

Features

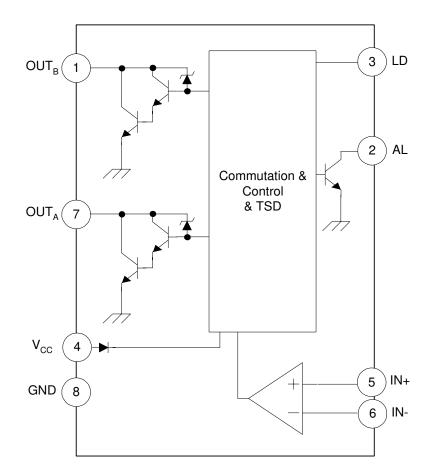
- A wide range of operation voltage: 4V to 15V
- Built-in motor lock detector.

AIRCHILD

- Automatic restart function
- Alarm output for a motor lock detection
- Built-in thermal shut down circuits
- Built-in reverse current protection diode
- Compact package: 8-SOP-225

Description

The FAN8404D is a monolithic integrated circuit, and suitable for DC cooling fan motors.


Typical Applications

• DC cooling fan motor

Ordering Information

Device	Package	Operating Temp.
FAN8404D	8-SOP-225	–25°C ∼ 85°C
FAN8404DTF	8-SOP-225	–25°C ∼ 85°C

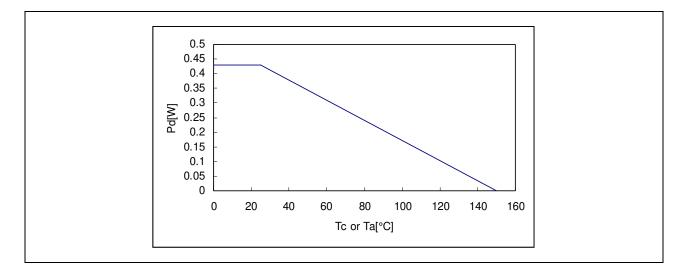
Block Diagram

Pin Definitions

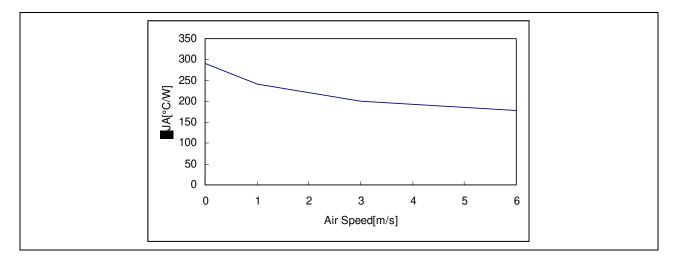
Pin Number	Pin Name	I/O	Pin Function Description	Remark
1	OUTB	0	Motor output B	-
2	AL	0	Alarm output	Open Collector
3	LD	-	Triangle pulse generator for lock detector and automatic restart	-
4	Vcc	-	Supply voltage	-
5	IN+	I	Hall input +	-
6	IN–	I	Hall input –	-
7	OUTA	0	Motor output A	-
8	GND	-	Ground	-

Equivalent Circuits

Description	Pin No.	Internal Circuit		
OUTB	1			
OUTA	7	1 7 Commutation		
AL	2	2 Lock detector		
LD	3	3 Lock detector & Automatic restart Commutation TVLDCP VLDCP		
IN+	5			
IN-	6	5 6 Commutation		


Absolute Maximum Ratings (Ta = 25°C)

Parameter	Symbol	Value	Unit	
Maximum power supply voltage	VCCMAX	18	V	
Manimum dia sia dia note1	Device	429 ^{note2}		
Maximum power dissipation ^{note1}	Pdmax —	620 ^{note3}	— mW	
The sum of the state of potel	0	291.61 ^{note2}	00101	
Thermal resistance ^{note1}	ΘJA —	201.52 ^{note3}	- °C/W	
Maximum output voltage	Vomax	30	V	
Maximum output current	IOMAX	1.2 ^{note4}	A	
Alarm output current	IAL	10	mA	
Alarm output withstanding voltage	VAL	36	V	
Maximum hall input AC level	VHACMAX	6	V	
Operating temperature	TOPR	<i>–</i> 25 ~ 85	٥C	
Storage temperature	TSTG	–55 ~ 150	°C	


Note1:

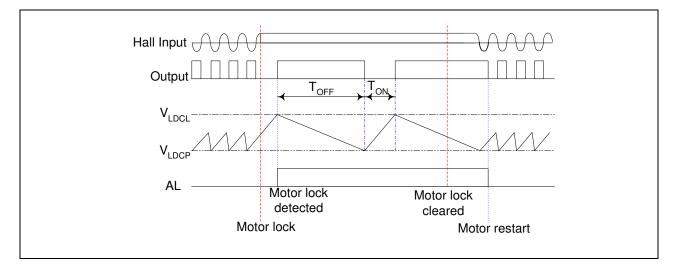
PCB Condition: Thickness (1.6mm), Dimension (76.2mm * 114.3mm) Refer: EIA/J SED 51-3 & EIA/J SED 51-7 **Note2:** Air condition (0m/s) **Note3:** Air condition (3m/s) **Note4:** Should not exceed P_D or ASO value

Power Dissipation Curve (Air condition = 0m/s)

Air Speed & $\Theta_{\mbox{\scriptsize JA}}$

Recommended Operating Conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Function compensation operating voltage	Vcc	4.0	-	15.0	V


Electrical Characteristics

(Ta=25°C, Vcc=12V unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply current	ICC	When output is off.	-	-	3.0	mA
Lock detector charging current	ILDC	VLD=1.8V	2.38	3.40	4.42	μA
Lock detector discharging current	ILDD	V _{LD} =1.8V	0.48	0.68	0.88	μA
Lock detector charging/discharging ratio	RCD	RCD=ILDC/ILDD	3.0	5.0	7.0	-
Lock detector capacitor clamp voltage	VLDCL	-	2.4	2.85	3.3	V
Lock detector capacitor comparator voltage	VLDCP	-	0.7	0.99	1.2	V
Output low level voltage	Vol	I _O =200mA	-	0.9	1.2	V
Output leakage current	IOL	-	-	0	10	μA
Output zener voltage	Voz	Clamp current=10mA	28	30	32	V
Alarm output pin low level voltage	VALL	IO=10mA	-	0.2	0.5	V
Alarm output pin leakage current	IALL	-	-	0	10	μA
Hall input DC range	VHDC	-	1	-	V _{CC} - 2V	V
Hall Input Offset	VHOF	VREF=6V	-10	-	10	mV

Application Information

1. Lock Detection & Automatic Restart

FAN8404D features a lock detection and an automatic restart. The functions can be operated as follows.

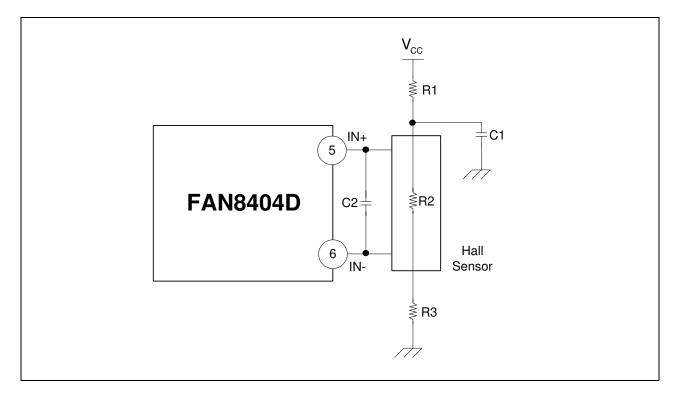
1) When the hall signal stop switching, a motor can be locked.

2) The voltage, VLD on pin 3, is increasing until it reaches VLDCL.

3) When the voltage, VLD reaches VLDCL, the alarm output (AL) becomes high as a motor lock has been detected.

4) If LD pin is connected to GND, the lockup protection is disabled.

5) While a motor is locked, the output repeats switching ON / OFF, but the other output is always OFF. The switching time can be determined by an external capacitor on charging / discharging time of the capacitor, switching ON / OFF time can be calculated as follows.

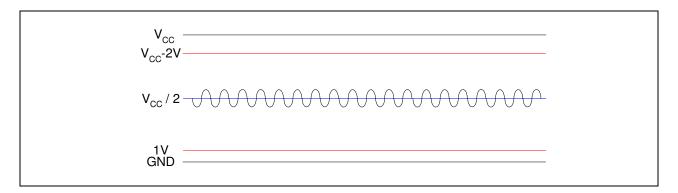

$$T_{ON} = \frac{C_{LD} \times (V_{LDCL} - V_{LDCP})}{I_{LDC}}$$
$$T_{OFF} = \frac{C_{LD} \times (V_{LDCL} - V_{LDCP})}{I_{LDD}}$$

Where, The C_{LD} is an external capacitor connected to pin 3, LD. The V_{LDCL} is the clamp voltage on pin 3, LD. The V_{LDCP} is the comparator voltage on pin 3, LD. The I_{LDC} is the charging current on pin 3, LD. The I_{LDD} is the dischaging current on pin 3, LD.

2. Thermal Shut Down

TSD On: All the outputs are off.(Typ. 175°C) TSD Off: The circuit can be reactivated and begin to operate in a normal condition. (Typ. 150°C)

3. Hall Amplifier Input Block

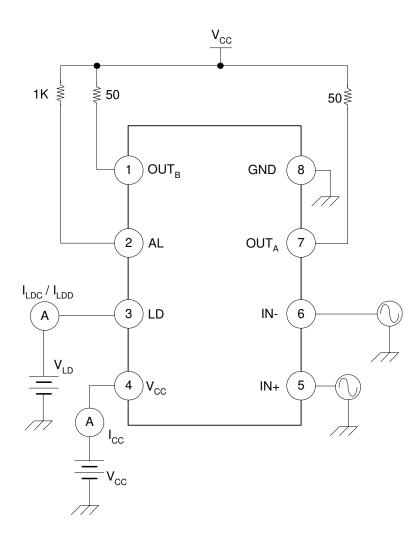

The hall current (I_H) is determined by R1, R2 and R3.

$$I_{H} = \frac{V_{CC}}{R1 + R2 + R3}$$

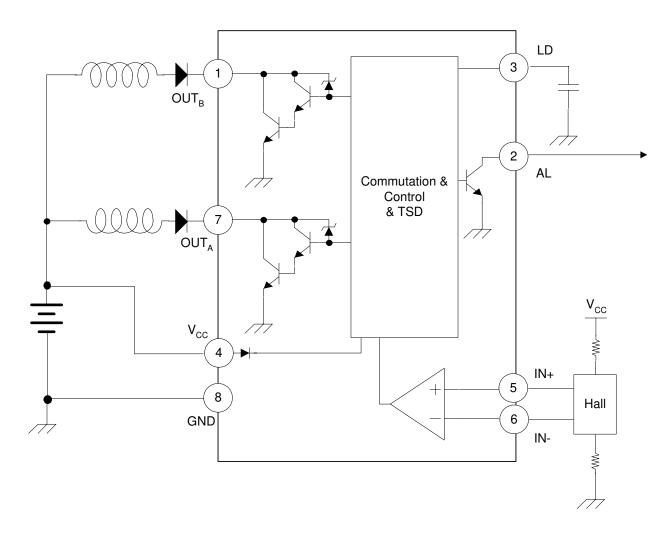
Where, the R2 is the impedance of hall sensor.

An external capacitor, C1, can be used to reduce a power supply noise. In addition, C2 is to remove a noise which is caused in case the line is long from the hall sensor output to the hall input (pin 5/6) of the device.

The input bias voltage of hall amplifier is between 1V and V_{CC}-2V as following figure.

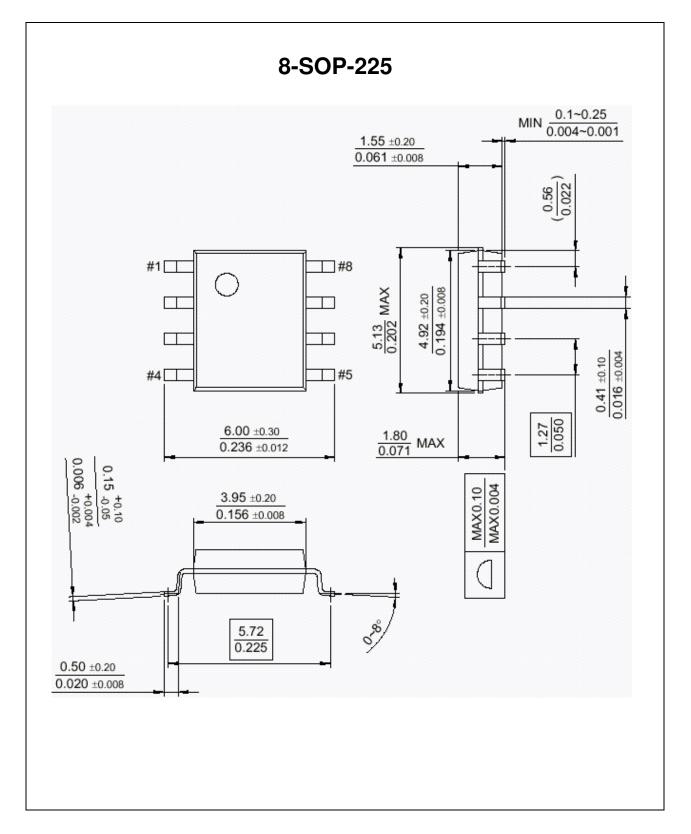


It is recommended that R1 and R3 should have the same value to make the output signal of hall sensor centered as VCC/2.


Operation Truth Table

IN+	IN-	OUTA	OUTB
High	Low	High	Low
Low	High	Low	High

Test Circuits


Typical Application Circuits

Precaution

In case of improper connection (change between power and ground), diodes are required to protect motor.

Package Dimensions (Unit: mm)

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com