

Hex Buffer

MC14049B, MC14050B

The MC14049B Hex Inverter/Buffer and MC14050B Noninverting Hex Buffer are constructed with MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. These complementary MOS devices find primary use where low power dissipation and/or high noise immunity is desired. These devices provide logic level conversion using only one supply voltage, $V_{\rm DD}$.

The input–signal high level (V_{IH}) can exceed the V_{DD} supply voltage for logic level conversions. Two TTL/DTL loads can be driven when the devices are used as a CMOS–to–TTL/DTL converter ($V_{DD} = 5.0 \text{ V}$, $V_{OL} \le 0.4 \text{ V}$, $I_{OL} \ge 3.2 \text{ mA}$).

Note that pins 13 and 16 are not connected internally on these devices; consequently connections to these terminals will not affect circuit operation.

Features

- High Source and Sink Currents
- High-to-Low Level Converter
- Supply Voltage Range = 3.0 V to 18 V
- V_{IN} can exceed V_{DD}
- Meets JEDEC B Specifications
- Improved ESD Protection On All Inputs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

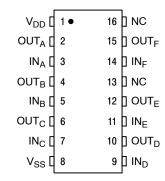
MAXIMUM RATINGS (Voltages Referenced to VSS)

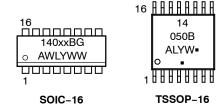
Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in}	Input Voltage Range (DC or Transient)	-0.5 to +18.0	V
V _{out}	Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in}	Input Current (DC or Transient) per Pin	±10	mA
I _{out}	Output Current (DC or Transient) per Pin	±45	mA
P _D	Power Dissipation, per Package (Note 1) (Plastic) (SOIC)	825 740	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Temperature Derating: See Figure 3.

This device contains protection circuitry to protect the inputs against damage due to high static voltages or electric fields referenced to the V_{SS} pin only. Extra precautions must be taken to avoid applications of any voltage higher than the maximum rated voltages to this high–impedance circuit. For proper operation, the ranges $V_{SS} \leq V_{in} \leq 18 \ V$ and $V_{SS} \leq V_{out} \leq V_{DD}$ are recommended.

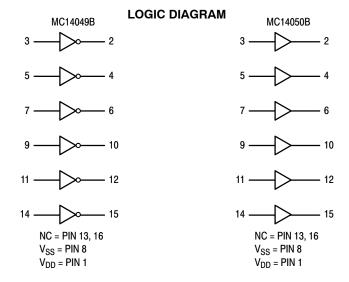

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.



SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F

PIN ASSIGNMENT

MARKING DIAGRAMS


xx = Specific Device Code A = Assembly Location

WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or = Pb-Free Indicator

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14049BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14049BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14049BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

MC14050BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14050BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14050BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC14050BDTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

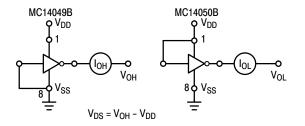
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

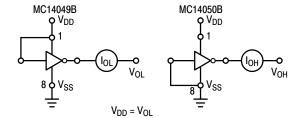
				-55	5°C	+25°C			+12	5°C	
Characterist	ic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD}	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{in} = 0	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage $ \begin{aligned} (V_O = 4.5 \text{ Vdc}) \\ (V_O = 9.0 \text{ Vdc}) \\ (V_O = 13.5 \text{ Vdc}) \end{aligned} $	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ Vdc})$ $(V_O = 1.0 \text{ Vdc})$ $(V_O = 1.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	1 1	3.5 7.0 11	2.75 5.50 8.25	1 1 1	3.5 7.0 11	- - -	Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	I _{OH}	5.0 10 15	-1.6 -1.6 -4.7	- - -	-1.25 -1.30 -3.75	-2.5 -2.6 -10	1 1	-1.0 -1.0 -3.0	- - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	3.75 10 30	- - -	3.2 8.0 24	6.0 16 40	1 1 1	2.6 6.6 19	- - -	mAdc
Input Current		I _{in}	15	-	±0.1	_	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} =	: 0)	C _{in}	_	_	_	_	10	20	-	_	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	1.0 2.0 4.0	- - -	0.002 0.004 0.006	1.0 2.0 4.0	- - -	30 60 120	μAdc
Total Supply Current (No (Dynamic plus Quies per package) (C _L = 50 pF on all ou buffers switching	lτ	5.0 10 15			$I_T = (3)$	1.8 μΑ/kHz) f 3.5 μΑ/kHz) f 5.3 μΑ/kHz) f	+ I _{DD}			μAdc	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$


Where: I_T is in μA (per Package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency and k = 0.002.


The formulas given are for the typical characteristics only at +25°C
 To calculate total supply current at loads other than 50 pF:

AC SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = +25^{\circ}\text{C}$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise Time $t_{TLH} = (0.7 \text{ ns/pF}) C_L + 65 \text{ ns}$ $t_{TLH} = (0.25 \text{ ns/pF}) C_L + 37.5 \text{ ns}$ $t_{TLH} = (0.2 \text{ ns/pF}) C_L + 30 \text{ ns}$	t _{TLH}	5.0 10 15	- - -	100 50 40	160 80 60	ns
Output Fall Time $t_{THL} = (0.2 \text{ ns/pF}) \text{ C}_L + 30 \text{ ns}$ $t_{THL} = (0.06 \text{ ns/pF}) \text{ C}_L + 17 \text{ ns}$ $t_{THL} = (0.04 \text{ ns/pF}) \text{ C}_L + 13 \text{ ns}$	t _{THL}	5.0 10 15	- - -	40 20 15	60 40 30	ns
$\begin{aligned} & \text{Propagation Delay Time} \\ & t_{\text{PLH}} = (0.33 \text{ ns/pF}) \text{ C}_{\text{L}} + 63.5 \text{ ns} \\ & t_{\text{PLH}} = (0.19 \text{ ns/pF}) \text{ C}_{\text{L}} + 30.5 \text{ ns} \\ & t_{\text{PLH}} = (0.06 \text{ ns/pF}) \text{ C}_{\text{L}} + 27 \text{ ns} \end{aligned}$	t _{PLH}	5.0 10 15	- - -	80 40 30	140 80 60	ns
Propagation Delay Time $t_{PHL} = (0.2 \text{ ns/pF}) \text{ C}_{L} + 30 \text{ ns}$ $t_{PHL} = (0.1 \text{ ns/pF}) \text{ C}_{L} + 15 \text{ ns}$ $t_{PHL} = (0.05 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns}$	t _{PHL}	5.0 10 15	- - -	40 20 15	80 40 30	ns

- 5. The formulas given are for the typical characteristics only at 25°C.
 6. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

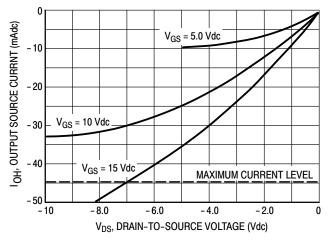


Figure 1. Typical Output Source Characteristics

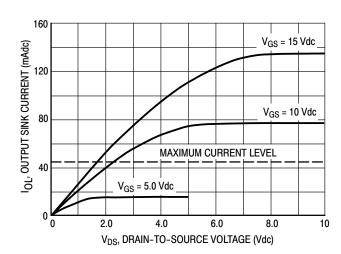


Figure 2. Typical Output Sink Characteristics

Figure 3. Ambient Temperature Power Derating

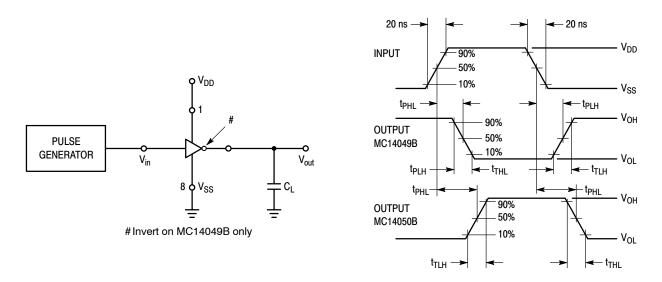
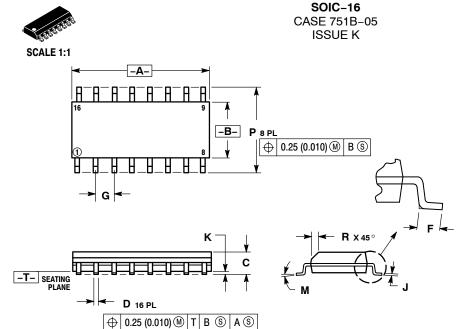



Figure 4. Switching Time Test Circuit and Waveforms

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

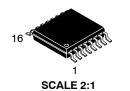
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

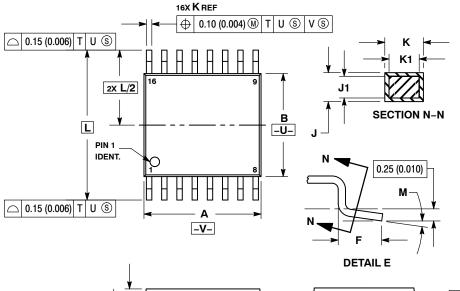
	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
	COLLECTOR		CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #	1	
2.	BASE		ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.		7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.		10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION		NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3		
13.	BASE		CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	SOI DEDING	FOOTPRINT
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDENING	a FOOTPHINT
15.	EMITTER	15.		15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	- 6	6.40 →
								-	, 19
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 <
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				1 1
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		. 🗀 1	16
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT	ń		, —	
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,		<u>-</u>	
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)	162	, T —	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT	ń	0.58		<u> </u>
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT	ń	0.00	ч	· —
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH				
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT)			
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT)			□ □ 1.27
13.	GATE, #2	13.	ANODE	13.	GATE N-CH				
14.	SOURCE, #2	14.		14.	COMMON DRAIN (OUTPUT)			▼ PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT)			\ <u>+-</u> +-
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH				
								8	9 + - + -
									_ <u> </u>
									DIMENSIONS: MILLIMETERS
									DINILINGIONS. MILLIMETERS


DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"		
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

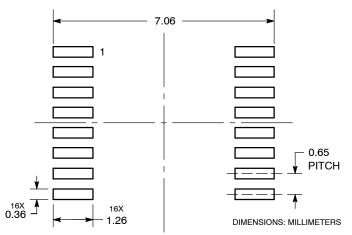
0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252 BSC		
M	0°	8°	0°	8 °	

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales