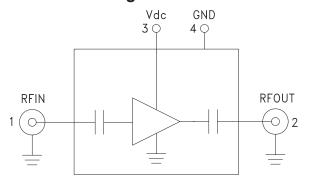


ULTRA LOW PHASE NOISE AMPLIFIER MODULE, 3 - 8 GHz



Typical Applications

The HMC-C079 is ideal for:

- Microwave Radio
- Military & Space
- Test Instrumentation
- VSAT

Functional Diagram

Features

Ultra Low Phase Noise: -162 dBc/Hz @ 1 kHz

Noise Figure: 6 dB

Gain: 11 dB Psat: +21 dBm

50 Ohm Matched Input/Output

Single Supply Voltage: +7V @ 110mA

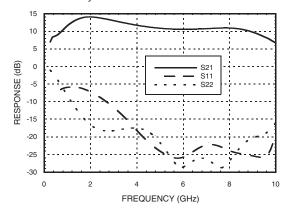
Hermetically Sealed Module

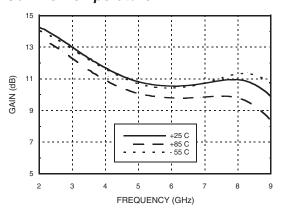
Field Replaceable SMA Connectors
-55 °C to +85 °C Operating Temperature

General Description

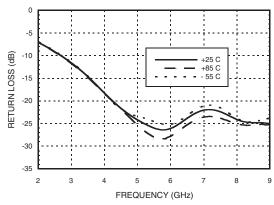
The HMC-C079 is a GaAs HBT Ultra Low Noise Amplifier in a miniature, hermetic module designed to operate between 3 and 8 GHz. This high dynamic range amplifier module provides 11 dB of gain, 6 dB noise figure and up to +21 dBm of output power with a single supply of +7V. The ultra low phase noise contribution of -162 dBc/Hz at 1 kHz offset, enables superior modulation accuracy within transceiver architectures. The wideband distributed amplifier I/O's are internally matched to 50 Ohms and DC blocked for robust performance. The module features removable SMA connectors which can be detached to allow direct connection of the I/O pins to a microstrip or coplanar circuit.

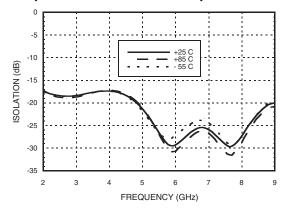
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdc = +7V

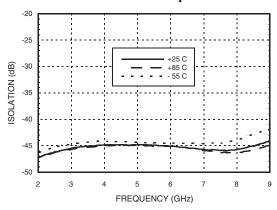

Parameter	Min.	Тур.	Max.	Units
Frequency Range	3 - 8			GHz
Vdc Range	6.5	7	8	V
Gain	9	11		dB
Gain Variation Over Temperature		0.01		dB/ °C
Noise Figure		6		dB
Input Return Loss		18		dB
Output Return Loss		20		dB
Output Power for 1 dB Compression (P1dB)	11	14		dBm
Saturated Output Power (Psat)		21		dBm
Output Third Order Intercept (IP3)		25		dBm
Phase Noise @ 100 Hz, Psat, 6 GHz		-148		dBc/Hz
Phase Noise @ 1 kHz, Psat, 6 GHz		-162		dBc/Hz
Phase Noise @ 10 kHz, Psat, 6 GHz		-168		dBc/Hz
Supply Current (Quiescent)		110	150	mA
Supply Current (Under RF Drive)			250	mA

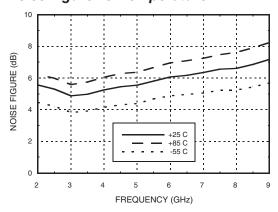


ULTRA LOW PHASE NOISE AMPLIFIER MODULE, 3 - 8 GHz


Broadband, Gain & Return Loss

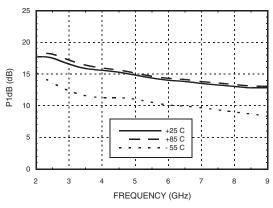

Gain vs. Temperature

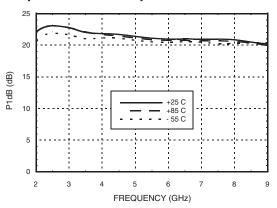

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

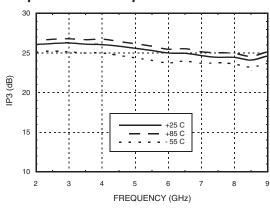
Reverse Isolation vs. Temperature

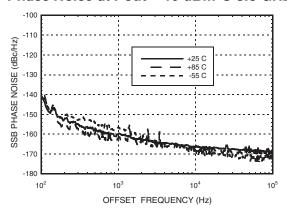
Noise Figure vs. Temperature

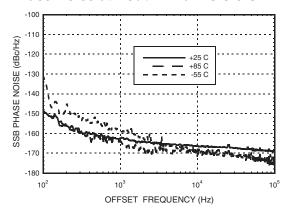


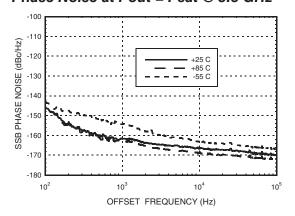


ULTRA LOW PHASE NOISE AMPLIFIER MODULE, 3 - 8 GHz


Output P1dB vs. Temperature

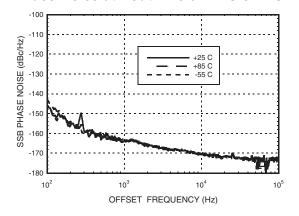

Output Psat vs. Temperature

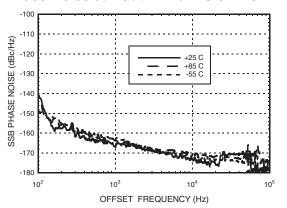

Output IP3 vs. Temperature


Phase Noise at Pout = 10 dBm @ 3.5 GHz

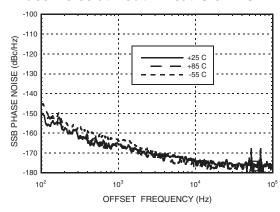
Phase Noise at Pout = P1dB @ 3.5 GHz

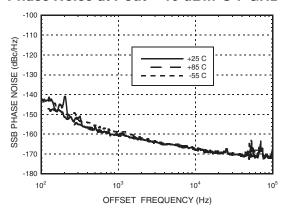
Phase Noise at Pout = Psat @ 3.5 GHz

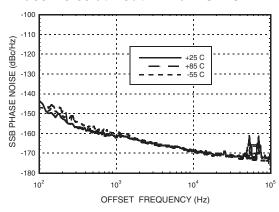


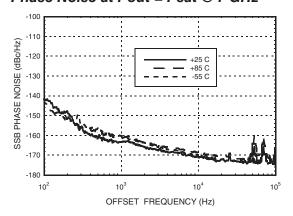


ULTRA LOW PHASE NOISE AMPLIFIER MODULE, 3 - 8 GHz


Phase Noise at Pout = 10 dBm @ 5.12 GHz


Phase Noise at Pout = P1dB @ 5.12 GHz


Phase Noise at Pout = Psat @ 5.12 GHz


Phase Noise at Pout = 10 dBm @ 7 GHz

Phase Noise at Pout = P1dB @ 7 GHz

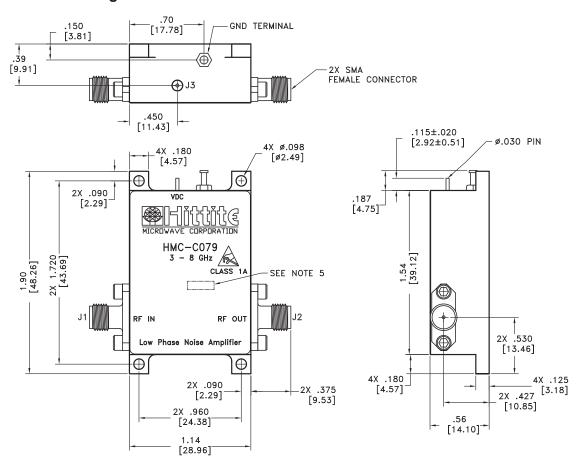
Phase Noise at Pout = Psat @ 7 GHz

ULTRA LOW PHASE NOISE AMPLIFIER MODULE, 3 - 8 GHz

Absolute Maximum Ratings

Bias Supply Voltage (V)	+8V
RF Input Power (RFIN)	+15 dBm
Continuous Pdiss (T = 85 °C)	1.2W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1	RFIN & RF Ground	RF input connector, coaxial female, field replaceable. This pin is AC coupled and matched to 50 Ohms.	RFINO— —
2	RFOUT & RF Ground	RF output connector, coaxial female, field replaceable. This pin is AC coupled and matched to 50 Ohms.	→ ├─○ RFOUT
3	Vdc	Power supply voltage for the amplifier.	Vdc
4	GND	Power supply ground.	○ GND =

ULTRA LOW PHASE NOISE AMPLIFIER MODULE, 3 - 8 GHz

Outline Drawing

Package Information

Package Type	C-16
Package Weight	107 gms ^[1]

[1] ±1 gms Tolerance

NOTES:

- 1. PACKAGE, LEADS, COVER MATERIAL: KOVAR $^{\text{TM}}$
- 2. FINISH: GOLD PLATE OVER NICKEL PLATE.
- 3. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. TOLERANCES:
- $4.1 .XX = \pm .02$
- $4.2.XXX = \pm .010$
- 5. MARK LOT NUMBER ON 0.080 X 0.250 LABEL WHERE SHOWN, WITH 0.030" MIN TEXT HEIGHT.