

APTM20DUM05TG

Dual common source MOSFET Power Module

D2

S

 $\mathbb{D}K1$

Q1

 \bigcirc

SK1

NTC2

$$\begin{split} V_{DSS} &= 200V \\ R_{DSon} &= 5m\Omega \text{ max } @ \text{ Tj} = 25^{\circ}\text{C} \\ I_D &= 333\text{A} \ @ \text{ Tc} = 25^{\circ}\text{C} \end{split}$$

Application

- Switched Mode Power Supplies
- Uninterruptible Power Supplies

Features

DK5

0

—○ SK?

NTC1

NC

-NC

-NTC1 -NTC2

- Power MOS V[®] MOSFETs
 - Low R_{DSon}
 - Low input and Miller capacitance
 - Low gate charge
 - Avalanche energy rated
 - Very rugged
- Kelvin source for easy drive
- Kelvin Drain for VDS monitoring
- Very low stray inductance
 - Symmetrical design
 - M5 power connectors
- Internal thermistor for temperature monitoring
- High level of integration

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Solderable terminals for signal and M5 for power for easy PCB mounting
- RoHS Compliant

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
$V_{ m DSS}$	Drain - Source Breakdown Voltage		200	V
T	Continuous Drain Current	$T_c = 25^{\circ}C$	333	
I_D	Continuous Diam Current	$T_c = 80^{\circ}C$	249	A
I_{DM}	Pulsed Drain current	700		
V_{GS}	Gate - Source Voltage		±30	V
R_{DSon}	Drain - Source ON Resistance		5	mΩ
P_{D}	Maximum Power Dissipation $T_c = 25^{\circ}C$		1250	W
I_{AR}	Avalanche current (repetitive and non repetitive)		333	A
E_{AR}	Repetitive Avalanche Energy		30	m.J
E_{AS}	Single Pulse Avalanche Energy	nergy		1113

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

APTM20DUM05TG

All ratings @ $T_i = 25^{\circ}C$ unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit
$I_{ m DSS}$	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 200V$ $T_j = 25^{\circ}C$			300	μA
		$V_{GS} = 0V, V_{DS} = 160V$ $T_j = 125^{\circ}C$			2000	
R _{DS(on)}	Drain – Source on Resistance	$V_{GS} = 10V, I_D = 166.5A$			5	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 8mA$	2		4	V
I_{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±250	nA

Dynamic Characteristics

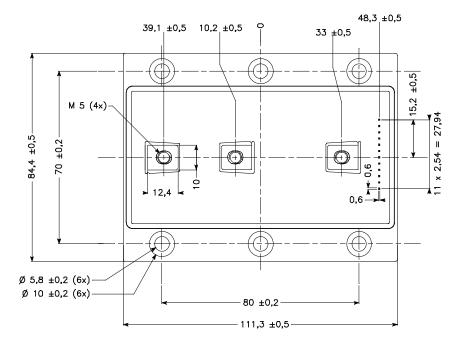
Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit
C_{iss}	Input Capacitance	$V_{GS} = 0V$		40.8		
C_{oss}	Output Capacitance	$V_{DS} = 25V$		9.1		nF
C_{rss}	Reverse Transfer Capacitance	f = 1MHz		3.1		
Q_{g}	Total gate Charge	$V_{GS} = 10V$ $V_{Bus} = 100V$ $I_D = 333A$		1184		nC
Q_{gs}	Gate – Source Charge			376		
Q_{gd}	Gate – Drain Charge			600		
$T_{d(on)}$	Turn-on Delay Time	$\begin{aligned} & \textbf{Resistive Switching} \\ & V_{GS} = 15V \\ & V_{Bus} = 100V \\ & I_D = 333A \\ & R_G = 0.22~\Omega \end{aligned}$		15		
T_{r}	Rise Time			25		ma
$T_{d(off)} \\$	Turn-off Delay Time			50		ns
T_{f}	Fall Time			10		

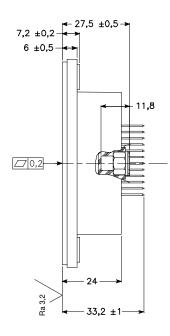
Source - Drain diode ratings and characteristics

Source Drain Grode ratings and characteristics						
Symbol	Characteristic	Test Conditions M		Typ	Max	Unit
I_{S}	Continuous Source current (Body diode)	$Tc = 25^{\circ}C$			333	A
ıs	Continuous Source current (Body diode)	$Tc = 80^{\circ}C$			249	A
V_{SD}	Diode Forward Voltage	$V_{GS} = 0V, I_S = -333A$			1.3	V
t_{rr}	Reverse Recovery Time	$I_S = -333A, V_R = 100V$ $di_S/dt = 800A/\mu s$		160		ns
Q _{rr}	Reverse Recovery Charge	$I_S = -333A$, $V_R = 100V$ $di_S/dt = 800A/\mu s$		10.4		μC

Thermal and package characteristics

Symbol	Characteristic		Min	Тур	Max	Unit	
R_{thJC}	Junction to Case Thermal Resistance					0.1	°C/W
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz			2500			V
T_{J}	Operating junction temperature range			-40		150	
T_{STG}	Storage Temperature Range					125	°C
$T_{\rm C}$	Operating Case Temperature					100	
Torque	Mounting torque To heatsink M5 For terminals M5	To heatsink	M5	2		3.5	N.m
Torque		M5	2		3.5	14.111	
Wt	Package Weight					550	g


APTM20DUM05TG


Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information).

Symbol	Characteristic	Min	Тур	Max	Unit
R ₂₅	Resistance @ 25°C		50		kΩ
B 25/85	$T_{25} = 298.15 \text{ K}$		3952		K

$$R_{T} = \frac{R_{25}}{\exp \left[B_{25/85} \left(\frac{1}{T_{25}} - \frac{1}{T} \right) \right]} \quad \text{T: Thermistor temperature}$$

$$R_{T}: \text{ Thermistor value at T}$$

Package outline (dimensions in mm)

Microsemi reserves the right to change, without notice, the specifications and information contained herein

Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.