V
Latch-up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{DD}	V _{DDQ}
Commercial	0 °C to +70 °C	3.3 V – 5% / + 10%	$2.5 V - 5\%$ to V_{DD}

Electrical Characteristics

Over the Operating Range

Parameter ^[8, 9]	Description	Teet Conditions		CY7C1	365CV33	Unit
Parameter (*)	Description	Test Conditions		Min	Max	Unit
V _{DD}	Power Supply Voltage			3.135	3.6	V
V _{DDQ}	I/O Supply Voltage	for 3.3 V I/O		3.135	3.6	V
		for 2.5 V I/O		2.375	2.625	V
V _{OH}	Output HIGH Voltage	for 3.3 V I/O, I _{OH} = -4.0 mA		2.4	-	V
		for 2.5 V I/O, I _{OH} = –1.0 mA		2.0	-	V
V _{OL}	Output LOW Voltage	for 3.3 V I/O, I _{OL} = 8.0 mA		_	0.4	V
		for 2.5 V I/O, I _{OL} = 1.0 mA		_	0.4	V
V _{IH}	Input HIGH Voltage	for 3.3 V I/O		2.0	V _{DD} + 0.3	V
		for 2.5 V I/O		1.7	V _{DD} + 0.3	V
V _{IL}	Input LOW Voltage ^[8]	for 3.3 V I/O		-0.3	0.8	V
		for 2.5 V I/O		-0.3	0.7	V
I _X	Input Leakage Current except ZZ and MODE	$GND \le V_I \le V_{DDQ}$		-5	5	μA
	Input Current of MODE	Input = V _{SS}		-30	-	μA
		Input = V _{DD}		_	5	μA
	Input Current of ZZ	Input = V _{SS}		-5	-	μA
		Input = V _{DD}		_	30	μA
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{DDQ}$, Output Disab	led	-5	5	μA
I _{DD}	V _{DD} Operating Supply Current	V_{DD} = Max, I_{OUT} = 0 mA, f = f_{MAX}= 1/t _{CYC}	7.5-ns cycle, 133 MHz	-	250	mA
I _{SB1}	Automatic CE Power-Down Current – TTL Inputs	$\begin{array}{l} \text{Max. } V_{DD}, \text{ Device Deselected}, \\ V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, f = f_{MAX}, \\ \text{inputs switching} \end{array}$	7.5-ns cycle, 133 MHz	100	110	mA
I _{SB2}	Automatic CE Power-Down Current – CMOS Inputs	$ \begin{array}{l} \text{Max. } V_{DD} \text{, Device Deselected,} \\ V_{IN} \geq V_{DD} - 0.3 \text{ V or } V_{IN} \leq 0.3 \text{ V,} \\ f = 0 \text{, inputs static} \end{array} $	7.5-ns cycle, 133 MHz	_	40	mA

Notes

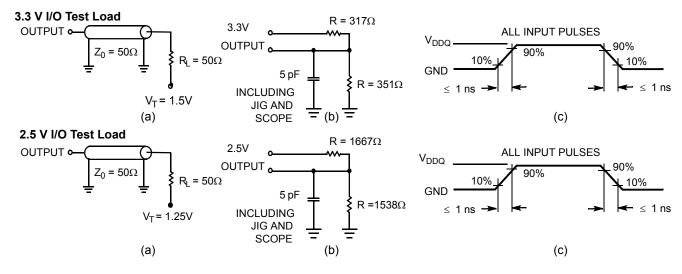
8. Overshoot: $V_{IH(AC)} < V_{DD} + 1.5 V$ (Pulse width less than $t_{CYC}/2$), undershoot: $V_{IL(AC)} > -2 V$ (Pulse width less than $t_{CYC}/2$). 9. $T_{Power-up}$: Assumes a linear ramp from 0 V to $V_{DD(min)}$ within 200 ms. During this time $V_{IH} < V_{DD}$ and $V_{DDQ} \le V_{DD}$.

Electrical Characteristics (continued)

Over the Operating Range

Parameter ^[8, 9]	Description	Test Conditions		CY7C1365CV33		Unit
Farameter	Description			Min	Max	Unit
I _{SB3}	Automatic CE Power-Down Current – CMOS Inputs	$\begin{array}{l} \text{Max. } V_{DD} \text{, Device Deselected,} \\ V_{IN} \geq V_{DDQ} - 0.3 \text{ V or } V_{IN} \leq 0.3 \text{ V,} \\ f = f_{MAX} \text{, inputs switching} \end{array}$	7.5-ns cycle, 133 MHz	_	100	mA
I _{SB4}	Automatic CE Power-Down Current – TTL Inputs		7.5-ns cycle, 133 MHz	-	40	mA

Capacitance


Parameter ^[10]	Description	Test Conditions	100-pin TQFP Max	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{DD} = 3.3 V, V _{DDQ} = 2.5 V	5	pF
C _{CLK}	Clock input capacitance		5	pF
C _{I/O}	Input/Output capacitance		5	pF

Thermal Resistance

Parameter ^[10]	Description	Test Conditions	100-pin TQFP Package	Unit
Θ_{JA}		Test conditions follow standard test methods and procedures for measuring thermal impedance, per		°C/W
Θ ^{JC}	Thermal resistance (junction to case)	EIA/JESD51	6.13	°C/W

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

Note

10. Tested initially and after any design or process change that may affect these parameters.

Switching Characteristics

Over the Operating Range

Parameter [11, 12]	Description		-133	
Parameter			Max	Unit
t _{POWER}	V _{DD} (typical) to the first access ^[13]	1	-	ms
Clock				
t _{CYC}	Clock cycle time	7.5	-	ns
t _{CH}	Clock HIGH	3.0	-	ns
t _{CL}	Clock LOW	3.0	-	ns
Output Times				
t _{CDV}	Data output valid after CLK rise	-	6.5	ns
t _{DOH}	Data output hold after CLK rise	2.0	-	ns
t _{CLZ}	Clock to low Z [14, 15, 16]	0	_	ns
t _{CHZ}	Clock to high Z ^[14, 15, 16]	-	3.5	ns
t _{OEV}	OE LOW to output valid	-	3.5	ns
t _{OELZ}	OE LOW to output low Z ^[14, 15, 16]	0	_	ns
t _{OEHZ}	OE HIGH to output high Z ^[14, 15, 16]	-	3.5	ns
Set-up Times			•	
t _{AS}	Address set-up before CLK rise	1.5	_	ns
t _{ADS}	ADSP, ADSC set-up before CLK rise	1.5	_	ns
t _{ADVS}	ADV set-up before CLK rise	1.5	_	ns
t _{WES}	GW, BWE, BW _[A:D] set-up before CLK rise	1.5	_	ns
t _{DS}	Data input set-up before CLK rise	1.5	_	ns
t _{CES}	Chip enable set-up	1.5	_	ns
Hold Times			•	
t _{AH}	Address hold after CLK rise	0.5	_	ns
t _{ADH}	ADSP, ADSC hold after CLK rise	0.5	_	ns
t _{WEH}	GW, BWE, BW _[A:D] hold after CLK rise	0.5	_	ns
t _{ADVH}	ADV hold after CLK rise	0.5	_	ns
t _{DH}	Data input hold after CLK rise	0.5	-	ns
t _{CEH}	Chip enable hold after CLK rise	0.5	-	ns

Notes

11. Timing reference level is 1.5 V when V_{DDQ} = 3.3 V and is 1.25 V when V_{DDQ} = 2.5 V.
12. Test conditions shown in (a) of Figure 2 on page 11 unless otherwise noted.
13. This part has a voltage regulator internally; t_{POWER} is the time that the power needs to be supplied above V_{DD(minimum)} initially before a Read or Write operation can be initiated. be initiated.

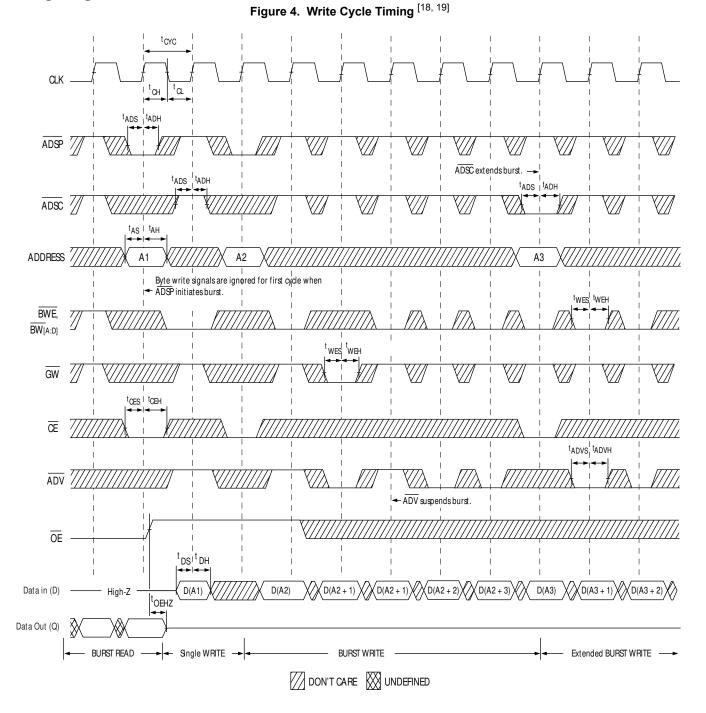
14. t_{CHZ}, t_{CLZ}, t_{OELZ}, and t_{OEHZ} are specified with AC test conditions shown in part (b) of Figure 2 on page 11. Transition is measured ±200 mV from steady-state voltage.
 15. At any given voltage and temperature, t_{OEHZ} is less than t_{OELZ} and t_{CHZ} is less than t_{CLZ} to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve High Z prior to Low Z under the same system conditions.

16. This parameter is sampled and not 100% tested.

Timing Diagrams

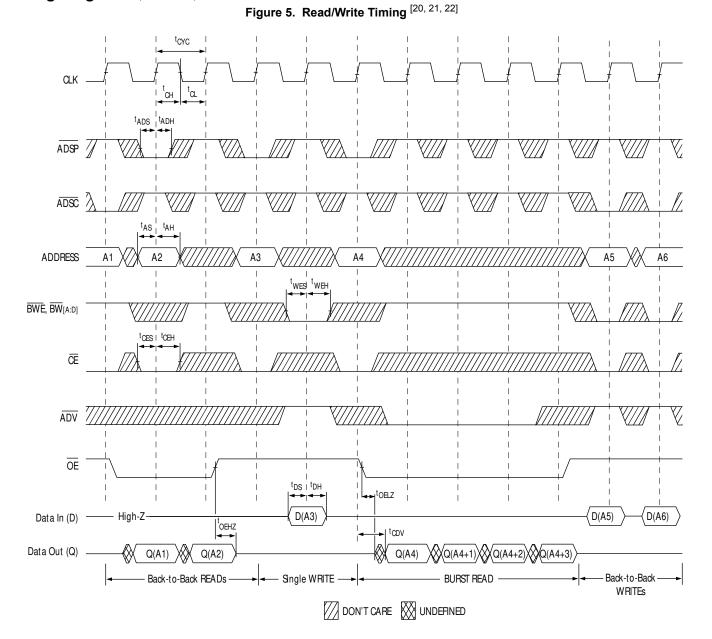
Figure 3. Read Cycle Timing ^[17] t_{CYC} CLK ^t CL СН tads |tadh ADSP \mathbb{V} $\mathbb{V}/$ V/ \mathbb{V} \bigvee tADS 1 TADH ADSC 7 V V VL tas [|] tah ADDRESS A1 A2 WES ^tWEH $\overline{\text{GW}}, \overline{\text{BWE}}, \overline{\text{BW}}_{[A:D]}$ V Deselect Cycle t CES ^tCEH CE ^t ADVSI ^t ADVH ADV ADV suspends burst. OE ^tCDV ^tOEV ^tOELZ ^tOEHZ ^tCHZ ^tDOH taz 🛞 Q(A2 + 3) Q(A2 + 1) Q(A2 + 2 Q(A2) Data Out (Q) · High-Z Q(A1) Q(A2) Q(A2 + 1) Q(A2 + 2)tCDV Eurst wraps around to its initial state Single READ BURST

READ


Note

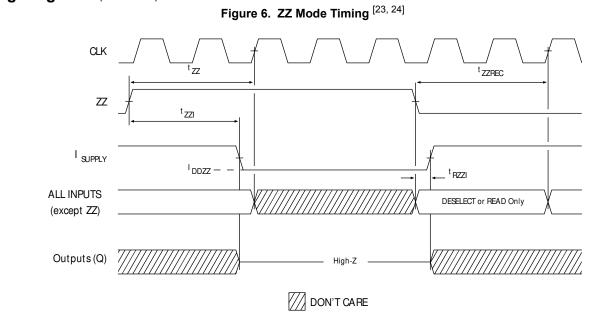
17. On this diagram, when \overline{CE} is LOW, \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH, \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH.

Timing Diagrams (continued)


Notes

Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW[A:D] LOW.
 The data bus (Q) remains in High Z following a Write cycle unless an ADSP, ADSC, or ADV cycle is performed.

Timing Diagrams (continued)



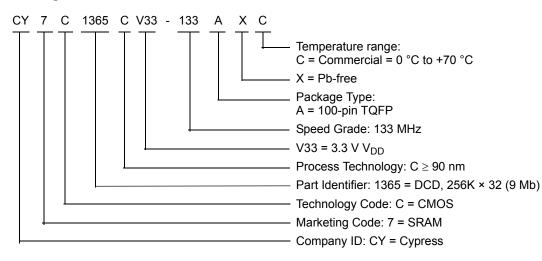
Notes

20. On this diagram, when \overline{CE} is LOW, \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH, \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH. 21. The data bus (Q) remains in High Z following a Write cycle unless an ADSP, ADSC, or ADV cycle is performed. 22. GW is HIGH.

Timing Diagrams (continued)

Notes

23. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device. 24. DQs are in High Z when exiting ZZ sleep mode.



Ordering Information

Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit www.cypress.com for actual products offered.

Speed (MHz)	Ordering Code	Package Diagram	Package Type	Operating Range
133	CY7C1365CV33-133AXC	51-85050	100-pin TQFP (14 × 20 × 1.4 mm) Pb-free (3 Chip Enable)	Commercial

Ordering Code Definitions

Package Diagram

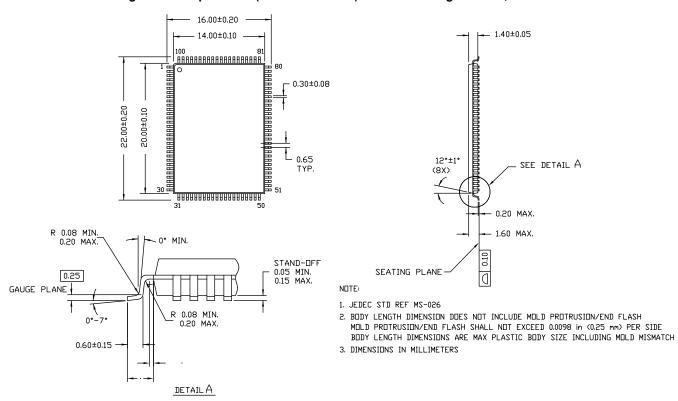


Figure 7. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050

51-85050 *E

Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
EIA	Electronic Industries Alliance
I/O	Input/Output
JEDEC	Joint Electron Devices Engineering Council
OE	Output Enable
SRAM	Static Random Access Memory
TQFP	Thin Quad Flat Pack
TTL	Transistor-Transistor Logic

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
mA	milliampere
mm	millimeter
ms	millisecond
mV	millivolt
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	3459992	01/09/2012	PRIT	New data sheet.
*A	3608159	05/04/2012	PRIT	Changed status from Preliminary to Final. Updated Operating Range (Removed Industrial Temperature Range).
*В	3794817	10/26/2012	PRIT	No technical updates. Completing Sunset Review.
*C	4573182	11/18/2014	PRIT	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end Updated Package Diagram: spec 51-85050 – Changed revision from *D to *E.
*D	5069042	12/31/2015	PRIT	Updated to new template. Completing Sunset Review.
*E	5309766	06/15/2016	PRIT	Updated Truth Table. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2012-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infinged by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-74473 Rev. *E

Revised June 15, 2016

Intel and Pentium are registered trademarks and i486 is a trademark of Intel Corporation.