

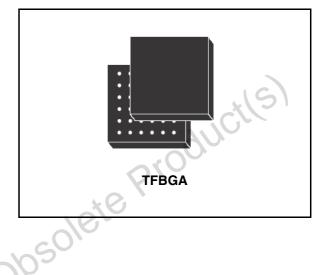
STMPE2403

24-bit Enhanced port expander with Keypad and PWM controller Xpander logic

Features

- 24 GPIOs
- Operating voltage 1.8V
- Hardware key pad controller (8*12 matrix max)
- 8 Special Function Key support
- 3 PWM (8 bit) output for LED brightness control and blinking
- Interrupt output (open drain) pin
- Configurable hotkey feature on each GPIO
- Ultra-low Standby-mode current
- Package TFBGA 36 pins 3.6x3.6mm, pitch 0.5mm

Description


The STMPE2403 is a GPIO (General Purpose Input / Output) port expander able to interface a Main Digital ASIC via the two-line bidirectional bus (I^2C); separate GPIO Expander IC is often used in Mobile-Multimedia platforms to solve the problems of the limited amounts of GPIOs usually available on the Digital Engine.

The STMPE2403 offers great flexibility as each I/Os is configurable as input, output or specific functions; it's able to scan a keyboard, also provides PWM outputs for brightness control in backlight, rotator decoder interface and GPIO. This device has been designed very low quiescent current, and is including a wake up feature for each I/O, to optimize the power consumption of the IC.

Potential application of the STMPE2403 includes portable media player, game console, mobile phone, smart phone

Table 1. Device summary

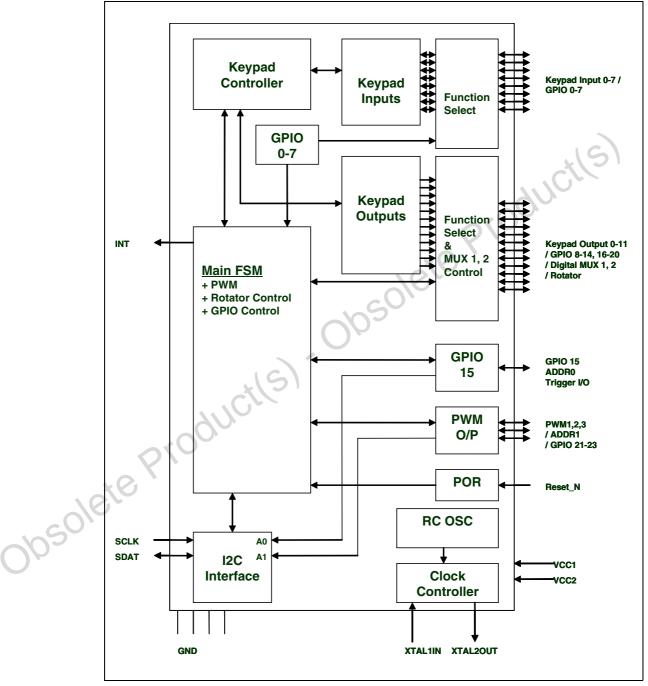
Part Number	Package	Packaging
STMPE2403TBR	TFBGA36	Tape and reel

June 2007

Contents

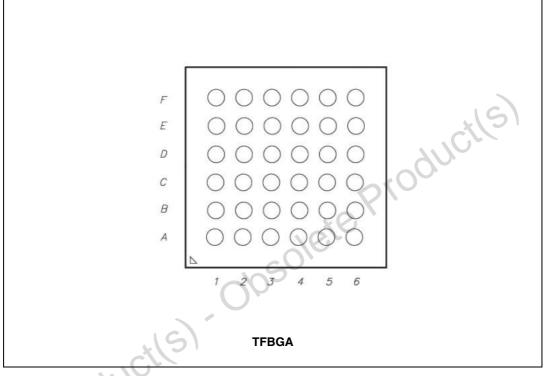
1	Bloc	k diagram
2	Pin s	ettings6
	2.1	Pin connection
	2.2	Pin assignment and TFBGA ball location6
	2.3	GPIO Pin functions
	2.4	Pin mapping to TFBGA (bottom view, balls up)
3	Maxi	mum rating
	3.1	Absolute maximum rating
	3.2	Thermal data
4	Elect	rical specification
	4.1	DC electrical characteristics
	4.2	I/O DC electrical characteristics
	4.3	DC input specification
	4.4	DC output specification
	4.5	AC characteristics
5	Regi	ster map
6	I2C Ir	nterface
	6.1	Start condition
105	6.2	Stop condition
	6.3	Acknowledge bit (ACK) 14
	6.4	Data input
	6.5	Slave device address 15
	6.6	Memory addressing 15
	6.7	Operation modes
	6.8	General call address 17

7	Syste	em controller	. 18
	7.1	Identification register	. 18
	7.2	System control register	. 19
	7.3	System control register 2	. 20
	7.4	States of operation	. 21
	7.5	Autosleep	. 22
	7.6	Keypress detect in the hibernate mode	. 22
8	Cloc	king system	
	8.1	Clock source	23
	8.2	Power mode programming sequence	. 24
9	Inter	rupt system	
	9.1	Register map of interrupt system	. 26
	9.2	Interrupt Control Register (ICR)	. 27
	9.3	Interrupt Enable Mask Register (IER)	. 28
	9.4	Interrupt Status Register (ISR)	. 29
	9.5	Interrupt Enable GPIO Mask Register (IEGPIOR)	. 29
	9.6	Interrupt Status GPIO Register (ISGPIOR)	. 30
	9.7	Programming sequence	. 31
10	GPIO	controller	. 32
	10.1	GPIO control registers	. 33
	10.2	GPIO Alternate Function Register (GPAFR)	. 35
c01	10.3	Hot key feature	. 37
10-		10.3.1 Programming sequence for Hot Key	. 37
		10.3.2 Minimum pulse width	. 37
	10.4	MUX Control Register (MCR)	
	10.5	STMPE2401 Pin Compatibility Register (COMPAT2401)	. 39


Contents

11	PWM	I controller	40
	11.1	Registers in the PWM controller	41
	11.2	PWM Control and Status Register (PWMCS)	42
	11.3	PWM Instruction Channel x (PWMICx)	43
	11.4	PWM commands	43
12	Кеур	ad controller	46
	12.1	Keypad configurations	47
	12.2	Registers in keypad controller	. 48
	12.3	KPC_col register	49
	12.4	KPC_row_msb register	49
	12.5	KPC_row_msb register KPC_row_lsb register	50
	12.6	KPC_ctrl_msb register	50
	12.7	KPC_ctrl_lsb register	51
	12.8	Data registers	51
		12.8.1 Resistance	54
		12.8.2 Using the keypad controller	54
		12.8.3 Ghost Key Handling	54
		12.8.4 Priority of Key detection	
		12.8.5 Keypad Wake-Up from sleep and hibernate modes	55
13	Pote	tor controller	56
10	nota		
14	Misc	ellaneous features	58
	14.1	Reset	58
vs0	14.2	Under Voltage Lockout	58
)	14.3		58
	14.4	Crystal oscillator	58
15	Pack	age mechanical data	59
16	Revis	sion history	62

1 Block diagram



2 Pin settings

2.1 Pin connection

Figure 2. Pin connection

2.2 Pin assignment and TFBGA ball location

Ball Name Туре Description СЗ GND1 -KP_X0 A6 10 GPIO C1 Reset_N External reset input, active LOW I A5 KP_X1 10 GPIO F1 KP_X2 GPIO 10 F2 KP_X3 10 GPIO KP_X4 GPIO A2 10 В3 KP_X5 10 GPIO A3 KP_X6 10 GPIO D3 GND2 -VCC1 A4 1.8V Input -

Table 2. Pin assignment

Ball	Name	Туре	Description
B4	KP_X7	Ю	GPIO
A1	KP_Y5	Ю	GPIO
B2	KP_Y4	Ю	GPIO
B5	KP_Y3	Ю	GPIO
B6	KP_Y2	Ю	GPIO
C5	KP_Y1	Ю	GPIO
C6	KP_Y0	Ю	GPIO
C4	GND3	-	
D6	ADDR0	Ю	GPIO and I2C ADDR 0 (in reset)
D5	KP_Y9	A/IO	GPIO/MUX
E6	KP_Y10	A/IO	GPIO/MUX
F6	KP_Y11	A/IO	GPIO/MUX
E5	PWM3	A/IO	GPIO and I2C ADDR 1 (in reset) /MUX
F5	PWM2	A/IO	GPIO/MUX
E4	PWM1	A/IO	GPIO/MUX
F4	VCC2	-	1.8V Input
D4	GND4	-	
F3	INT	0	Open drain interrupt output pin
E3	KP_Y8	0	GPIO
C2	KP_Y7	10	GPIO
B1	KP_Y6	Ю	GPIO
E2	SDATA	А	I2C DATA
Ē	SCLK	А	I2C Clock
D2	XTALIN	A	XTAL Oscillator or External 32KHz input. be left floating.
D1	XTALOUT	А	XTAL Oscillator

Table 2. Pin assignment (continued)

2.3 GPIO Pin functions

Table 3. GPIO Pin functions

Name	Primary Function	Alternate Function 1	Alternate Function 2	Alternate Function
KP_X0	GPIO 0	Keypad input 0		
KP_X1	GPIO 1	Keypad input 1		
KP_X2	GPIO 2	Keypad input 2		
KP_X3	GPIO 3	Keypad input 3		
KP_X4	GPIO 4	Keypad input 4		
KP_X5	GPIO 5	Keypad input 5		
KP_X6	GPIO 6	Keypad input 6		4(5)
KP_X7	GPIO 7	Keypad input 7		
KP_Y5	GPIO 13	Keypad Output 5		0.
KP_Y4	GPIO 12	Keypad Output 4	00	
KP_Y3	GPIO 11	Keypad Output 3	. 0.	
KP_Y2	GPIO 10	Keypad Output 2	101	
KP_Y1	GPIO 9	Keypad Output 1		
KP_Y0	GPIO 8	Keypad Output 0		
ADDR0	GPIO 15	0		
KP_Y9	GPIO 18	Keypad Output 9	Rotator 0	Mux1_In_1
KP_Y10	GPIO 19	Keypad Output 10	Rotator 1	Mux1_In_2
KP_Y11	GPIO 20	Keypad Output 11	Rotator 2	Mux1_Out
PWM3	GPIO 23			Mux2_Out
PWM2	GPIO 22			Mux2_In_2
PWM1	GPIO 21			Mux2_In_1
KP_Y8	GPIO 17	Keypad Output 8		ClkOut
KP_Y7	GPIO 16	Keypad Output 7		
KP_Y6	GPIO 14	Keypad Output 6		

2.4 Pin mapping to TFBGA (bottom view, balls up)

	-					
	Α	В	С	D	E	F
1	KP_Y5	KP_Y6	RESET	XTALOUT	SCLK	KP_X2
2	KP_X4	KP_Y4	KP_Y7	XTALIN	SDATA	KP_X3
3	KP_X6	KP_X5	GND1	GND2	KP_Y8	INT
4	VCC1	KP_X7	GND3	GND4	PWM-1	VCC2
5	KP_X1	KP_Y3	KP_Y1	KP_Y9	PWM-3	PWM-2
6	KP_X0	KP_Y2	KP_Y0	ADDR0	KP_Y10	KP_Y11

Table 4. Pin mapping to TFBGA (bottom view, balls up)

3 **Maximum rating**

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Absolute maximum rating 3.1

Table 5. Absolute maximum rating

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5	V
V _{IN}	Input voltage on GPIO pin	2.5	V
V _{IN} I2C	Input voltage on I2C pin	4.5	V
VESD (HBM)	ESD protection on each GPIO pin	2	KV
Thermal da	ita Obsor		
Table 6. Therma	al data		

3.2 **Thermal data**

Table 6. Thermal data

	Symbol	Parameter	Min	Тур	Max	Unit
	R _{thJA}	Thermal resistance junction-ambient		100		°C/W
	TA	Operating ambient temperature	-40	25	85	°C
	Тյ	Operating junction temperature	-40	25	125	°C
10	<u>i</u>					
cOle						
0,02						

4 Electrical specification

4.1 DC electrical characteristics

Table 7.	DC electrical	characteristics
----------	----------------------	-----------------

Symbol	Parameter	Test conditions		Unit		
Symbol	Farameter	Test conditions	Min.	Тур.	Max.	Unit
VCC1,2	Supply voltage		1.65	1.8	1.95	V
I _{HIBERNATE1}	HIBERNATE mode current	XTALIN not floating		15	20	uA
I _{HIBERNATE2}	HIBERNATE mode current	XTALIN floating		35	40	uA
I _{SLEEP1}	SLEEP mode current	XTALIN not floating		55	100	uA
I _{SLEEP2}	SLEEP mode current	XTALIN floating	0	75	120	uA
lcc	Operating current (FSM working – No peripheral activity)	10	le r	1.2	1.6	mA
INT	Open drain output current	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		4		mA

4.2 I/O DC electrical characteristics

The 1.8V I/O complies to the EIA/JEDEC standard JESD8-7.

Table 8. I/O DC electrical characteristic

	Symbol	Parameter		Unit		
	Symbol		Min.	Тур.	Max.	
0/6	Vil	Low level input voltage			0.35*Vcc = 0.63	V
0050	Vih	High level input voltage	0.65*Vcc = 1.17			V
	Vhyst	Schmitt trigger hysteresis		0.10		V

DC input specification 4.3

 $(1.55V < V_{DD} < 1.95V)$

Table 9. DC input specification

Symbol Parameter		Test conditions		Unit			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.		
Vol	Low level output voltage	lol = 4mA			0.45	V	
Voh	High level output voltage	loh = 4mA	Vcc - 0.45 = 1.35			v	
Vol_PWM	Low level output voltage	lol = 16mA			0.45	V	
Voh_PWM	High level output voltage	loh = 16mA	= 16mA Vcc - 0.45 = 1.35		at le	v	
DC outp (1.55V < vd	but specification d < 1.95V)		e P'	odi	70,		
Table 10. D	C output specification	10					
Symbol	Parameter	Test		Value		Unit	
Symbol	Falanielei	conditions		_		Jint	

DC output specification 4.4

Table 10. DC output specification

Symbol	Parameter	Test		Unit		
Symbol	Falameter	conditions	Min.	Тур.	Max.	Unit
lpu	Pull-up current	Vi = 0V	15	35	65	uA
lpd	Pull-down current	Vi = vdd	14	35	60	uA
Rup	Equivalent pull-up resistance	Vi = 0V	30	50	103.3	KΩ
Rpd	Equivalent pull-down resistance	Vi = vdd	32.5	50	110.7	KΩ
Ron_1	Ron when the MUX is ON	Vsignal = 0V		5	10	Ω
Ron_2	Ron when the MUX is ON	Vsignal = 0.9V		5	20	Ω
Ron_3	Ron when the MUX is ON	Vsignal = 1.8V		10	10	Ω
Ron	Ron when the MUX is ON	Vsignal < 1.8V		20	35	Ω

Note:

Pull-up and Pull-down characteristics

4.5

AC characteristics

Table 11. AC characteristics

Symbol	Parameter	Value		Unit		
Symbol	Falametei	Min. Typ. Max.	Onit			
Int_32KHz	Internally generated 32KHz clock	22	28	41.6	KHz	

5 Register map

All registers have the size of 8-bit. For each of the module, their registers are residing within the given address range.

	Address	Module registers	Description	Auto-Increment (during read/write)
	0x00 – 0x07 0x80 – 0x81	Clock and power Manager module	Clock and Power Manager register range.	Yes
	0x10 – 0x1F	Interrupt controller module	Interrupt Controller register range	Yes
	0x30 – 0x37	PWM controller module	PWM Controller register range	Yes
	0x38 – 0x3F		PWM Controller register range	No
	0x60 – 0x6F	Keypad controller module	Keypad Controller register range	Yes
	0x70 – 0x77	Rotator controller module	Rotator Controller register range	Yes
	0x82 – 0xBF	GPIO Controller Module	GPIO Controller register range	Yes
obsole	tepro	duct(s)		

Table 12. Register map

6 I²C Interface

The features that are supported by the I²C interface are as below:

- I²C Slave device
- Operates at 1.8V
- Compliant to Philip I²C specification version 2.1
- Supports Standard (up to 100kbps) and Fast (up to 400kbps) modes.
- 7-bit and 10-bit device addressing modes
- General Call
- Start/Restart/Stop
- Address up to 4 STMPE2403 devices via I²C

The address is selected by the state of two pins. The state of the pins will be read upon reset and then the pins can be configured for normal operation. The pins will have a pull-up or down to set the address. The I^2C interface module allows the connected host system to access the registers in the STMPE2403.

6.1 Start condition

A Start condition is identified by a falling edge of SDATA while SCLK is stable at high state. A Start condition must precede any data/command transfer. The device continuously monitors for a Start condition and will not respond to any transaction unless one is encountered.

6.2 Stop condition

A Stop condition is identified by a rising edge of SDATA while SCLK is stable at high state. A Stop condition terminates communication between the slave device and bus master. A read command that is followed by NoAck can be followed by a Stop condition to force the slave device into idle mode. When the slave device is in idle mode, it is ready to receive the next I²C transaction. A Stop condition at the end of a write command stops the write operation to registers.

6.3 Acknowledge bit (ACK)

The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter releases the SDATA after sending eight bits of data. During the ninth bit, the receiver pulls the SDATA low to acknowledge the receipt of the eight bits of data. The receiver may leave the SDATA in high state if it would to *not* acknowledge the receipt of the data.

6.4 Data input

The device samples the data input on SDATA on the rising edge of the SCLK. The SDATA signal must be stable during the rising edge of SCLK and the SDATA signal must change only when SCLK is driven low.

6.5 Slave device address

The slave device address is a 7 or 10-bit address, where the least significant 2-bit are programmable. These 2-bit values will be loaded in once upon reset and after that these 2 pins no longer be needed with the exception during General Call. Up to 4 STMPE2403 devices can be connected on a single I^2C bus.

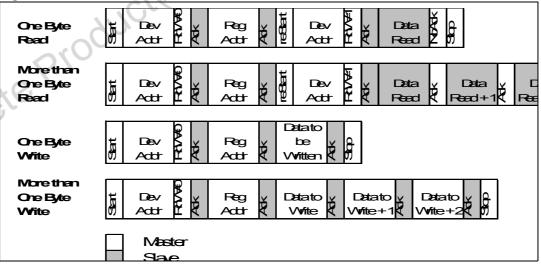
Table 13. Slave device address

ADDR 1	ADDR 0	Address
0	0	0x84
0	1	0x86
1	0	0x88
1	1	0x8A
Memory addres	sina	dulos

6.6 Memory addressing

For the bus master to communicate to the slave device, the bus master must initiate a Start condition and followed by the slave device address. Accompanying the slave device address, there is a Read/Write bit (R/W). The bit is set to 1 for Read and 0 for Write operation.

If a match occurs on the slave device address, the corresponding device gives an acknowledgement on the SDA during the 9th bit time. If there is no match, it deselects itself from the bus by not responding to the transaction.


5

6.7 Operation modes

Table	14.	Operation	modes
-------	-----	-----------	-------

Mode	Bytes	Programming Sequence
Read	≥1	START, Device Address, $R/\overline{W} = 0$, Register Address to be read
		reSTART, Device Address, $R/\overline{W} = 1$, Data Read, STOP
		If no STOP is issued, the Data Read can be continuously preformed. If the register address falls within the range that allows address auto- increment, then register address auto-increments internally after every byte of data being read. For register address that falls within a non- incremental address range, the address will be kept static throughout the entire read operations. Refer to the Memory Map table for the address ranges that are auto and non-increment. An example of such a non-increment address is FIFO.
Write	≥1	START, Device Address, $R/\overline{W} = 0$, Register Address to be written, Data Write, STOP
		If no STOP is issued, the Data Write can be continuously performed. If the register address falls within the range that allows address auto- increment, then register address auto-increments internally after every byte of data being written in. For register address that falls within a non-incremental address range, the address will be kept static throughout the entire write operations. Refer to the Memory Map table for the address ranges that are auto and non-increment. An example of a non-increment address is Data Port for initializing the PWM commands.

Figure 3. Master/slave operation modes

Jbsol'

6.8 General call address

A general call address is a transaction with the slave address of 0x00 and R/W = 0. When a general call address is made, STMPE2403 responds to this transaction with an acknowledgement and behaves as a slave-receiver mode. The meaning of a general call address is defined in the second byte sent by the master-transmitter.

Table 15.

	Second byte value	Definition
0	0x06	2-byte transaction in which the second byte tells the slave device to reset and write (or latch in) the 2-bit programmable part of the slave address.
0	0x04	2-byte transaction in which the second byte tells the slave device not to reset and write (or latch in) the 2-bit programmable part of the slave address.
0	0x00	Not allowed as second byte.
	product	obsolete

57

System controller 7

The system controller is the heart of the STMPE2403. It contains the registers for power control, and the registers for chip identification.

The system registers are:

Table 16. System controller

Address	Register_Name
0x00	Reserved (Reads 0x00)
0x01	Reserved (Reads 0x00)
0x02	SYSCON 5
0x03	SYSCON2
0x80	CHIP_ID
0x81	VERSION_ID
0x82	Reserved (Reads 0x00)
Identification registe	robsolete
Table 17. CHIP_ID	

7.1 **Identification register**

Table 17. CHIP_ID

Bit	7	6	5	4	3	2	1	0		
8-bit LSB of Chip ID										
Read/Write(IIC)	R	R	R	R	R	R	R	R		
Reset Value	0	0	0	0	0	0	0	1		

Table 18. VERSION_ID

10	Bit	7	6	5	4	3	2	1	0
8-bit Version ID									
)	Read/Write(IIC)	R	R	R	R	R	R	R	R
	Reset Value	0	0	0	0	0	0	1	0

7.2 System control register

Bit	7	6	5	4	3	2	1	0
	Soft_Reset	Clock_Source	Disable_32KHz	Sleep	Enable_GPIO	Enable_PWM	Enable_KPC	Enable_ROT
Read/ Write (IIC)	W	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0	0	0	1	1	1	1

Table 19. System control register

Table 20. System control register writing

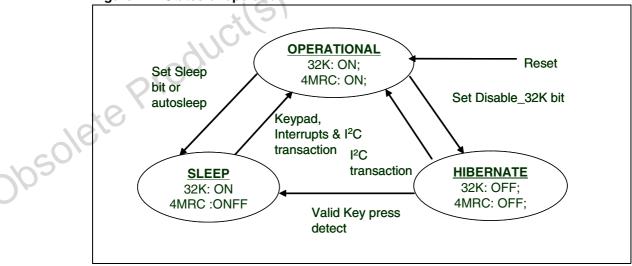
Bits	Name	Description
0	Enable_ROT	Writing a '0' to this bit will gate off the clock to the Rotator module, thus stopping its operation
1	Enable_KPC	Writing a '0' to this bit will gate off the clock to the Keypad Controller module thus stopping its operation
2	Enable_PWM	Writing a '0' to this bit will gate off the clock to the PWM module, thus stopping its operation
3	Enable_GPIO	Writing a '0' to this bit will gate off the clock to the GPIO module, thus stopping its operation
4	Sleep	Writing a '1' to this bit will put the device in sleep mode. When in sleep mode, all the units will work on 32KHz (typical) clock frequency.
5	Disable_32KHz	Set this bit to disable the 32KHz OSC, thus putting the device in hibernate mode. Only a Reset or a wakeup on IIC will reset this bit
6	Clock_Source	Set to '1' if external 32KHz clock were to be used. '0' by default.
7	Soft_Reset	Writing a '1' to this bit will do a soft reset of the device. Once the reset is done, this bit will be cleared to '0' by the HW.
psol	steri	

System control register 2 7.3

Table 21	. System	control	register 2
----------	----------	---------	------------

Bit	7	6	5	4	3	2	1	0
	Reserved	Reserved	Reserved	Reserved	AutoSleepEN	Sleep_2	Sleep_1	Sleep_0
Read/ Write (IIC)	R	R	R	R	RW	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0

Table 22. System control register 2


Bits	Name	Description
0	Sleep_0	"000" for 4mS delay
1	Sleep_1	"001" for 16mS delay "010" for 32mS delay
2	Sleep_2	"011" for 64mS delay "100" for 128mS delay "101" for 256mS delay "110" for 512mS delay "111" for 1024mS delay
3	AutoSleepEN	"1" to enable auto-sleep feature. "0" to disable auto-sleep.
4	Reserved	
5	Reserved	
6	Reserved	*(5)
7	Reserved	C ¹
	eteproor	, ,

7.4 States of operation

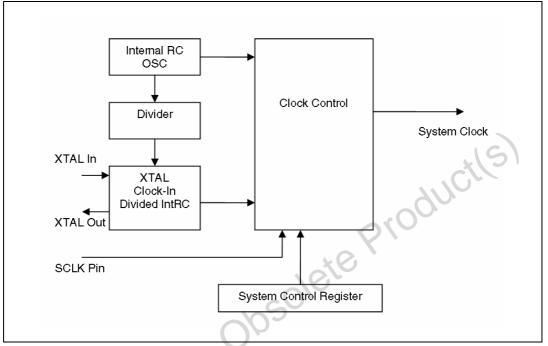
The device has three main modes of operation:

- **Operational Mode**: This is the mode, whereby normal operation of the device takes place. In this mode, the RC clock is available and the Main FSM Unit routes this clock and the 32 KHz clock to all the device blocks that are enabled. In this mode, individual blocks that need not be working can be turned off by the master by programming the bits 3 to 0 of the SYSCON register.
- Sleep Mode: In this low-power mode, individual blocks can be turned off by the master by programming the bits 3 to 0 of the SYSCON register. However, the master needs to program the SYSCON register before coming into this mode, as in the sleep mode, the IIC interface is not active except to detect traffic for wakeup. Any activity on the I2C port (intended I2C transaction for the device) or Wakeup pin or Hotkey activity will cause the device to leave this mode and go into the Operational mode. When leaving this mode, the I2C will need to hold the SCLK till the RC clock is ready.
- Hibernate Mode: This mode is entered when the system writes a '1' to bit 5 of the SYSCON register. In this mode, the device is completely inactive as there is absolutely no clock. Only a Reset or a wakeup on IIC will bring back the System to operational mode. A keypress detect will bring the system to Sleep mode, in which the debounce of the key will take place.
- Note: 32KHz clock mentioned in this section could be (1) External clock from connected XTAL, (2) Externally fed 32KHz clock, or (3) internally generated (from RC OSC) clock. In the case that internal clock is used, it has a range of 25KHz to 45KHz.
- Caution: Hotkey detection is not possible in hibernate mode.

Figure 4. States of operation

7.5 Autosleep

Host system may configure the STMPE2403 to go into sleep mode automatically whenever there is a period of inactivity following a complete I2C transaction with the STMPE2403. This inactivity means there is no intended I2C transaction for the device. For example, if there is I2C transaction sent by the host to other slave devices, the STMPE2403 device will still be counting down for the auto-sleep. The STMPE2403 device resets the autosleep time-out counter only when it receives an I2C transaction meant for the device itself. This autosleep feature is controlled by the System Control Register 2.


All events that trigger an interrupt (KPC, Rotator controller, Hot-Key) would result in a transition from SLEEP state to OPERATIONAL state automatically. The wake up can also be performed through I2C transaction intended for the device.

7.6 Keypress detect in the hibernate mode

When in hibernate mode, a keypress detect will cause the system to go into sleep mode. The sleep clock (32KHz) will then be used to debounce the key to detect a valid key. If the keypress is detected to be valid, the system staty in the sleep mode. If the key is detected to be invalid, the system will go back into hibernate mode.

8 Clocking system

The decision on clocks is based on the bits written into SYSCON registers. Bits 0 to 4 of the SYSCON register control the gating of clocks to the Rotator, Keypad Controller, PWM and GPIO respectively in the operational mode.

8.1 Clock source

By default, when the STMPE2403 powers up, it derives a 32KHz clock from the internal RC oscillator for it's operation. If external 32KHz crystal or clock source is available, it must be configured to accept external clock through the SYSCON register.

In the case where the STMPE2403 is powered and configured to use external clock, and the XTALIN is left floating, there will be an additional leakage current of approximately $20\mu A$ drawn from the V_{CC}.

57

8.2 Power mode programming sequence

To put the device in sleep mode, the following needs to be done by the host:

Write a '1' to bit 4 of the SYSCON register.

To wakeup the device, the following needs to be done by the host:

Assert a wakeup routine on the I2C bus by sending the Start Bit, followed by the device address and the Write bit. Subsequently, proceed with sending the Base Register address and continue with a normal I2C transaction. The device wakes up upon receiving the correct device address and in Write direction. In other words, the procedure of waking up the device is performed by just sending an I2C transaction to the device. This procedure can be extended to wake up the device that is in hibernate mode.

To do a soft reset to the device, the host needs to do the following:

Write a '1' to bit 7 of the SYSCON register.

This bit is automatically cleared upon reset.

Juctle To go into Hibernate mode, the following needs to be done by the host:

Set the Disable 32K bit to '1'

wing n obsolete production To come out of the Hibernate mode, the following needs to be done by the host:

9 Interrupt system

STMPE2403 uses a highly flexible interrupt system. It allows host system to configure the type of system events that should result in an interrupt, and pinpoints the source of interrupt by status register. The INT pin could be configured as ACTIVE HIGH, or ACTIVE LOW.

Once asserted, the INT pin would de-assert only if the corresponding bit in the Interrupt Status register is cleared.

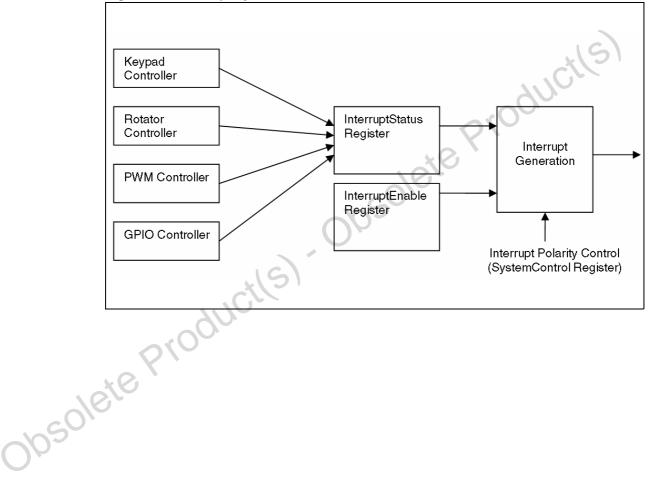


Figure 6. Interrupt system

9.1 Register map of interrupt system

Table 23. Reg	gister map o	of interrupt	system
---------------	--------------	--------------	--------

	Address	Register name	Description	Auto-Increment (during sequential R/W)
	0x10	ICR_msb	Interrupt Control Register	Yes
	0x11	ICR_lsb		Yes
	0x12	IER_msb	Interrupt Enable Mask Register	Yes
	0x13	IER_lsb		Yes
	0x14	ISR_msb	Interrupt Status Degister	Yes
	0x15	ISR_lsb	Interrupt Status Register	Yes
	0x16	IEGPIOR_msb	Interrupt Enable GPIO Mask Register	Yes
	0x17	IEGPIOR_csb	00	Yes
	0x18	IEGPIOR_lsb	210	Yes
	0x19	ISGPIOR_msb	Interrupt Status GPIO Register	Yes
	0x1A	ISGPIOR_csb	00	Yes
	0x1B	ISGPIOR_lsb	is SU.	Yes
obsole	tePr	oduct(s)		

9.2 Interrupt Control Register (ICR)

ICR register is used to configure the Interrupt Controller. It has a global enable interrupt mask bit that controls the interruption to the host.

	ICR_	msb													IC	R_lsb
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	rved							IC2	IC1	IC0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
able 24	l. Reg	giste	r des	cript	ion									$\boldsymbol{\lambda}$)	
D:+	Nam								Πο	eorin	tion					

Table 24. Register description

	Bit	Name	Description
	0	IC[0]	Global Interrupt Mask bit When this bit is written a '1', it will allow interruption to the host. If it is written with a '0', then, it disables all interruption to the host. Writing to this bit does not affect the IER value.
	1	IC[1]	Output Interrupt Type '0' = Level interrupt '1' = Edge interrupt
	2	IC[2]	Output Interrupt Polarity '0' = Active Low / Falling Edge '1' = Active High / Rising Edge
obsole	tef	,00	3000

9.3 Interrupt Enable Mask Register (IER)

IER register is used to enable the interruption from a particular interrupt source to the host.

	IER_	msb													IE	R_lsb
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erveo	ł			IE8	IE7	IE6	IE5	IE4	IE3	IE2	IE1	IE0
R/W	R	R	R	R	R	R	R	RW								
Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 25. Register description

	Bits	Name	Description
	8:0	IE[x]	Interrupt Enable Mask (where x = 8 to 0) IE0 = Wake-up Interrupt Mask IE1 = Keypad Controller Interrupt Mask IE2 = Keypad Controller FIFO Overflow Interrupt Mask IE3 = Rotator Controller Interrupt Mask IE4 = Rotator Controller Buffer Overflow Interrupt Mask IE5 = PWM Channel 0 Interrupt Mask IE6 = PWM Channel 1 Interrupt Mask IE7 = PWM Channel 2 Interrupt Mask IE8 = GPIO Controller Interrupt Mask Writing a '1' to the IE[x] bit will enable the interruption to the host.
opsole	tepr	0011	Cille

9.4 Interrupt Status Register (ISR)

ISR register monitors the status of the interruption from a particular interrupt source to the host. Regardless whether the IER bits are enabled or not, the ISR bits are still updated.

	ISR_	msb													IS	R_lsb
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	serveo	ł			IS8	IS7	IS6	IS5	IS4	IS3	IS2	IS1	IS0
R/W	R	R	R	R	R	R	R	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Table 2	26. Re	egiste	r de	scrip	tion								X	<u> </u>		
Bit	s	Nam	e						D	escrir	otion		5			

Table 26. Register description

Bits	Name	Description
8:0	IS[x]	Interrupt Status (where x = 8 to 0) Read: IS0 = Wake-up Interrupt Status IS1 = Keypad Controller Interrupt Status IS2 = Keypad Controller Interrupt Status IS3 = Rotator Controller Interrupt Status IS4 = Rotator Controller Buffer Overflow Interrupt Status IS5 = PWM Channel 0 Interrupt Status IS6 = PWM Channel 1 Interrupt Status IS7 = PWM Channel 1 Interrupt Status IS8 = GPIO Controller Interrupt Status Write: A write to a IS[x] bit with a value of '1' will clear the interrupt and a write with a value of '0' has no effect on the IS[x] bit.

Interrupt Enable GPIO Mask Register (IEGPIOR) 9.5

IEGPIOR register is used to enable the interruption from a particular GPIO interrupt source to the host. The IEG[23:0] bits are the interrupt enable mask bits correspond to the GPIO[23:0] pins.

Table 27. IEGPIOR register

Bit	7	6	5	4	3	2	1	0
IEGPIOR_msb	IEG-23	IEG -22	IEG -21	IEG -20	IEG -19	IEG -18	IEG -17	IEG -16
IEGPIOR _csb	IEG -15	IEG -14	IEG -13	IEG -12	IEG -11	IEG -10	IEG -9	IEG -8
IEGPIOR _lsb	IEG -7	IEG -6	IEG -5	IEG -4	IEG -3	IEG -2	IEG -1	IEG -0

Table 28. Register description

Ν	lame	Description
IE		Interrupt Enable GPIO Mask (where $x = 23$ to 0) Writing a '1' to the IE[x] bit will enable the interruption to the host.

Interrupt Status GPIO Register (ISGPIOR) 9.6

ISGPIOR register monitors the status of the interruption from a particular GPIO pin interrupt source to the host. Regardless whether the IEGPIOR bits are enabled or not, the ISGPIOR bits are still updated. The ISG[23:0] bits are the interrupt status bits correspond to the GPIO[23:0] pins.

Table 29. ISGPIOR register

Bit 7 6 5 4 3 2 1 0 ISGPIOR_msb ISG-23 ISG-22 ISG-21 ISG-20 ISG-19 ISG-18 ISG-17 ISG-16 ISGPIOR_csb ISG-15 ISG-14 ISG-13 ISG-12 ISG-11 ISG-10 ISG-9 ISG-8 ISGPIOR_lsb ISG-7 ISG-6 ISG-5 ISG-4 ISG-3 ISG-2 ISG-1 ISG-0	Name				De	scription				
ISGPIOR_msb ISG-23 ISG -22 ISG -21 ISG -20 ISG -19 ISG -18 ISG -17 ISG -16 ISGPIOR_csb ISG -15 ISG -14 ISG -13 ISG -12 ISG -11 ISG -10 ISG -9 ISG -8	Table 30.	Table 30. Register description								
ISGPIOR_msb ISG-23 ISG -22 ISG -21 ISG -20 ISG -19 ISG -18 ISG -17 ISG -16	ISGP	IOR _lsb	ISG -7	ISG -6	ISG -5	ISG -4	ISG -3	ISG -2	ISG -1	ISG -0
	ISGPI	IOR _csb	ISG -15	ISG -14	ISG -13	ISG -12	ISG -11	ISG -10	ISG -9	ISG -8
Bit 7 6 5 4 3 2 1 0	ISGPI	OR_msb	ISG-23	ISG -22	ISG -21	ISG -20	ISG -19	ISG -18	ISG -17	ISG -16
		Bit	7	6	5	4	3	2	1	0

Table 30. Register description

	Name	Description
	ISG[x]	Interrupt Status GPIO (where x = 23 to 0) Read: Interrupt Status of the GPIO[x]. Write: A write to a ISG[x] bit with a value of '1' will clear the interrupt and a write with a value of '0' has no effect on the ISG[x] bit.
		Ob.
		cilsi
		roducils
	2	
	10	
obsole		

9.7 **Programming sequence**

To configure and initialize the Interrupt Controller to allow interruption to host, observe the following steps:

- Set the IER and IEGPIOR registers to the desired values to enable the interrupt sources that are to be expected to receive from.
- Configure the output interrupt type and polarity and enable the global interrupt mask by writing to the ICR.
- Wait for interrupt.
- Upon receiving an interrupt, the INT pin is asserted.
- The host comes to read the ISR through I2C interface. A '1' in the ISR bits indicates that the corresponding interrupt source is triggered.
- If the IS8 bit in ISR is set, the interrupt is coming from the GPIO Controller. Then, a subsequent read is performed on the ISGPIOR to obtain the interrupt status of all 24 GPIOs to locate the GPIO that triggers the interrupt. This is a feature so-called 'Hot Key'.
- After obtaining the interrupt source that triggers the interrupt, the host performs the necessary processing and operations related to the interrupt source.
- If the interrupt source is from the GPIO Controller, two write operations with value of '1' are performed to the ISG[x] bit (ISGPIOR) and the IS[8] (ISR) to clear the corresponding GPIO interrupt.
- If the interrupt source is from other module, a write operation with value of '1' is performed to the IS[x] (ISR) to clear the corresponding interrupt.
- Once the interrupt is being cleared, the INT pin will also be de-asserted if the interrupt type is level interrupt. An edge interrupt will only assert a pulse width of 250ns.
- When the interrupt is no longer required, the IC0 bit in ICR may be set to '0' to disable the global interrupt mask bit.

10 GPIO controller

A total of 24 GPIOs are available in the STMPE2403 port expander IC. Most of the GPIOs are sharing physical pins with some alternate functions. The GPIO controller contains the registers that allow the host system to configure each of the pins into either a GPIO, or one of the alternate functions. Unused GPIOs should be configured as outputs to minimize the power consumption.

Table 31. GPIO controller

Address	Register Name	Description	Auto-Increment (during sequential R/W)
0xA2	GPMR_msb		Yes
0xA3	GPMR_csb	GPIO Monitor Pin State Register	Yes
0xA4	GPMR_lsb		Yes
0x83	GPSR_msb	<u></u>	Yes
0x84	GPSR_csb	GPIO Set Pin State Register	Yes
0x85	GPSR_lsb		Yes
0x86	GPCR_msb		Yes
0x87	GPCR_csb	GPIO Clear Pin State Register	Yes
0x88	GPCR_lsb	$O_{\mathcal{P}}$	Yes
0x89	GPDR_msb		Yes
0x8A	GPDR_csb	GPIO Set Pin Direction Register	Yes
0x8B	GPDR_lsb	CIL	Yes
0x8C	GPEDR_msb	0	Yes
0x8D	GPEDR_csb	GPIO Edge Detect Status Register	Yes
0x8E	GPEDR_lsb		Yes
0x8F	GPRER_msb		Yes
0x90	GPRER_csb	GPIO Rising Edge Register	Yes
0x91	GPRER_lsb		Yes
0x92	GPFER_msb		Yes
0x93	GPFER_csb	GPIO Falling Edge Register	Yes
0x94	GPFER_lsb		Yes
0x95	GPPUR_msb		Yes
0x96	GPPUR_csb	GPIO Pull Up Register	Yes
0x97	GPPUR_lsb		Yes
0x98	GPPDR_msb		Yes
0x99	GPPDR_csb	GPIO Pull Down Register	Yes
0x9A	GPPDR_lsb		Yes

Address	Register Name	Description	Auto-Increment (during sequential R/W)				
0x9B	GPAFR_U_msb		Yes				
0x9C	GPAFR_U_csb	GPIO Alternate Function Register (Upper Bit)	Yes				
0x9D	GPAFR_U_lsb		Yes				
0x9E	GPAFR_L_msb		Yes				
0x9F	GPAFR_L_csb	GPIO Alternate Function Register (Lower Bit)	Yes				
0xA0	GPAFR_L_lsb		Yes				
0xA1	MUX_CTRL	MUX Control Register	Yes				
0xA5	COMPAT2401	STMPE2401 Pin Compatibility Register	Yes				
0xA6 – 0xAF	RESERVED	Reserved	Yes				
10.1 G	10.1 GPIO control registers						

Table 31. GPIO controller (continued)

10.1 **GPIO** control registers

A group of registers are used to control the exact function of each of the 24 GPIO. All GPIO registers are named as GPxxx_yyy, where

Xxx represents the functional group

Yyy represents the byte position of the GPIO

Lsb registers controls GPIO[7:0]

Csb registers controls GPIO[15:8]

Msb registers controls GPIO[23:16]

Table 32. GPIO control registers

10	Bit	7	6	5	4	3	2	1	0
c01	GPxxx_msb	IO-23	IO-22	IO-21	IO-20	IO-19	IO-18	IO-17	IO-16
02	GPxxx_csb	IO-15	IO-14	IO-13	IO-12	IO-11	IO-10	IO-9	IO-8
• -	GPxxx_lsb	10-7	IO-6	IO-5	IO-4	IO-3	10-2	IO-1	IO-0

Note:

This convention does not apply to the GPIO Alternate Function Registers

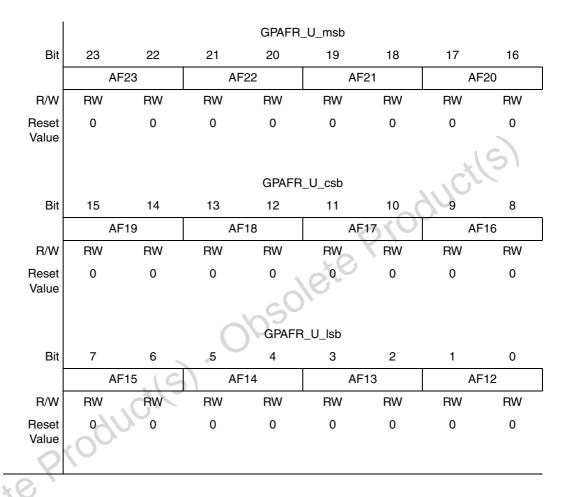

The function of each bit is shown in the following table:

Table 33. Bit function

	Register Name	Function					
	GPIO Monitor Pin State	Reading this bit yields the current state of the bit. Writing has no effect.					
	GPIO Set Pin State	Writing '1' to this bit causes the corresponding GPIO to go to '1' state. Writing '0' has no effect.					
	GPIO Clear Pin State	Writing '1' to this bit causes the corresponding GPIO to go to '0' state. Writing '0' has no effect.					
	GPIO Set Pin Direction	'0' sets the corresponding GPIO to input state, and '1' sets it to output state					
	GPIO Edge Detect Status	Set to '1' by hardware when there is a rising/falling edge on the corresponding GPIO. Writing '1' clears the bit. Writing '0' has no effect.					
	GPIO Rising Edge	Set to '1' to enable rising edge detection on the corresponding GPIO.					
	GPIO Falling Edge	Set to '1' to enable falling edge detection on the corresponding GPIO.					
	GPIO Pull Up	Set to '1' to enable internal pull-up resistor					
	GPIO Pull Down	Set to '1' to enable internal pull-down resistor					
obsole	teproductle						

GPIO Alternate Function Register (GPAFR) 10.2

GPAFR is to select the functionality of the GPIO pin. To select a function for a GPIO pin, a bit-pair in the register (GPAFR_U or GPAFR_L) has to be set.

Table 34. Bit description

10	Table 3	4. Bit d	escription
60 ¹	Bits	Name	Description
0,02	23:0	AF[x]	GPIO Pin 'x' Alternate Function Select (where $x = 23$ to 12). '00' – The corresponding GPIO pin (GPIO[x]) is configured to Primary Function. '01' – The corresponding GPIO pin (GPIO[x]) is configured to Alternate Function 1. '10' – The corresponding GPIO pin (GPIO[x]) is configured to Alternate Function 2. '11' – The corresponding GPIO pin (GPIO[x]) is configured to Alternate Function 3.

				GPAFR_	_L_msb			
Bit	23	22	21	20	19	18	17	16
	AF	-11	AF	10	AF	:9	AF8	
R/W	RW	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0
				GPAFR	_L_csb			
Bit	15	14	13	12	11	10	9	8
	A	F7	AF	6	AF	5	A	=4
R/W	RW	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0
				GPAFR	_L_lsb	6		
Bit	7	6	5	4	3	2	1	0
	A	F3	AF	2	S AF	1	Al	=0
R/W	RW	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0		0	0	0	0	0
le 35. Bit	descripti	ion du						

Table 35. Bit description

Bits	Name	Description
23:0	AF[x]	GPIO Pin 'x' Alternate Function Select (where $x = 11$ to 0). '00' – The corresponding GPIO pin (GPIO[x]) is configured to Primary Function. '01' – The corresponding GPIO pin (GPIO[x]) is configured to Alternate Function 1. '10' – The corresponding GPIO pin (GPIO[x]) is configured to Alternate Function 2. '11' – The corresponding GPIO pin (GPIO[x]) is configured to Alternate Function 3.

10.3 Hot key feature

A GPIO is known as 'Hot Key' when it is configured to trigger an interruption to the host whenever the GPIO input is being asserted. This feature is applicable in Operational mode ,as well as Sleep mode.

10.3.1 Programming sequence for Hot Key

- 1. Configures the GPIO pin into GPIO mode by setting the corresponding bits in the GPAFR.
- 2. Configures the GPIO pin into input direction by setting the corresponding bit in GPDR.
- 3. Set the GPRER and GPFER to the desired values to enable the rising edge or falling edge detection.
- 4. Configures and enables the interrupt controller to allow the interruption to the host.
- 5. Now, the GPIO Expander may be put into Sleep mode if it is desired.
- 6. Upon any Hot Key being asserted, the device will wake-up and issue an interrupt to the host.

Below are the conditions to be fulfilled in order to configure a Hot Key:

- 1. The pin is configured into GPIO mode and as input pin.
- 2. The global interrupt mask bit is enabled.
- 3. The corresponding GPIO interrupt mask bit is enabled.

10.3.2 Minimum pulse width

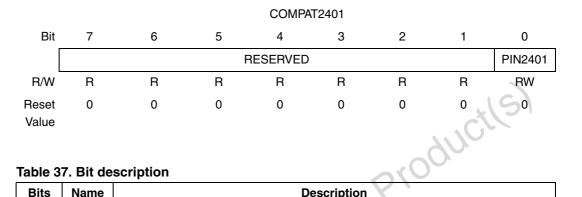
The minimum pulse width of the assertion of the Hot Key must be at least 62.5us. Any pulse width less than the stated value may not be registered.

MUX Control Register (MCR) 10.4

STMPE2403 is integrated with 2 SPDT bi-directional signal multiplexer. The Ron of the multiplexer is 5 OHM (Typical). Signal level is 1.8V (MAX). The MUX are controlled by the MUX Control register.

MCR is to control the two analog multiplexers operation.

	MCR								
Bit	7	6	5	4	3	2	1	0	
		RESE	RVED		M1C1	M2C1	M1C1	M1C0	
R/W	R	R	R	R	RW	RW	RW	RW	
Reset Value	0	0	0	0	0	0		30	
Table 3	Table 36. Bit description								
Bits Name					Description	V ·			


Table 36. Bit description

Bits	Name	Description
0	M1C0	MUX 1 Control 0 bit selects whether Mux1In_0 or Mux1In_1 connects to Mux1Out. '0' – Mux1In_0 is connected to the Mux1Out. '1' – Mux1In_1 is connected to the Mux1Out.
1	M1C1	MUX 1 Control 1 bit enables the MUX 1. '0' – Enables the MUX 1. '1' – Disables the MUX 1.
2	M2C0	MUX 2 Control 0 bit selects whether Mux2In_0 or Mux2In_1 connects to Mux2Out. '0' – Mux1In_0 is connected to the Mux1Out. '1' – Mux1In_1 is connected to the Mux1Out.
3	M2C1	MUX 2 Control 1 bit enables the MUX 2. '0' – Enables the MUX 2. '1' – Disables the MUX 2.

STMPE2401 Pin Compatibility Register (COMPAT2401) 10.5

STMPE2403 is an enhanced version of the other port expander device, STMPE2401. However, the pin configuration of STMPE2403 is different from that of STMPE2401. For backward pin compatibility to STMPE2401, COMPAT2401 register provides a control bit that allows STMPEE2403 to have the same pin configuration as in STMPE2401.

Table 37. Bit description

Bits	Name	Description
0	1	This control bit selects pin configuration to be used. '0' – STMPE2401 pin configuration as defined in sections 1.1 and 1.3. '1' – Pin configuration compatible to STMPE2401.

The pin locations for the following eight IO ports are different from those shown in section 1.3: KP_X0, KP_X1, KP_X2, KP_X3, KP_Y4, KP_Y5, KP_Y6 and KP_Y7. When 'PIN2401' bit is set to '1', the eight IO ports are assigned to the pin locations as defined by the following diagram.

		A	В	С	D	Е	F
	1	KP_X2	KP_X1	RESET	XTALOUT	SCLK	KP_Y6
	2	KP_X4	KP_X3	KP_X0	XTALIN	SDATA	KP_Y7
10	3	KP_X6	KP_X5	GND1	GND2	KP_Y8	INT
col	4	VCC1	KP_X7	GND3	GND4	PWM-1	VCC2
05	5	KP_Y5	KP_Y3	KP_Y1	KP_Y9	PWM-3	PWM-2
U.	6	KP_Y4	KP_Y2	KP_Y0	ADDR0	KP_Y10	KP_Y11

Table 38. Pin location

11 **PWM controller**

The STMPE2403 PWM controller provides 3 independent PWM outputs used to generate light effect; if the PWM outputs are not used, these pins can be used as GPIO.

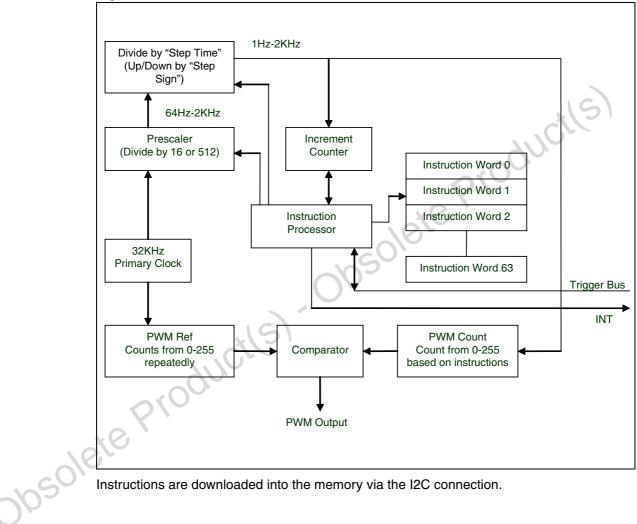


Figure 7. **PWM controller**

Instructions are downloaded into the memory via the I2C connection.

11.1 Registers in the PWM controller

The main system registers are:

	Address	Register name	Description	Auto-Increment (during Read/Write)
	0x30	PWMCS	PWM Control and Status register	Yes
	0x38	PWMIC0	PWM instructions are initialized through this data port. Every instruction is 16-bit width and therefore, the MSB of the first word is written first, then, followed by LSB of the first word. Subsequently, MSB of second word and LSB of second word and so on.	No
	0x39	PWMIC1	PWM instructions are initialized through this data port. Every instruction is 16-bit width and therefore, the MSB of the first word is written first, then, followed by LSB of the first word. Subsequently, MSB of second word and LSB of second word and so on.	No
	0x3A	PWMIC2	PWM instructions are initialized through this data port. Every instruction is 16-bit width and therefore, the MSB of the first word is written first, then, followed by LSB of the first word. Subsequently, MSB of second word and LSB of second word and so on.	No
obsole	tePr	oduct	5	

Table 39. Main system registers

11.2 PWM Control and Status Register (PWMCS)

Bit	7	6	5	4	3	2	1	0
	ExtSel	ExtEn	ll2	1	110	EN2	EN1	EN0
Read/Write	RW	RW	R	R	R	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0

Table 40. Bit description

	Bits	Name	Description
	0	EN0	PWM Channel 0 Enable bit. '1' – Enable the PWM Channel 0 '0' – Reset the PWM Channel 0. Only when the PWM channel is in reset state, the stream of commands can be written into its data port, which in this case is PWM_Command_Channel_0.
	1	EN1	PWM Channel 1 Enable bit. '1' – Enable the PWM Channel 1 '0' – Reset the PWM Channel 1. Only when the PWM channel is in reset state, the stream of commands can be written into its data port, which in this case is PWM_Command_Channel_1.
	2	EN2	PWM Channel 2 Enable bit. '1' – Enable the PWM Channel 2 '0' – Reset the PWM Channel 2. Only when the PWM channel is in reset state, the stream of commands can be written into its data port, which in this case is PWM_Command_Channel_2.
	3	110	PWM Invalid Instruction Status bit for PWM Channel 0 '0' – No invalid command encountered during the instruction execution. '1' – Invalid command encountered and this puts the PWM Channel 0 into reset state.
obsole	4	111	PWM Invalid Instruction Status bit for PWM Channel 1 '0' – No invalid command encountered during the instruction execution. '1' – Invalid command encountered and this puts the PWM Channel 1 into reset state.
002	5	112	PWM Invalid Instruction Status bit for PWM Channel 2 '0' – No invalid command encountered during the instruction execution. '1' – Invalid command encountered and this puts the PWM Channel 2 into reset state.
	6	ExtEn	External Trigger Enable '0' – External triggering function is disabled '1' – External triggering function is enabled If enabled, GPIO-15 is used as trigger input/output
	7	ExtSel	External Trigger Direction Selection '0' – Active high external trigger input '1' – Active low external trigger output

11.3 PWM Instruction Channel *x* **(PWMIC***x***)**

This PWMIC*x* is the dataport that allows the instructions to be loaded into the PWM channel. The loading of the instructions is achieved by continuously writing to this dataport. As this dataport address falls on the non-auto increment region, continuous write operation on I^2C will write into the same dataport address. The '*x*' value is from 0 to 2 as there are 3 independent PWM channels. To access these dataports, the corresponding EN*x* in the PWMCS register must be set to 0 first to put the PWM channel in reset state.

Bit	7	6	5	4	3	2	1	0
	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
Read/Write	RW	RW						
Reset Value	0	0	0	0	0	0	0	0
							,100	

Table 41. Bit description

Bits	Name	Description
7:0	IB[y]	PWM Instruction Channel x, where y is 7 to 0 As an instruction is 16-bit width, writing the instruction into this 8-bit PWMICx dataport requires two 8-bit data write. The most significant byte of the 16-bit instruction is to be written in first and followed by the least significant byte of the instruction. The same effect applies to the read operation.

11.4 PWM commands

The STMPE2403 PWM Controller works as a simple MCU, with program space of 64 instructions and a simple instruction set. The instructions are all 16 bits in length. The 3 most significant bits are used to identify the commands.

Table 42. PWM commands

26	Instruction	Description
RAMP		This instruction starts the PWM counters and set the pwm_x_out with the result from the counting.
		Prescale: (0 or 1) '0' - divide 32KHz clock by 16 '1' – divide 32KHz clock by 512
		Step Time: (1-63) One ramp increment done in (step time) x (clock after prescale)
		Sign: (0 or 1) "0" – increase PWM output '1' – decrease PWM output
		Increment: (0-127) The number of increment/decrement cycles

Instruction	Description
LOAD	Load the PWM counter with a value between 0x0 and 0xFF.
	PWM value: (0-255) Loads an absolute value between 0-255 into PWM count
Go to Start (GTS)	Branch to the address 0x0 and execute from 0x0 and onwards.
BRANCH	This instruction loads the Step Number into the instruction counter
	Loop Count: (0-63) Number of loops to repeat. 0 means infinite loop
	Addr: (0 or 1)
	0 – Absolute addressing
	1 – Relative addressing
	Step Size: (0-63)
	The step number to be loaded to instruction counter
END	End the instruction execution by resetting and interrupting to the host.
Trigger (TRIG)	Capable of waiting as well as sending triggers to another PWM channel. Can be configured to send/receive external trigger
	Wait For Trigger
	Bit 7: Channel 0
	Bit 8: Channel 1
	Bit 9: Channel 2
	Bit 12: External Trigger Input
	Send Trigger
	Bit 1: Channel 0
	Bit 2: Channel 1
	Bit 3: Channel 2 Bit 6: External Trigger Output
	Bit 6: External Trigger Output

Table 42. PWM commands (continued)

Bit 2: Channel 1 Bit 3: Channel 2 Bit 6: External Trigger Output							
colle	Instruction	Bit 15	Bit 14	Bit 13			
Obse	Ramp	0	-	-			
	LOAD	0	1	-			
	GoToStart	0	0	-			
	Branch	1	0	1			
	End	1	1	0			
	Trigger	1	1	1			
	Reserved	1	0	0			

Table 44. Instruction bit

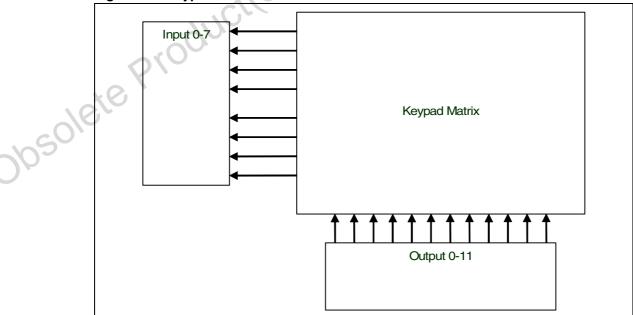
Instruction								Bi	t								
Instruction	15	14	13	12	11	1	0	9	8	7	6	5	4	3	2	1	0
RAMP	0	Prescale 0=16 1=512	0 - 0					-	Increment 1 – 126 n								
LOAD	0	1	0							PWM Value 0	-255						
GTS	0	0	0							0	0						
BRANCH	1	01		Loop Co	Loop Count 0-63				Addr Step Size 0 – 63*								
END	1	10		Interrup to host	Interrupt to host Reset instructio n counter and output level to zero				S								
TRIG	1	11		on char Continu Each bi	on channel 0 – 2 and external Trigger on Continues if all selected triggers present. Each bit signifies wait for the corresponding channel. Tri				Send Trigger on channel 0 – 2 and external Trigger Continues if no Wait for Trigger in this instruction.			x ⁽¹⁾					
reserved	1	00		RESER	VED												

1. Don't care

psol

In order to enable a PWM channel, the programming sequence below should be observed.

- The ENx of the PWMCS register should be kept in '0'. By default, it has a value of '0'.
- Loads the instructions into the PWM channel *x* by writing the corresponding PWMIC*x*.
- The PWM channel *x* has a 64-word depth (16-bit width). Any instructions of size less than or equal to 64 words can be loaded into the channel. Any attempt to load beyond 64 words will result in internal address pointer to roll-over (0x1f ◊ 0x00) and the excess instructions to be over-written into the first address location of the channel and onwards.
- After the instructions are loaded in, then, the PWM channel x can be enabled by setting a '1' to the ENx bit.
- Enables the corresponding interrupt mask bit to allow interruption to the host.


12 Keypad controller

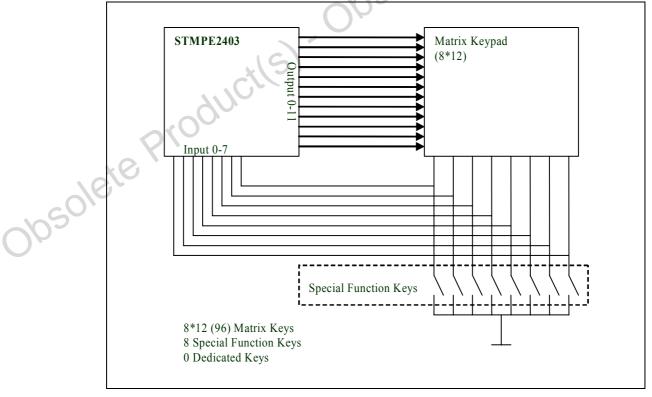
The keypad controller consists of: 1) four dedicated key controllers that support up to four simultaneous dedicated key presses; 2) a key scan controller and two normal key controllers that support a maximum of 12x8 key matrix with detection of three simultaneous key presses; 3) eight special function key controllers that support up to eight simultaneous special function key presses.

Four of the column inputs can be configured as dedicated keys through the setting of Dkey0~3 bits of KPC_ctrl register.

The normal key matrix size is configurable through the setting of KPC_row and KPC_col registers. The scanning of each individual row output and column input can be enabled or masked to support a key matrix of variable size from 1x1 to 12x8. It is allowed to have another eight special function keys incorporated in the key matrix.

The operation of the keypad controller is enabled by the SCAN bit of KPC_ctrl register. Every key activity detected will be de-bounced for a period set by the DB_0~7 bits of KPC_ctrl register before a key press or key release is confirmed and updated into the output FIFO. The key data, indicating the key coordinates and its status (up or down), is loaded into the FIFO at the end of a specified number of scanning cycles (set by ScanCount0~3 bits of KPC_row_msb register). An interrupt will be generated when a new set of key data is loaded. The FIFO has a capacity for ten sets of key data. Each set of key data consists of 5 bytes of information when any of the four dedicated keys is enabled. It is reduced to 4 bytes when no dedicated key is involved. When the FIFO is full before its content is read, an overflow signal will be generated while the FIFO will continue to hold its content but forbid loading of new key data set.

The keypad column inputs enabled by the KPC col register are normally 'HIGH', with the corresponding input pins pulled up by resistors internally. After reset, all the keypad row outputs enabled by the KPC_row register are driven 'LOW'. If a key is pressed, its corresponding column input will become 'LOW' after making contact with the 'LOW' voltage on its corresponding row output.


Once the key scan controller senses a 'LOW' input on any of the column inputs, the scanning cycles will then start to determine the exact key that has been pressed. The twelve row outputs will be driven 'LOW' one by one during each scanning cycle. While one row is driven 'LOW', all other rows are in tri-state and pulled up. If there is any column input sensed as 'LOW' when a row is driven 'LOW', the key scan controller will then decode the key coordinates (its corresponding row number and column number), save the key data into a de-bounce buffer if available, confirm if it is a valid key press after de-bouncing, and update olete Productis the key data into output data FIFO if valid.

12.1 **Keypad configurations**

The keypad controller supports the following types of keys

- Up to 8 Input *12 Output Matrix Keys
- Up to 8 Special Function Keys
- Up to 4 Dedicated Keys

Figure 9. Maximum configuration

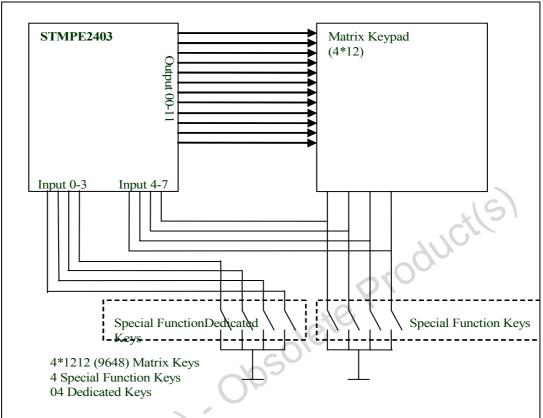


Figure 10. Dedicated key configuration

12.2 Registers in keypad controller

	Address Register Name		Description	Auto-Increment (during sequential R/W)
26	0x60	KPC_col	Keypad column scanning register	Yes
0650.	0x61	KPC_row_msb	Kouped row econoring register	Yes
	0x62	KPC_row_lsb	Keypad row scanning register	Yes
	0x63	KPC_ctrl_msb	Keypad control register	Yes
	0x64	KPC_ctrl_lsb	Reypad control register	Yes
	0x68	KPC_data_byte0		Yes
	0x69	KPC_data_byte1		Yes
	0x6A	KPC_data_byte2	Keypad data register	Yes
	0x6B	KPC_data_byte3		Yes
	0x6C	KPC_data_byte4		Yes

Table 45. Registers in keypad controller

12.3 KPC_col register

Bit	7	6	5	4	3	2	1	0
Name		Input Column 0 ~ 7						
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0

Table 46. Bit description

Bit	Name	Description
7	Input Column 7	'1' to turn on scanning of column 7; '0' to turn off
6	Input Column 6	'1' to turn on scanning of column 6; '0' to turn off
5	Input Column 5	'1' to turn on scanning of column 5; '0' to turn off
4	Input Column 4	'1' to turn on scanning of column 4; '0' to turn off
3	Input Column 3	'1' to turn on scanning of column 3; '0' to turn off
2	Input Column 2	'1' to turn on scanning of column 2; '0' to turn off
1	Input Column 1	'1' to turn on scanning of column 1; '0' to turn off
0	Input Column 0	'1' to turn on scanning of column 0; '0' to turn off
		00

12.4 KPC_row_msb register

*

	<u> </u>							
Bit	7	6	5	4	3	2	1	0
Name	ScanPW1	ScanPW0	Hib_Wk	-		Output R	ow 8 ~ 11	
Read/Write	RW	RW	RW	R	RW	RW	RW	RW
Reset Value	1	1	0	0	0	0	0	0

Table 47. Bit description

Bit	Name	Description					
7	ScanPW1	Pulse width setting of keypad scanning. Use "11" at all					
6	ScanPW0	times					
5	Hib_Wk	'1' to enable keypad wake-up from hibernate mode; '0' to disable					
4	-	-					
3	Output Row 11	'1' to turn on scanning of row 11; '0' to turn off					
2	Output Row 10	'1' to turn on scanning of row 10; '0' to turn off					
1	Output Row 9	'1' to turn on scanning of row 9; '0' to turn off					
0	Output Row 8	'1' to turn on scanning of row 8; '0' to turn off					

1050

12.5 KPC_row_lsb register

Bit	7	6	5	4	3	2	1	0
Name		Output Row 0 ~ 7						
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0

Table 48. Bit description

Bit	Name	Description
7	Output Row 7	'1' to turn on scanning of row 7; '0' to turn off
6	Output Row 6	'1' to turn on scanning of row 6; '0' to turn off
5	Output Row 5	'1' to turn on scanning of row 5; '0' to turn off
4	Output Row 4	'1' to turn on scanning of row 4; '0' to turn off
3	Output Row 3	'1' to turn on scanning of row 3; '0' to turn off
2	Output Row 2	'1' to turn on scanning of row 2; '0' to turn off
1	Output Row 1	'1' to turn on scanning of row 1; '0' to turn off
0	Output Row 0	'1' to turn on scanning of row 0; '0' to turn off
		00

12.6 KPC_ctrl_msb register

Bit	7	6	5	4	3	2	1	0	
Name ScanCount0 ~ 3					DKey_0 ~ 3				
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW	
Reset Value	0	0	0	0	0	0	0	0	

Table 49. Bit description

Bit	Name	Description		
7	ScanCount3			
6	ScanCount2	Number of key scanning cycles elapsed before a confirmed		
5	ScanCount1	key data is updated into output data FIFO (0 ~ 15 cycles)		
4	ScanCount0			
3	DKey_3	Set '1' to use Input Column 3 as dedicated key		
2	DKey_2	Set '1' to use Input Column 2 as dedicated key		
1	DKey_1	Set '1' to use Input Column 1 as dedicated key		
0	DKey_0	Set '1' to use Input Column 0 as dedicated key		

210501

KPC_ctrl_lsb register 12.7

Bit	7	6	5	4	3	2	1	0
Name	DB_0 ~ 5						SCAN	
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW
Reset Value	0	0	0	0	0	0	0	0

Table 50. Bit description

Bit	Name	Description
7	DB_6	
6	DB_5	.15)
5	DB_4	
4	DB_3	0-128ms of de-bounce time
3	DB_2	
2	DB_1	
1	DB_0	Ste I
0	SCAN	'1' to start scanning; '0' to stop
	•	-10 ⁵

12.8 **Data registers**

The KPC_DATA register contains three bytes of information. The first two bytes store the key coordinates and status of any two keys from the normal key matrix, while the third byte store the status of dedicated keys.

KPC_data_byte0 Register

	Bit	57	6	5	4	3	2	1	0	
	Name	Up/Down	R3	R2	R1	R0	C2	C1	C0	
	Read/Write	R	R	R	R	R	R	R	R	
olk	Reset Value	1	1	1	1	1	0	0	0	
0050	Table 51. Bit	descriptio	on							
	Bit	N	ame		Description					

Table 51. Bit description

Bit	Name	Description						
7	Up/Down	'0' for key-down, '1' for key-up						
6	R3							
5	R2	row number of key 1 (valid range : 0-11)						
4	R1	0x1111 for No Key						
3	R0							
2	C2							
1	C1	column number of key 1 (valid range : 0-7)						
0	C0							

KPC_data_byte1 Register

Bit	7	6	5	4	3	2	1	0
Name	Up/Down	R3	R2	R1	R0	C2	C1	C0
Read/Write	R	R	R	R	R	R	R	R
Reset Value	1	1	1	1	1	0	0	0

Table 52. Bit description

7 Up/Down '0' for key-down, '1' for key-up 6 R3	Bit	Name	Description
5 R2 row number of key 2 (valid range : 0-11) 4 R1 0x1111 for No Key 3 R0 2 1 C1 column number of key 2 (valid range : 0-7)	7	Up/Down	'0' for key-down, '1' for key-up
0 112 0x1111 for No Key 4 R1 0x1111 for No Key 3 R0 0 2 C2 column number of key 2 (valid range : 0-7) 0 C0 C0	6	R3	
4 R1 3 R0 2 C2 1 C1 0 C0	5	R2	
2 C2 1 C1 0 C0	4	R1	
1 C1 column number of key 2 (valid range : 0-7) 0 C0	3	R0	000
0 C0	2	C2	010
	1	C1	column number of key 2 (valid range : 0-7)
KPC_data_byte2 Register	0	C0	1610
	PC_data_byt	e2 Register	SOL

KPC_data_byte2 Register

/	•							
Bit	7	6	5	4	3	2	1	0
Name	Up/Down	R3	 R2 	R1	R0	C2	C1	C0
Read/Write	R	R	R	R	R	R	R	R
Reset Value	1.0	1	1	1	1	0	0	0

Table 53. Bit description

	Bit	Name	Description
10	7	Up/Down	'0' for key-down, '1' for key-up
Obsoli	6	R3	row number of key 3 (valid range : 0-11) 0x1111 for No Key
U	5	R2	
	4	R1	
	3	R0	
	2	C2	column number of key 3 (valid range : 0-7)
	1	C1	
	0	C0	

KPC_data_byte3 Register

Bit	7	6	5	4	3	2	1	0
Name	SF7	SF6	SF5	SF4	SF3	SF2	SF1	SF0
Read/Write	R	R	R	R	R	R	R	R
Reset Value	1	1	1	1	1	1	1	1

Table 54. Bit description

Bit	Name	Description
7	SF7	'0' for key-down, '1' for key-up
6	SF6	'0' for key-down, '1' for key-up
5	SF5	'0' for key-down, '1' for key-up
4	SF4	'0' for key-down, '1' for key-up
3	SF3	'0' for key-down, '1' for key-up
2	SF2	'0' for key-down, '1' for key-up
1	SF1	'0' for key-down, '1' for key-up
0	SF0	'0' for key-down, '1' for key-up
KPC_data_t	oyte4 Register	0,02

KPC_data_byte4 Register

Bit	7	6	5	4	3	2	1	0
Name	-	, IS	-	-		Dedicated	Key 0 ~ 3	
Read/Write	R	R	R	R	R	R	R	R
Reset Value		0	0	0	1	1	1	1

	Value		0	0	I	I	I	I			
	Table 55. B	it description									
ole	Bit	Name			Des	cription					
- NSU	7	-	-								
$O_{\mathcal{V}}$	6	-	-	-							
	5	-	-	-							
	4	-	-								
	3	Dedicated Key 3	'0' for	'0' for key-down, '1' for key-up							
	2	Dedicated Key 2	'0' for	key-down,	1' for key-u	qu					
	1	Dedicated Key 1	'0' for	key-down,	'1' for key-ι	qu					
	0	Dedicated Key 0	'0' for	key-down,	'1' for key-ι	qu					

12.8.1 Resistance

Maximum resistance between keypad output and keypad input, inclusive of switch resistance, protection circuit resistance and connection, must be less than 3.2 K Ω

12.8.2 Using the keypad controller

It is not necessary to explicitly enable the internal pull-up and direction by configuring the GPIO control registers. Once a GPIO is enabled for keypad function, its internal pull-up and direction is controlled automatically.

The scanning of column inputs should then be enabled for those GPIO ports that are configured as keypad inputs by writing '1's to the corresponding bits in the KPC_col register. If any of the first three column inputs is to be used as dedicated key input, the corresponding bits in the KPC_ctrl_msb register should be set to '1'. The bits in the KPC_row_msb and KPC_row_lsb registers should also be set correctly to enable the row output scanning for the corresponding GPIO ports programmed as keypad outputs.

The scan count and de-bounce count should also be programmed into the keypad control registers before enabling the keypad controller operation. To enable the keypad controller operation, the Enable_KPC bit in the system control register must be set to '1' to provide the required clock signals. The keypad controller will then start its operation by setting the SCAN bit in the KPC_ctrl_lsb register to '1'.

The keypad controller operation can be disabled by setting the SCAN bit back to '0'. To further reduce the power consumption, the clock signals can be cut off from the keypad controller by setting the Enable_KPC bit to '0'.

As long as there is any un-read key-press in the keypad controller buffer, the KPC interrupt will always be asserted.

12.8.3 Ghost Key Handling

Ghost key is an inherent in keypad matrix that is not equipped with a diode at each of the keys. While it is not possible to avoid ghost key occurrence, the STMPE2403 allow the detection of possible ghost key by the capability of detecting 3 simultaneous key-presses in the key matrix.

Ghost key is only possible if 3 keys are pressed and held down together in a keypad matrix. If 3 keys are reported by STMPE2403 keypad controller, it indicates a potential ghost key situation. The system may check for possibility of ghost key by analyzing the coordinates of the 3 keys. If the 3 keys form 3 corners of a rectangle, it could be a ghost key situation.

Ghost key may also occur in the Special Function Keys. The keypad controller does not attempt to avoid the occurrence of ghost keys. However, the system should be aware that if more than one special function key is reported, then there is a possibility of ghost key.

12.8.4 Priority of Key detection

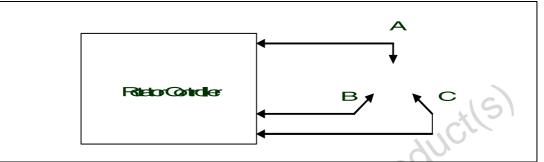
Dedicated key will always be detected, if it is enabled.

When a Special Function key is detected, the matrix key scanning on the same input line will be disabled.

Up to 3 matrix keys will be detected. Matrix keys that fall on activated Special Function keys will not be counted.

As a result of these rules of priority, a matrix key will be ignored by the keypad controller when the special function key on the same input line is detected, even if the matrix key is being pressed down before the special function key. Hence, when a matrix is reported "key-down" and it is being held down while the corresponding special function is being pressed, a "no-key" status will be reported for the matrix key when the special function key is reported "key-down". If the matrix key is released while the special function key is still being held down, no "key-up" will be reported for the matrix key. On the other hand, if the matrix key is released after the special function key is reported "key-up", then a new "key-down" will be reported for the matrix key.

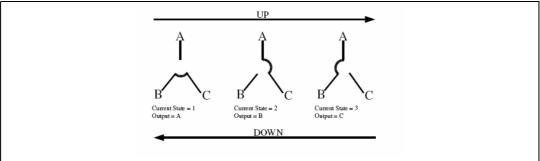
12.8.5 Keypad Wake-Up from sleep and hibernate modes


The keypad controller is functional in sleep mode as long as it is enabled before entering sleep mode. It will then wake the system up into operational mode if a valid key press is detected.

In the case of hibernate mode, the 'Hib_Wk' bit in 'KPC_row_msb' register must be set to '1' in order to enable system wake-up by valid key press. When this is enabled, asynchronous detection of keypad column input activity will be turned on during hibernate mode. If any key activity is detected, the system is expected to enter sleep mode temporarily to allow de-bouncing of key press to take place. If a valid key is detected, the system will then wake up into operational mode; otherwise, the device will go back into hibernate mode.

13 **Rotator controller**

Rotator controller consists of 3 terminal, each capable of becoming an input with internal pull-up, or and output. At any moment, 2 terminals are inputs and one terminal is output.


The Rotator Controller is responsible for the detection of the direction of rotator and the reporting of these direction sequences. The direction of a rotator can be either up or down. A rotator has 3 contacts and detection of shorts on these contacts is used to determine the direction of rotation. Following diagram shows the definition of the direction of rotation and how the FSM states and driven outputs correspond to rotation.

3 possible conditions: A-B short, B-C short, C-A short.

Table 56. Possible conditions

	LO	Current State			Next State				Result	
	Input	State	Output	Input	Input	State	Output	Input	Input	Result
	С	1	A	В	С	2	В	А	С	Up
	В		А	В	С	3	С	А	В	Down
	A	2	В	А	С	3	С	А	В	Down
	0	2	В	А	С	1	А	В	С	Up
26	A	3	С	А	В	2	В	А	С	Up
SO	В	3	С	А	В	1	A	В	С	Down
202	Figure 12	2. Rotate	or directi	on detec	tion					

Figure 12. Rotator direction detection

Address	Register name	Register size					
0x70	Rotator_Control	8					
0x72	Rotator_Buffer	8					

Figure 13. Registers for rotator control

Rotator_Control

Bit	7	6	5	4	3	2	1	0
	Start_FSM	Reserved						
Read/Write	RW	R	R	R	R	R	R	R
Reset Value	0	0	0	0	0	0	0	0

Table 57. Bit description

Bits	Name	Description
7	Start_FSM	Rotator FSM start bit. '1' – Activate the FSM '0' – Stop sampling rotator symbols
Rotator_Bu	ffer	olete

Rotator_Buffer

Bit	7	6	5	34	3	2	1	0
	Symbol_Type		OF		Symbol_Co	unt		
Read/Write	R	R	R	R	R	R	R	R
Reset Value	0	0	0	0	0	0	0	0

Table 58. Bit description

	Bits	Name	Description
			Symbol type to be reported '1' – Down '0' – Up
obsoli	6~0	Symbol_Count	Number of symbols of the type specified by bit 7 Minimum of 0 (b'0000000) to Maximum of 127 (b'1111111)
<u> </u>	The host sho	ould do the follow	wing on the I2C bus to start the Rotator controller:

- The host writes to GPIO Controller to select the Rotator Bits on the relevant IO. 1.
- 2. Write Rotator_Control data register to start the rotator controller. A maximum of 2 rotations later, the correct initial state on the rotator FSM is obtained. Scanning for rotator movement continues.
- 3. The host waits for interrupt from the rotator controller.
- 4. The host reads Rotator_Buffer
- 5. The host can stop rotator controller operation by writing to Rotator_Control register.

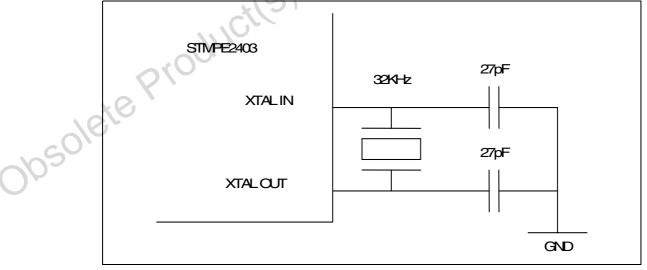
14 Miscellaneous features

14.1 Reset

STMPE2403 is equipped with an internal POR circuit that holds the device in reset state, until the clock is steady and VCC input is valid. Host system may choose to reset the STMPE2403 by asserting Reset_N pin.

14.2 Under Voltage Lockout

STMPE2403 is equipped with an internal UVLO circuit that generates a RESET signal, when the main supply voltage falls below the allowed threshold.


14.3 Clock output

STMPE2403 provides a buffered 32KHz clock output at one of the GPIO as alternate function. This clock could be used for cascading of multiple port expander devices, using just 1 XTAL unit.

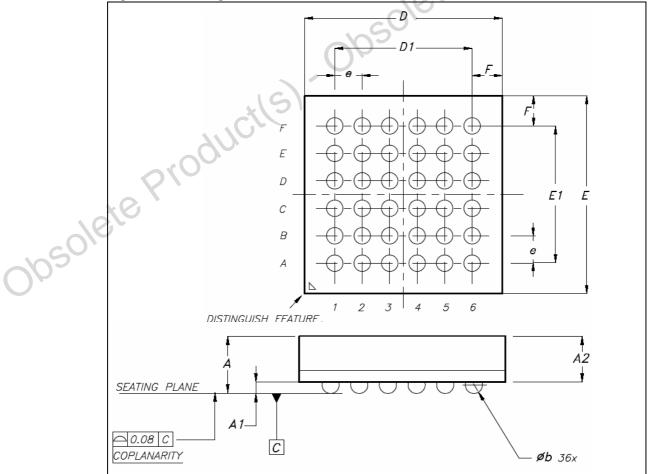
14.4 Crystal oscillator

STMPE2403 provides the option to use a crystal oscillator to provide the 32KHz clock.

Figure 14. Recommended schematics if external XTAL is used

15 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com


Obsolete Product(s). Obsolete Product(s)

57

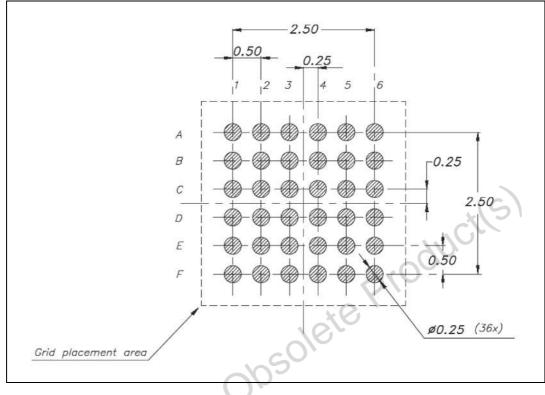

Dim.	mm.			inch			
Dini.	Min	Тур	Max	Min	Тур	Мах	
А	1.1	1	1.16	0.043	0.039	0.046	
A1			0.25			0.010	
A2		0.78	0.86		0.031	0.034	
b	0.30	0.25	0.35	0.012	0.010	0.014	
D	3.60	3.50	3.70	0.142	0.138	0.146	
D1	3.50			0.138		16	
E	3.50	3.60	3.70	0.142	0.138	0.146	
E1	2.50			0.098	717		
е	0.50			0.020	00.0		
F	0.55			0.022			

Table 59. TFBGA Mechanical data

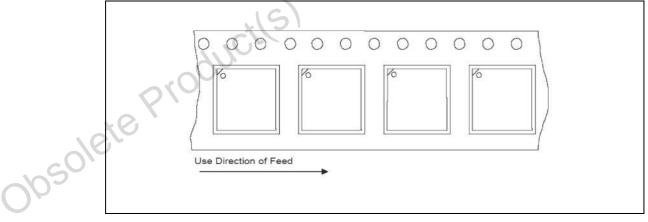


Figure 17. Tape and reel information

57

16 Revision history

Table 60. Revision history

Date	Revision	Changes
08-Jun-2007	1	Initial release

obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

