
Features
• High performance, low power AVR® 8-bit Microcontroller

• Advanced RISC architecture

– 135 powerful instructions – most single clock cycle execution

– 32 × 8 general purpose working registers

– Fully static operation

– Up to 16MIPS throughput at 16MHz

– On-chip 2-cycle multiplier

• Non-volatile program and data memories

– 64/128Kbytes of in-system self-programmable flash

• Endurance: 100,000 write/erase cycles

– Optional Boot Code section with independent lock bits

• USB boot loader programmed by default in the factory

• In-system programming by on-chip boot program hardware activated after

reset

• True read-while-write operation

• All supplied parts are pre-programed with a default USB bootloader

– 2K/4K (64K/128K flash version) bytes EEPROM

• Endurance: 100,000 write/erase cycles

– 4K/8K (64K/128K flash version) bytes internal SRAM

– Up to 64Kbytes optional external memory space

– Programming lock for software security

• JTAG (IEEE std. 1149.1 compliant) interface

– Boundary-scan capabilities according to the JTAG standard

– Extensive on-chip debug support

– Programming of flash, EEPROM, fuses, and lock bits through the JTAG interface

• USB 2.0 full-speed/low-speed device and on-the-go module

– Complies fully with:

– Universal serial bus specification REV 2.0

– On-the-go supplement to the USB 2.0 specification rev 1.0

– Supports data transfer rates up to 12Mbit/s and 1.5Mbit/s

• USB full-speed/low speed device module with interrupt on transfer completion

– Endpoint 0 for control transfers: up to 64-bytes

– Six programmable endpoints with in or out directions and with bulk, interrupt or

isochronous transfers

– Configurable endpoints size up to 256bytes in double bank mode

– Fully independent 832bytes USB DPRAM for endpoint memory allocation

– Suspend/resume interrupts

– Power-on reset and USB bus reset

– 48MHz PLL for full-speed bus operation

– USB bus disconnection on microcontroller request

• USB OTG reduced host:

– Supports host negotiation protocol (HNP) and session request protocol (SRP) for

OTG dual-role devices

– Provide status and control signals for software implementation of HNP and SRP

– Provides programmable times required for HNP and SRP

• Peripheral features

– Two 8-bit timer/counters with separate prescaler and compare mode

– Two16-bit timer/counter with separate prescaler, compare- and capture mode

8-bit Atmel

Microcontroller

with

64/128Kbytes

of ISP Flash

and USB

Controller

AT90USB646

AT90USB647

AT90USB1286

AT90USB1287

7593L–AVR–09/12

2

7593L–AVR–09/12

AT90USB64/128

– Real time counter with separate oscillator

– Four 8-bit PWM channels

– Six PWM channels with programmable resolution from 2 to 16 bits

– Output compare modulator

– 8-channels, 10-bit ADC

– Programmable serial USART

– Master/slave SPI serial interface

– Byte oriented 2-wire serial interface

– Programmable watchdog timer with separate on-chip oscillator

– On-chip analog comparator

– Interrupt and wake-up on pin change

• Special microcontroller features

– Power-on reset and programmable brown-out detection

– Internal calibrated oscillator

– External and internal interrupt sources

– Six sleep modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby

• I/O and packages

– 48 programmable I/O lines

– 64-lead TQFP and 64-lead QFN

• Operating voltages

– 2.7 - 5.5V

• Operating temperature

– Industrial (-40°C to +85°C)

• Maximum frequency

– 8MHz at 2.7V - industrial range

– 16MHz at 4.5V - industrial range

3

7593L–AVR–09/12

AT90USB64/128

1. Pin configurations

Figure 1-1. Pinout Atmel AT90USB64/128-TQFP.

AT90USB90128/64

TQFP64

(INT.7/AIN.1/UVcon) PE7

UVcc

D-

D+

UGnd

UCap

VBus

(IUID) PE3

(SS/PCINT0) PB0

(INT.6/AIN.0) PE6

(PCINT1/SCLK) PB1

(PDI/PCINT2/MOSI) PB2

(PDO/PCINT3/MISO) PB3

(PCINT4/OC.2A) PB4

(PCINT5/OC.1A) PB5

(PCINT6/OC.1B) PB6

(P
C

IN
T

7
/O

C
.0

A
/O

C
.1

C
)

P
B

7

(I
N

T
4
/T

O
S

C
1
)

P
E

4

(I
N

T.
5
/T

O
S

C
2
)

P
E

5

 R
E

S
E

T

V
C

C

G
N

D

X
TA

L
2

X
TA

L
1

(O
C

0
B

/S
C

L
/I
N

T
0
)

P
D

0

(O
C

2
B

/S
D

A
/I
N

T
1
)

P
D

1

(R
X

D
1
/I
N

T
2
)

P
D

2

(T
X

D
1
/I
N

T
3
)

P
D

3

(I
C

P
1
)

P
D

4

(X
C

K
1
)

P
D

5

PA3 (AD3)

PA4 (AD4)

PA5 (AD5)

PA6 (AD6)

PA7 (AD7)

PE2 (ALE/HWB)

PC7 (A15/IC.3/CLKO)

PC6 (A14/OC.3A)

PC5 (A13/OC.3B)

PC4 (A12/OC.3C)

PC3 (A11/T.3)

PC2 (A10)

PC1 (A9)

PC0 (A8)

PE1 (RD)

PE0 (WR)

A
V

C
C

G
N

D

A
R

E
F

P
F

0
 (

A
D

C
0
)

P
F

1
 (

A
D

C
1
)

P
F

2
 (

A
D

C
2
)

P
F

3
 (

A
D

C
3
)

P
F

4
 (

A
D

C
4
/T

C
K

)

P
F

5
 (

A
D

C
5
/T

M
S

)

P
F

6
 (

A
D

C
6
/T

D
O

)

P
F

7
 (

A
D

C
7
/T

D
I)

G
N

D

V
C

C

P
A

0
 (

A
D

0
)

P
A

1
 (

A
D

1
)

P
A

2
 (

A
D

2
)

(T
1
)

P
D

6

(T
0
)

P
D

7

INDEX CORNER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

6
4

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

4

7593L–AVR–09/12

AT90USB64/128

Figure 1-2. Pinout Atmel AT90USB64/128-QFN.

Note: The large center pad underneath the MLF packages is made of metal and internally connected to
GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center
pad is left unconnected, the package might loosen from the board.

2

3

1

4

5

6

7

8

9

10

11

12

13

14

16 33

15

47

46

48

45

44

43

42

41

40

39

38

37

36

35

34

1
7

1
8

2
0

1
9

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
9

2
8

3
2

3
1

3
0

5
2

5
1

5
0

4
9

6
4

6
3

6
2

5
3

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

AT90USB128/64
(64-lead QFN top view)

INDEX CORNER

A
V

C
C

G
N

D

A
R

E
F

P
F

0
 (

A
D

C
0

)

P
F

1
 (

A
D

C
1

)

P
F

2
 (

A
D

C
2

)

P
F

3
 (

A
D

C
3

)

P
F

4
 (

A
D

C
4

/T
C

K
)

P
F

5
 (

A
D

C
5

/T
M

S
)

P
F

6
 (

A
D

C
6

/T
D

O
)

P
F

7
 (

A
D

C
7

/T
D

I)

G
N

D

V
C

C

P
A

0
 (

A
D

0
)

P
A

1
 (

A
D

1
)

P
A

2
 (

A
D

2
)

(INT.7/AIN.1/UVcon) PE7

UVcc

D-

D+

UGnd

UCap

VBus

(IUID) PE3

(SS/PCINT0) PB0

(INT.6/AIN.0) PE6

(PCINT1/SCLK) PB1

(PDI/PCINT2/MOSI) PB2

(PDO/PCINT3/MISO) PB3

(PCINT4/OC.2A) PB4

(PCINT5/OC.1A) PB5

(PCINT6/OC.1B) PB6

(P
C

IN
T

7
/O

C
.0

A
/O

C
.1

C
)

P
B

7

(I
N

T
4

/T
O

S
C

1
)

P
E

4

(I
N

T.
5

/T
O

S
C

2
)

P
E

5

V
C

C

G
N

D

X
TA

L
2

X
TA

L
1

(O
C

0
B

/S
C

L
/I
N

T
0

)
P

D
0

(O
C

2
B

/S
D

A
/I
N

T
1

)
P

D
1

(R
X

D
1

/I
N

T
2

)
P

D
2

(T
X

D
1

/I
N

T
3

)
P

D
3

(I
C

P
1

)
P

D
4

(X
C

K
1

)
P

D
5

(T
1

)
P

D
6

(T
0

)
P

D
7

 R
E

S
E

T

PA3 (AD3)

PA4 (AD4)

PA5 (AD5)

PA6 (AD6)

PA7 (AD7)

PE2 (ALE/HWB)

PC7 (A15/IC.3/CLKO)

PC6 (A14/OC.3A)

PC5 (A13/OC.3B)

PC4 (A12/OC.3C)

PC3 (A11/T.3)

PC2 (A10)

PC1 (A9)

PC0 (A8)

PE1 (RD)

PE0 (WR)

5

7593L–AVR–09/12

AT90USB64/128

2. Overview
The Atmel® AVR® AT90USB64/128 is a low-power CMOS 8-bit microcontroller based on the

Atmel® AVR® enhanced RISC architecture. By executing powerful instructions in a single clock

cycle, the AT90USB64/128 achieves throughputs approaching 1MIPS per MHz allowing the sys-

tem designer to optimize power consumption versus processing speed.

6

7593L–AVR–09/12

AT90USB64/128

2.1 Block diagram

Figure 2-1. Block diagram.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the

32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent

registers to be accessed in one single instruction executed in one clock cycle. The resulting

PROGRAM

COUNTER

ST ACK

POINTER

PROGRAM

FLASH

MCU CONTROL

REGISTER

SRAM

GENERAL

PURPOSE

REGISTERS

INSTRUCTION

REGISTER

TIMER/

COUNTERS

INSTRUCTION

DECODER

DATA DIR.

REG. PORTB

DATA DIR.

REG. PORTE

DATA DIR.

REG. PORT A

DATA DIR.

REG. PORTD

DATA REGISTER

PORTB

DATA REGISTER

PORTE

DATA REGISTER

PORT A

DATA REGISTER

PORTD

INTERRUPT

UNIT

EEPROM

SPIUSART1

ST ATUS

REGISTER

Z

Y

X

ALU

POR TB DRIVERSPOR TE DRIVERS

POR TA DRIVERSPOR TF DRIVERS

POR TD DRIVERS

POR TC DRIVERS

PB7 - PB0PE7 - PE0

PA7 - P A0PF7 - PF0

R
E

S
E

T

VCC

AGND

GND

AREF

X
T

A
L

1

X
T

A
L

2

CONTROL

LINES

+ -

A
N

A
L

O
G

C
O

M
P

A
R

A
T

O
R

PC7 - PC0

INTERNAL

OSCILLA TOR

WATCHDOG

TIMER

8-BIT DA TA BUS

AVCC

USB

TIMING AND

CONTROL

OSCILLA TOR

CALIB. OSC

DATA DIR.

REG. PORT C

DATA REGISTER

PORT C

ON-CHIP DEBUG

JTAG TAP

PROGRAMMING

LOGIC

BOUNDARY-

SCAN

DATA DIR.

REG. PORT F

DATA REGISTER

PORT F

ADC

POR - BOD

RESET

PD7 - PD0

TWO-WIRE SERIAL

INTERFACE

PLL

7

7593L–AVR–09/12

AT90USB64/128

architecture is more code efficient while achieving throughputs up to ten times faster than con-

ventional CISC microcontrollers.

The Atmel AT90USB64/128 provides the following features: 64/128Kbytes of In-System Pro-

grammable Flash with Read-While-Write capabilities, 2K/4Kbytes EEPROM, 4K/8K bytes

SRAM, 48 general purpose I/O lines, 32 general purpose working registers, Real Time Counter

(RTC), four flexible Timer/Counters with compare modes and PWM, one USART, a byte ori-

ented 2-wire Serial Interface, a 8-channels, 10-bit ADC with optional differential input stage with

programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port,

IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug sys-

tem and programming and six software selectable power saving modes. The Idle mode stops

the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue

functioning. The Power-down mode saves the register contents but freezes the Oscillator, dis-

abling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode,

the asynchronous timer continues to run, allowing the user to maintain a timer base while the

rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O mod-

ules except Asynchronous Timer and ADC, to minimize sw itching noise during ADC

conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the

device is sleeping. This allows very fast start-up combined with low power consumption. In

Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using the Atmel high-density nonvolatile memory technology. The

On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI

serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot pro-

gram running on the AVR core. The boot program can use any interface to download the

application program in the application Flash memory. Software in the Boot Flash section will

continue to run while the Application Flash section is updated, providing true Read-While-Write

operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a

monolithic chip, the AT90USB64/128 is a powerful microcontroller that provides a highly flexible

and cost effective solution to many embedded control applications.

The AT90USB64/128 AVR is supported with a full suite of program and system development

tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emula-

tors, and evaluation kits.

8

7593L–AVR–09/12

AT90USB64/128

2.2 Pin descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

2.2.3 AVCC

Analog supply voltage.

2.2.4 Port A (PA7..PA0)

Port A is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The

Port A output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port A also serves the functions of various special features of the Atmel AT90USB64/128 as

listed on page 78.

2.2.5 Port B (PB7..PB0)

Port B is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The

Port B output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the AT90USB64/128 as listed on

page 79.

2.2.6 Port C (PC7..PC0)

Port C is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The

Port C output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port C also serves the functions of special features of the AT90USB64/128 as listed on page 82.

2.2.7 Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port D output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port D also serves the functions of various special features of the AT90USB64/128 as listed on

page 83.

9

7593L–AVR–09/12

AT90USB64/128

2.2.8 Port E (PE7..PE0)

Port E is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The

Port E output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port E also serves the functions of various special features of the AT90USB64/128 as listed on

page 86.

2.2.9 Port F (PF7..PF0)

Port F serves as analog inputs to the A/D Converter.

Port F also serves as an 8-bit bidirectional I/O port, if the A/D Converter is not used. Port pins

can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-

metrical drive characteristics with both high sink and source capability. As inputs, Port F pins

that are externally pulled low will source current if the pull-up resistors are activated. The Port F

pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the

JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will

be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

2.2.10 D-

USB Full speed / Low Speed Negative Data Upstream Port. Should be connected to the USB D-

connector pin with a serial 22Ω resistor.

2.2.11 D+

USB Full speed / Low Speed Positive Data Upstream Port. Should be connected to the USB D+

connector pin with a serial 22Ω resistor.

2.2.12 UGND

USB Pads Ground.

2.2.13 UVCC

USB Pads Internal Regulator Input supply voltage.

2.2.14 UCAP

USB Pads Internal Regulator Output supply voltage. Should be connected to an external capac-

itor (1µF).

2.2.15 VBUS

USB VBUS monitor and OTG negociations.

2.2.16 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a

reset, even if the clock is not running. The minimum pulse length is given in Table 9-1 on page

58. Shorter pulses are not guaranteed to generate a reset.

2.2.17 XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

10

7593L–AVR–09/12

AT90USB64/128

2.2.18 XTAL2

Output from the inverting oscillator amplifier.

2.2.19 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-

nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC

through a low-pass filter.

2.2.20 AREF

This is the analog reference pin for the A/D Converter.

3. Resources
A comprehensive set of development tools, application notes and datasheets are available for

download on http://www.atmel.com/avr.

4. About code examples
This documentation contains simple code examples that briefly show how to use various parts of

the device. Be aware that not all C compiler vendors include bit definitions in the header files

and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-

tation for more details.

These code examples assume that the part specific header file is included before compilation.

For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI"

instructions must be replaced with instructions that allow access to extended I/O. Typically

"LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

http://www.atmel.com/products/microcontrollers/avr/default.aspx

11

7593L–AVR–09/12

AT90USB64/128

5. AVR CPU core

5.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core

is to ensure correct program execution. The CPU must therefore be able to access memories,

perform calculations, control peripherals, and handle interrupts.

5.2 Architectural overview

Figure 5-1. Block diagram of the AVR architecture.

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with

separate memories and buses for program and data. Instructions in the program memory are

executed with a single level pipelining. While one instruction is being executed, the next instruc-

tion is pre-fetched from the program memory. This concept enables instructions to be executed

in every clock cycle. The program memory is In-System Re-programmable Flash memory.

Flash
program
memory

Instruction
register

Instruction
decoder

Program
counter

Control lines

32 x 8
general
purpose
registrers

ALU

Status
and control

I/O lines

EEPROM

Data bus 8-bit

Data
SRAM

D
ir
e

c
t

a
d

d
re

s
s
in

g

In
d

ir
e

c
t

a
d

d
re

s
s
in

g

Interrupt
unit

SPI
unit

Watchdog
timer

Analog
comparator

I/O Module 2

I/O Module1

I/O Module n

12

7593L–AVR–09/12

AT90USB64/128

The fast-access Register File contains 32 × 8-bit general purpose working registers with a single

clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-

ical ALU operation, two operands are output from the Register File, the operation is executed,

and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data

Space addressing – enabling efficient address calculations. One of the these address pointers

can also be used as an address pointer for look up tables in Flash program memory. These

added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and

a register. Single register operations can also be executed in the ALU. After an arithmetic opera-

tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to

directly address the whole address space. Most AVR instructions have a single 16-bit word for-

mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the

Application Program section. Both sections have dedicated Lock bits for write and read/write

protection. The SPM instruction that writes into the Application Flash memory section must

reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the

Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack

size is only limited by the total SRAM size and the usage of the SRAM. All user programs must

initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack

Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed

through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global

Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the

Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-

tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-

ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data

Space locations following those of the Register File, 0x20 - 0x5F. In addition, the Atmel

AT90USB64/128 has Extended I/O space from 0x60 - 0xFF in SRAM where only the

ST/STS/STD and LD/LDS/LDD instructions can be used.

5.3 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose

working registers. Within a single clock cycle, arithmetic operations between general purpose

registers or between a register and an immediate are executed. The ALU operations are divided

into three main categories – arithmetic, logical, and bit-functions. Some implementations of the

architecture also provide a powerful multiplier supporting both signed/unsigned multiplication

and fractional format. See the “Instruction set summary” on page 423 for a detailed description.

13

7593L–AVR–09/12

AT90USB64/128

5.4 Status register

The status register contains information about the result of the most recently executed arithmetic

instruction. This information can be used for altering program flow in order to perform conditional

operations. Note that the status register is updated after all ALU operations, as specified in the

Instruction Set Reference. This will in many cases remove the need for using the dedicated com-

pare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine and restored

when returning from an interrupt. This must be handled by software.

The AVR status register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-

rupt enable control is then performed in separate control registers. If the Global Interrupt Enable

Register is cleared, none of the interrupts are enabled independent of the individual interrupt

enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by

the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by

the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-

nation for the operated bit. A bit from a register in the Register File can be copied into T by the

BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the

BLD instruction.

• Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful

in BCD arithmetic. See the “Instruction set summary” on page 423 for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement

Overflow Flag V. See the “Instruction set summary” on page 423 for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the

“Instruction set summary” on page 423 for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the

“Instruction set summary” on page 423 for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction

set summary” on page 423 for detailed information.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

14

7593L–AVR–09/12

AT90USB64/128

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction set

summary” on page 423 for detailed information.

5.5 General purpose register file

The register file is optimized for the AVR Enhanced RISC instruction set. In order to achieve the

required performance and flexibility, the following input/output schemes are supported by the

register file:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 5-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 5-2. AVR CPU general purpose working registers.

Most of the instructions operating on the Register File have direct access to all registers, and

most of them are single cycle instructions.

As shown in Figure 5-2, each register is also assigned a data memory address, mapping them

directly into the first 32 locations of the user Data Space. Although not being physically imple-

mented as SRAM locations, this memory organization provides great flexibility in access of the

registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file.

5.5.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These reg-

isters are 16-bit address pointers for indirect addressing of the data space. The three indirect

address registers X, Y, and Z are defined as described in Figure 5-3.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

purpose R15 0x0F

working R16 0x10

registers R17 0x11

…

R26 0x1A X-register Low byte

R27 0x1B X-register High byte

R28 0x1C Y-register Low byte

R29 0x1D Y-register High byte

R30 0x1E Z-register Low byte

R31 0x1F Z-register High byte

15

7593L–AVR–09/12

AT90USB64/128

Figure 5-3. The X-, Y-, and Z-registers.

In the different addressing modes these address registers have functions as fixed displacement,

automatic increment, and automatic decrement (see the instruction set reference for details).

5.6 Stack pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing

return addresses after interrupts and subroutine calls. The Stack Pointer Register always points

to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-

tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack

Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt

Stacks are located. This Stack space in the data SRAM must be defined by the program before

any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to

point above 0x0100. The initial value of the stack pointer is the last address of the internal

SRAM. The Stack Pointer is decremented by one when data is pushed onto the Stack with the

PUSH instruction, and it is decremented by three when the return address is pushed onto the

Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is

popped from the Stack with the POP instruction, and it is incremented by three when data is

popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of

bits actually used is implementation dependent. Note that the data space in some implementa-

tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register

will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 1 0 0 0 0 0

1 1 1 1 1 1 1 1

16

7593L–AVR–09/12

AT90USB64/128

5.6.1 RAMPZ - Extended Z-pointer register for ELPM/SPM

For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown

in Figure 5-4. Note that LPM is not affected by the RAMPZ setting.

Figure 5-4. The Z-pointer used by ELPM and SPM.

The actual number of bits is implementation dependent. Unused bits in an implementation will

always read as zero. For compatibility with future devices, be sure to write these bits to zero.

5.7 Instruction execution timing

This section describes the general access timing concepts for instruction execution. The AVR

CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the

chip. No internal clock division is used.

Figure 5-5 shows the parallel instruction fetches and instruction executions enabled by the Har-

vard architecture and the fast-access Register File concept. This is the basic pipelining concept

to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,

functions per clocks, and functions per power-unit.

Figure 5-5. The parallel instruction fetches and instruction executions.

Figure 5-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU

operation using two register operands is executed, and the result is stored back to the destina-

tion register.

Bit 7 6 5 4 3 2 1 0

RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0 RAMPZ

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit (individually) 7 0 7 0 7 0

RAMPZ ZH ZL

Bit (Z-pointer) 23 16 15 8 7 0

clk

1st instruction fetch

1st instruction execute
2nd instruction fetch

2nd instruction execute
3rd instruction fetch

3rd instruction execute
4th instruction fetch

T1 T2 T3 T4

CPU

17

7593L–AVR–09/12

AT90USB64/128

Figure 5-6. Single cycle ALU operation.

5.8 Reset and interrupt handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset

Vector each have a separate program vector in the program memory space. All interrupts are

assigned individual enable bits which must be written logic one together with the Global Interrupt

Enable bit in the Status Register in order to enable the interrupt. Depending on the Program

Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12

are programmed. This feature improves software security. See the section “Memory program-

ming” on page 359 for details.

The lowest addresses in the program memory space are by default defined as the Reset and

Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 68. The list also

determines the priority levels of the different interrupts. The lower the address the higher is the

priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request

0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL

bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 68 for more information.

The Reset Vector can also be moved to the start of the Boot Flash section by programming the

BOOTRST Fuse, see “Memory programming” on page 359.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-

abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled

interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a

Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the

Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-

tor in order to execute the interrupt handling routine, and hardware clears the corresponding

Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)

to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is

cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is

cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt

Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the

Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These

interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the

interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one

more instruction before any pending interrupt is served.

Total execution time

Register operands fetch

ALU operation execute

Result write back

T1 T2 T3 T4

clk
CPU

18

7593L–AVR–09/12

AT90USB64/128

Note that the Status Register is not automatically stored when entering an interrupt routine, nor

restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.

No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the

CLI instruction. The following example shows how this can be used to avoid interrupts during the

timed EEPROM write sequence.

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-

cuted before any pending interrupts, as shown in this example.

Assembly code example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C code example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

__disable_interrupt();

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

19

7593L–AVR–09/12

AT90USB64/128

5.8.1 Interrupt response time

The interrupt execution response for all the enabled AVR interrupts is five clock cycles minimum.

After five clock cycles the program vector address for the actual interrupt handling routine is exe-

cuted. During these five clock cycle period, the Program Counter is pushed onto the Stack. The

vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an

interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before

the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt exe-

cution response time is increased by five clock cycles. This increase comes in addition to the

start-up time from the selected sleep mode.

A return from an interrupt handling routine takes five clock cycles. During these five clock cycles,

the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is incre-

mented by two, and the I-bit in SREG is set.

Assembly code example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C code example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

20

7593L–AVR–09/12

AT90USB64/128

6. Atmel AVR AT90USB64/128 memories
This section describes the different memories in the AT90USB64/128. The AVR architecture has

two main memory spaces, the Data Memory and the Program Memory space. In addition, the

AT90USB64/128 features an EEPROM Memory for data storage. All three memory spaces are

linear and regular.

Notes: 1. Byte address.

2. Word (16-bit) address.

6.1 In-system re-programmable flash program memory

The AT90USB64/128 contains 128Kbytes On-chip In-System Re-programmable Flash memory

for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as

64K × 16. For software security, the Flash Program memory space is divided into two sections,

Boot Program section and Application Program section.

The Flash memory has an endurance of at least 100,000 wr ite/erase cycles. The

AT90USB64/128 Program Counter (PC) is 16 bits wide, thus addressing the 128K program

memory locations. The operation of Boot Program section and associated Boot Lock bits for

Table 6-1. Memory mapping.

Memory Mnemonic AT90USB64 AT90USB128

Flash

Size Flash size 64Kbytes 128K bytes

Start address - 0x00000

End address Flash end
0x0FFFF (1)

0x7FFF (2)

0x1FFFF (1)

0xFFFF (2)

32 registers

Size - 32bytes

Start address - 0x0000

End address - 0x001F

I/O registers

Size - 64 bytes

Start address - 0x0020

End address - 0x005F

Ext I/O
registers

Size - 160bytes

Start address - 0x0060

End address - 0x00FF

Internal
SRAM

Size ISRAM size 4Kbytes 8Kbytes

Start address ISRAM start 0x0100

End address ISRAM end 0x10FF 0x20FF

External

Memory

Size XMem size 0-64Kbytes

Start address XMem start 0x1100 0x2100

End address XMem end 0xFFFF

EEPROM

Size E2 size 2Kbytes 4Kbytes

Start address - 0x0000

End address E2 end 0x07FF 0x0FFF

21

7593L–AVR–09/12

AT90USB64/128

software protection are described in detail in “Memory programming” on page 359. “Memory pro-

gramming” on page 359 contains a detailed description on Flash data serial downloading using

the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM

– Load Program Memory instruction description and ELPM - Extended Load Program Memory

instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction execution tim-

ing” on page 16.

Figure 6-1. Program memory map.

6.2 SRAM data memory

Figure 6-2 shows how the Atmel AT90USB64/128 SRAM memory is organized.

The AT90USB64/128 is a complex microcontroller with more peripheral units than can be sup-

ported within the 64 location reserved in the Opcode for the IN and OUT instructions. For the

Extended I/O space from $060 - $0FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-

tions can be used.

The first 4,352/8,448 Data Memory locations address both the Register File, the I/O Memory,

Extended I/O Memory, and the internal data SRAM. The first 32 locations address the Register

file, the next 64 location the standard I/O Memory, then 160 locations of Extended I/O memory

and the next 4,096/8,192 locations address the internal data SRAM.

0x00000

Program memory

Application flash section

Boot flash section

Flash end

22

7593L–AVR–09/12

AT90USB64/128

An optional external data SRAM can be used with the Atmel AT90USB64/128. This SRAM will

occupy an area in the remaining address locations in the 64K address space. This area starts at

the address following the internal SRAM. The Register file, I/O, Extended I/O and Internal SRAM

occupies the lowest 4,352/8,448 bytes, so when using 64KB (65,536 bytes) of External Memory,

61,184/57,088 Bytes of External Memory are available. See “External memory interface” on

page 31 for details on how to take advantage of the external memory map.

When the addresses accessing the SRAM memory space exceeds the internal data memory

locations, the external data SRAM is accessed using the same instructions as for the internal

data memory access. When the internal data memories are accessed, the read and write strobe

pins (PE0 and PE1) are inactive during the whole access cycle. External SRAM operation is

enabled by setting the SRE bit in the XMCRA Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access of the

internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP

take one additional clock cycle. If the Stack is placed in external SRAM, interrupts, subroutine

calls and returns take three clock cycles extra because the three-byte program counter is

pushed and popped, and external memory access does not take advantage of the internal pipe-

line memory access. When external SRAM interface is used with wait-state, one-byte external

access takes two, three, or four additional clock cycles for one, two, and three wait-states

respectively. Interrupts, subroutine calls and returns will need five, seven, or nine clock cycles

more than specified in the Instruction set Manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-

ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register file,

registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given

by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-

ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O registers, and the 8,192 bytes of internal data

SRAM in the AT90USB64/128 are all accessible through all these addressing modes. The Reg-

ister File is described in “General purpose register file” on page 14.

http://www.atmel.com/Images/doc0856.pdf

23

7593L–AVR–09/12

AT90USB64/128

Figure 6-2. Data memory map.

6.2.1 Data memory access times

This section describes the general access timing concepts for internal memory access. The

internal data SRAM access is performed in two clkCPU cycles as described in Figure 6-3.

32 registers
64 I/O registers

Internal SRAM
(8192 x 8)

$0000 - $001F
$0020 - $005F

$FFFF

$0060 - $00FF

Data memory

External SRAM
(0 - 64K x 8)

160 Ext I/O reg.

XMem start

ISRAM end

ISRAM start

24

7593L–AVR–09/12

AT90USB64/128

Figure 6-3. On-chip data SRAM access cycles.

6.3 EEPROM data memory

The Atmel AT90USB64/128 contains 2K/4K bytes of data EEPROM memory. It is organized as

a separate data space, in which single bytes can be read and written. The EEPROM has an

endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the

CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM

Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see

page 373, page 377, and page 362 respectively.

6.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 6-3. A self-timing function, however,

lets the user software detect when the next byte can be written. If the user code contains instruc-

tions that write the EEPROM, some precautions must be taken. In heavily filtered power

supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for some

period of time to run at a voltage lower than specified as minimum for the clock frequency used.

See “Preventing EEPROM corruption” on page 29. for details on how to avoid problems in these

situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.

Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is

executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next

instruction is executed.

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute address

R
e

a
d

W
ri

te

CPU

Memory access instruction Next instruction

25

7593L–AVR–09/12

AT90USB64/128

6.3.2 EEARH and EEARL – The EEPROM Address Register

• Bits 15..12 – Res: Reserved bits

These bits are reserved bits in the Atmel AT90USB64/128 and will always read as zero.

• Bits 11..0 – EEAR8..0: EEPROM address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the 4K

bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 4096.

The initial value of EEAR is undefined. A proper value must be written before the EEPROM may

be accessed.

6.3.3 EEDR – The EEPROM Data Register

• Bits 7..0 – EEDR7.0: EEPROM data

For the EEPROM write operation, the EEDR Register contains the data to be written to the

EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the

EEDR contains the data read out from the EEPROM at the address given by EEAR.

6.3.4 EECR – The EEPROM Control Register

• Bits 7..6 – Res: Reserved bits

These bits are reserved bits in the AT90USB64/128 and will always read as zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode bits

The EEPROM Programming Mode bit setting defines which programming action that will be trig-

gered when writing EEPE. It is possible to program data in one atomic operation (erase the old

value and program the new value) or to split the Erase and Write operations in two different

operations. The Programming times for the different modes are shown in Table 6-2 on page 26.

While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be

reset to 0b00 unless the EEPROM is busy programming.

Bit 15 14 13 12 11 10 9 8

– – – – EEAR11 EEAR10 EEAR9 EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 X X X X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/write R R R/W R/W R/W R/W R/W R/W

Initial value 0 0 X X 0 0 X 0

26

7593L–AVR–09/12

AT90USB64/128

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing

EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-

rupt when EEPE is cleared.

• Bit 2 – EEMPE: EEPROM Master Programming Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.

When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the

selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been

written to one by software, hardware clears the bit to zero after four clock cycles. See the

description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Programming Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address

and data are correctly set up, the EEPE bit must be written to one to write the value into the

EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-

wise no EEPROM write takes place. The following procedure should be followed when writing

the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software

must check that the Flash programming is completed before initiating a new EEPROM write.

Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the

Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Memory pro-

gramming” on page 359 for details about Boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the

EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is

interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the

interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared

during all the steps to avoid these problems.

Table 6-2. EEPROM Mode bits.

EEPM1 EEPM0

Programming

time Operation

0 0 3.4ms Erase and Write in one operation (atomic operation)

0 1 1.8ms Erase only

1 0 1.8ms Write only

1 1 – Reserved for future use

27

7593L–AVR–09/12

AT90USB64/128

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-

ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,

the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct

address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the

EEPROM read. The EEPROM read access takes one instruction, and the requested data is

available immediately. When the EEPROM is read, the CPU is halted for four cycles before the

next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in

progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 6-3 lists the typical pro-

gramming time for EEPROM access from the CPU.

The following code examples show one assembly and one C function for writing to the

EEPROM. The examples assume that interrupts are controlled (for example by disabling inter-

rupts globally) so that no interrupts will occur during execution of these functions. The examples

also assume that no Flash Boot Loader is present in the software. If such code is present, the

EEPROM write function must also wait for any ongoing SPM command to finish.

Table 6-3. EEPROM programming time.

Symbol Number of calibrated RC oscillator cycles Typical programming time

EEPROM write
(from CPU)

26,368 3.3ms

28

7593L–AVR–09/12

AT90USB64/128

Note: 1. See “About code examples” on page 10.

Assembly code example (1)

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to Data Register

out EEDR,r16

; Write logical one to EEMPE

sbi EECR,EEMPE

; Start eeprom write by setting EEPE

sbi EECR,EEPE

ret

C code example (1)

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

29

7593L–AVR–09/12

AT90USB64/128

The next code examples show assembly and C functions for reading the EEPROM. The exam-

ples assume that interrupts are controlled so that no interrupts will occur during execution of

these functions.

Note: 1. See “About code examples” on page 10.

6.3.5 Preventing EEPROM corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is

too low for the CPU and the EEPROM to operate properly. These issues are the same as for

board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,

a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-

ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can

be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal

BOD does not match the needed detection level, an external low VCC reset Protection circuit can

be used. If a reset occurs while a write operation is in progress, the write operation will be com-

pleted provided that the power supply voltage is sufficient.

Assembly code example (1)

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from Data Register

in r16,EEDR

ret

C code example (1)

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

}

30

7593L–AVR–09/12

AT90USB64/128

6.4 I/O memory

The I/O space definition of the Atmel AT90USB64/128 is shown in “Register summary” on page

419.

All AT90USB64/128 I/Os and peripherals are placed in the I/O space. All I/O locations may be

accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32

general purpose working registers and the I/O space. I/O Registers within the address range

0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the

value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the

instruction set section for more details. When using the I/O specific commands IN and OUT, the

I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using

LD and ST instructions, 0x20 must be added to these addresses. The AT90USB64/128 is a

complex microcontroller with more peripheral units than can be supported within the 64 location

reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 -

0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.

Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most

other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore

be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-

isters 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

6.4.1 General purpose I/O registers

The AT90USB64/128 contains three General Purpose I/O Registers. These registers can be

used for storing any information, and they are particularly useful for storing global variables and

Status Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are directly

bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

6.4.2 GPIOR2 – General purpose I/O Register 2

6.4.3 GPIOR1 – General purpose I/O Register 1

6.4.4 GPIOR0 – General purpose I/O Register 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR2

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR1

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB GPIOR0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

31

7593L–AVR–09/12

AT90USB64/128

6.5 External memory interface

With all the features the External Memory Interface provides, it is well suited to operate as an

interface to memory devices such as External SRAM and Flash, and peripherals such as LCD-

display, A/D, and D/A. The main features are:

• Four different wait-state settings (including no wait-state)

• Independent wait-state setting for different external Memory sectors (configurable sector size)

• The number of bits dedicated to address high byte is selectable

• Bus keepers on data lines to minimize current consumption (optional)

6.5.1 Overview

When the eXternal MEMory (XMEM) is enabled, address space outside the internal SRAM

becomes available using the dedicated External Memory pins (see Figure 2-1 on page 6, Table

11-3 on page 78, and Table 11-9 on page 82). The memory configuration is shown in Figure 6-4.

Figure 6-4. External memory with sector select.

6.5.2 Using the external memory interface

The interface consists of:

• AD7:0: Multiplexed low-order address bus and data bus

• A15:8: High-order address bus (configurable number of bits)

• ALE: Address latch enable

• RD: Read strobe

• WR: Write strobe

The control bits for the External Memory Interface are located in two registers, the External

Memory Control Register A – XMCRA, and the External Memory Control Register B – XMCRB.

Memory configuration A

0x0000

External memory
(0-60K x 8)

0xFFFF

Internal memory

SRL[2..0]

SRW11
SRW10

SRW01
SRW00

Lower sector

Upper sector

ISRAM end

XMem start

32

7593L–AVR–09/12

AT90USB64/128

When the XMEM interface is enabled, the XMEM interface will override the setting in the data

direction registers that corresponds to the ports dedicated to the XMEM interface. For details

about the port override, see the alternate functions in section “I/O-ports” on page 71. The XMEM

interface will auto-detect whether an access is internal or external. If the access is external, the

XMEM interface will output address, data, and the control signals on the ports according to Fig-

ure 6-6 on page 33 (this figure shows the wave forms without wait-states). When ALE goes from

high-to-low, there is a valid address on AD7:0. ALE is low during a data transfer. When the

XMEM interface is enabled, also an internal access will cause activity on address, data and ALE

ports, but the RD and WR strobes will not toggle during internal access. When the External

Memory Interface is disabled, the normal pin and data direction settings are used. Note that

when the XMEM interface is disabled, the address space above the internal SRAM boundary is

not mapped into the internal SRAM. Figure 6-5 illustrates how to connect an external SRAM to

the AVR using an octal latch (typically “74 × 573” or equivalent) which is transparent when G is

high.

6.5.3 Address latch requirements

Due to the high-speed operation of the XRAM interface, the address latch must be selected with

care for system frequencies above 8MHz @ 4V and 4MHz @ 2.7V. When operating at condi-

tions above these frequencies, the typical old style 74HC series latch becomes inadequate. The

External Memory Interface is designed in compliance to the 74AHC series latch. However, most

latches can be used as long they comply with the main timing parameters. The main parameters

for the address latch are:

• D to Q propagation delay (tPD)

• Data setup time before G low (tSU)

• Data (address) hold time after G low (TH)

The External Memory Interface is designed to guaranty minimum address hold time after G is

asserted low of th = 5ns. Refer to tLAXX_LD/tLLAXX_ST in “External data memory timing” Tables 31-7

through Tables 31-13 on pages 399 - 401. The D-to-Q propagation delay (tPD) must be taken

into consideration when calculating the access time requirement of the external component. The

data setup time before G low (tSU) must not exceed address valid to ALE low (tAVLLC) minus PCB

wiring delay (dependent on the capacitive load).

Figure 6-5. External SRAM connected to the AVR.

D[7:0]

A[7:0]

A[15:8]

RD

WR

SRAM

D Q

G

AD7:0

ALE

A15:8

RD

WR

AVR

33

7593L–AVR–09/12

AT90USB64/128

6.5.4 Pull-up and bus-keeper

The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is written to

one. To reduce power consumption in sleep mode, it is recommended to disable the pull-ups by

writing the Port register to zero before entering sleep.

The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper can be dis-

abled and enabled in software as described in “XMCRB – External Memory Control Register B”

on page 36. When enabled, the bus-keeper will keep the previous value on the AD7:0 bus while

these lines are tri-stated by the XMEM interface.

6.5.5 Timing

External Memory devices have different timing requirements. To meet these requirements, the

XMEM interface provides four different wait-states as shown in Table 6-5 on page 36. It is impor-

tant to consider the timing specification of the External Memory device before selecting the wait-

state. The most important parameters are the access time for the external memory compared to

the setup requirement. The access time for the External Memory is defined to be the time from

receiving the chip select/address until the data of this address actually is driven on the bus. The

access time cannot exceed the time from the ALE pulse must be asserted low until data is stable

during a read sequence (see tLLRL+ tRLRH - tDVRH in Tables 31-6 through Tables 31-13 on pages

399 - 401). The different wait-states are set up in software. As an additional feature, it is possible

to divide the external memory space in two sectors with individual wait-state settings. This

makes it possible to connect two different memory devices with different timing requirements to

the same XMEM interface. For XMEM interface timing details, please refer to Tables 31-6

through Tables 31-13 and Figure 31-7 to Figure 31-10 in the “External data memory timing” on

page 399.

Note that the XMEM interface is asynchronous and that the waveforms in the following figures

are related to the internal system clock. The skew between the internal and external clock

(XTAL1) is not guarantied (varies between devices temperature, and supply voltage). Conse-

quently, the XMEM interface is not suited for synchronous operation.

Figure 6-6. External data memory cycles without wait-state (SRWn1=0 and SRWn0=0).

ALE

T1 T2 T3

W
ri

te
R

e
a
d

WR

T4

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataPrev. data Address

DataPrev. data AddressDA7:0 (XMBK = 1)

System Clock (CLKCPU)

34

7593L–AVR–09/12

AT90USB64/128

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRW00 (lower sector). The ALE pulse in period T4 is only present if the next instruction
accesses the RAM (internal or external).

Figure 6-7. External data memory cycles with SRWn1 = 0 and SRWn0 = 1 (1).

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRW00 (lower sector).
The ALE pulse in period T5 is only present if the next instruction accesses the RAM (internal
or external).

Figure 6-8. External data memory cycles with SRWn1 = 1 and SRWn0 = 0 (1).

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRW00 (lower sector).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM (internal
or external).

ALE

T1 T2 T3

W
ri

te
R

e
a
d

WR

T5

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataPrev. data Address

DataPrev. data AddressDA7:0 (XMBK = 1)

System clock (CLK CPU)

T4

ALE

T1 T2 T3

W
ri

te
R

e
a
d

WR

T6

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataPrev. data Address

DataPrev. data AddressDA7:0 (XMBK = 1)

System clock (CLK CPU)

T4 T5

35

7593L–AVR–09/12

AT90USB64/128

Figure 6-9. External data memory cycles with SRWn1 = 1 and SRWn0 = 1 (1).

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRW00 (lower sector).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM (internal
or external).

6.5.6 XMCRA – External Memory Control Register A

• Bit 7 – SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0, A15:8,

ALE, WR, and RD are activated as the alternate pin functions. The SRE bit overrides any pin

direction settings in the respective data direction registers. Writing SRE to zero, disables the

External Memory Interface and the normal pin and data direction settings are used.

• Bit 6..4 – SRL2:0: Wait-state Sector Limit

It is possible to configure different wait-states for different External Memory addresses. The

external memory address space can be divided in two sectors that have separate wait-state bits.

The SRL2, SRL1, and SRL0 bits select the split of the sectors, see Table 6-4 on page 36 and

Figure 6-4 on page 31. By default, the SRL2, SRL1, and SRL0 bits are set to zero and the entire

external memory address space is treated as one sector. When the entire SRAM address space

is configured as one sector, the wait-states are configured by the SRW11 and SRW10 bits.

ALE

T1 T2 T3

W
ri

te
R

e
a
d

WR

T7

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataPrev. data Address

DataPrev. data AddressDA7:0 (XMBK = 1)

System clock (CLK CPU)

T4 T5 T6

Bit 7 6 5 4 3 2 1 0

SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00 XMCRA

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

36

7593L–AVR–09/12

AT90USB64/128

• Bit 3..2 – SRW11, SRW10: Wait-state Select bits for upper sector

The SRW11 and SRW10 bits control the number of wait-states for the upper sector of the exter-

nal memory address space, see Table 6-5.

• Bit 1..0 – SRW01, SRW00: Wait-state Select bits for lower sector

The SRW01 and SRW00 bits control the number of wait-states for the lower sector of the exter-

nal memory address space, see Table 6-5.

Note: 1. n = 0 or 1 (lower/upper sector).
For further details of the timing and wait-states of the External Memory Interface, see Figures
6-6 through Figures 6-9 on page 33 to page 35 for how the setting of the SRW bits affects the
timing.

6.5.7 XMCRB – External Memory Control Register B

• Bit 7– XMBK: External Memory Bus-keeper Enable

Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper is

enabled, AD7:0 will keep the last driven value on the lines even if the XMEM interface has tri-

Table 6-4. Sector limits with different settings of SRL2..0.

SRL2 SRL1 SRL0 Sector limits

0 0 x
Lower sector = N/A
Upper sector = 0x2100 - 0xFFFF

0 1 0
Lower sector = 0x2100 - 0x3FFF
Upper sector = 0x4000 - 0xFFFF

0 1 1
Lower sector = 0x2100 - 0x5FFF
Upper sector = 0x6000 - 0xFFFF

1 0 0
Lower sector = 0x2100 - 0x7FFF
Upper sector = 0x8000 - 0xFFFF

1 0 1
Lower sector = 0x2100 - 0x9FFF
Upper sector = 0xA000 - 0xFFFF

1 1 0
Lower sector = 0x2100 - 0xBFFF
Upper sector = 0xC000 - 0xFFFF

1 1 1
Lower sector = 0x2100 - 0xDFFF
Upper sector = 0xE000 - 0xFFFF

Table 6-5. Wait states (1).

SRWn1 SRWn0 Wait states

0 0 No wait-states

0 1 Wait one cycle during read/write strobe

1 0 Wait two cycles during read/write strobe

1 1
Wait two cycles during read/write and wait one cycle before driving out
new address

Bit 7 6 5 4 3 2 1 0

XMBK – – – – XMM2 XMM1 XMM0 XMCRB

Read/write R/W R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

37

7593L–AVR–09/12

AT90USB64/128

stated the lines. Writing XMBK to zero disables the bus keeper. XMBK is not qualified with SRE,

so even if the XMEM interface is disabled, the bus keepers are still activated as long as XMBK is

one.

• Bit 6..3 – Res: Reserved Bits

These bits are reserved and will always read as zero. When writing to this address location,

write these bits to zero for compatibility with future devices.

• Bit 2..0 – XMM2, XMM1, XMM0: External Memory High Mask

When the External Memory is enabled, all Port C pins are default used for the high address byte.

If the full 60KB address space is not required to access the External Memory, some, or all, Port

C pins can be released for normal Port Pin function as described in Table 6-6. As described in

“Using all 64KB locations of external memory” on page 38, it is possible to use the XMMn bits to

access all 64KB locations of the External Memory.

6.5.8 Using all locations of external memory smaller than 64KB

Since the external memory is mapped after the internal memory as shown in Figure 6-4 on page

31, the external memory is not addressed when addressing the first 8,448/4,352 bytes

(128/64Kbytes version) of data space. It may appear that the first 8,448/4,352 bytes of the exter-

nal memory are inaccessible (external memory addresses 0x0000 to 0x10FF or 0x0000 to

0x20FF). However, when connecting an external memory smaller than 64KB, for example 32KB,

these locations are easily accessed simply by addressing from address 0x8000 to 0xA1FF.

Since the External Memory Address bit A15 is not connected to the external memory, addresses

0x8000 to 0xA1FF will appear as addresses 0x0000 to 0x21FF for the external memory.

Addressing above address 0xA1FF is not recommended, since this will address an external

memory location that is already accessed by another (lower) address. To the Application soft-

ware, the external 32KB memory will appear as one linear 32KB address space from 0x2200 to

0xA1FF. This is illustrated in Figure 6-10 on page 38.

Table 6-6. Port C pins released as normal port pins when the external memory is enabled.

XMM2 XMM1 XMM0 # bits for external memory address Released port pins

0 0 0 8 (full 56KB space) None

0 0 1 7 PC7

0 1 0 6 PC7 - PC6

0 1 1 5 PC7 - PC5

1 0 0 4 PC7 - PC4

1 0 1 3 PC7 - PC3

1 1 0 2 PC7 - PC2

1 1 1 No address high bits Full Port C

38

7593L–AVR–09/12

AT90USB64/128

Figure 6-10. Address map with 32KB external memory.

6.5.9 Using all 64KB locations of external memory

Since the External Memory is mapped after the Internal Memory as shown in Figure 6-4, only

56KB of External Memory is available by default (address space 0x0000 to 0x20FF is reserved

for internal memory). However, it is possible to take advantage of the entire External Memory by

masking the higher address bits to zero. This can be done by using the XMMn bits and control

by software the most significant bits of the address. By setting Port C to output 0x00, and releas-

ing the most significant bits for normal Port Pin operation, the Memory Interface will address

0x0000 - 0x2FFF. See the following code examples.

Care must be exercised using this option as most of the memory is masked away.

0x0000

0x20FF

0xFFFF

0x2100

0x7FFF

0x8000

0x0000

0x7FFF

Memory configuration A

Internal memory

(Unused)

AVR memory map External 32K SRAM

External

memory

XMem start + 0x8000

ISRAM end + 0x8000

XMem start

ISRAM end

39

7593L–AVR–09/12

AT90USB64/128

Note: 1. See “About code examples” on page 10.

Assembly code example (1)

; OFFSET is defined to 0x4000 to ensure
; external memory access
; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

ldi r16, 0xFF
out DDRC, r16
ldi r16, 0x00
out PORTC, r16
; release PC7:6
ldi r16, (1<<XMM1)
sts XMCRB, r16
; write 0xAA to address 0x0001 of external
; memory
ldi r16, 0xaa
sts 0x0001+OFFSET, r16
; re-enable PC7:6 for external memory
ldi r16, (0<<XMM1)
sts XMCRB, r16
; store 0x55 to address (OFFSET + 1) of
; external memory
ldi r16, 0x55
sts 0x0001+OFFSET, r16

C code example (1)

#define OFFSET 0x4000

void XRAM_example(void)

{

unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = 0xFF;

PORTC = 0x00;

XMCRB = (1<<XMM1);

*p = 0xaa;

XMCRB = 0x00;

*p = 0x55;

}

40

7593L–AVR–09/12

AT90USB64/128

7. System clock and clock options

7.1 Clock systems and their distribution

Figure 7-1 presents the principal clock systems in the AVR and their distribution. All of the clocks

need not be active at a given time. In order to reduce power consumption, the clocks to modules

not being used can be halted by using different sleep modes, as described in “Power manage-

ment and sleep modes” on page 51. The clock systems are detailed below.

Figure 7-1. Clock distribution.

7.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.

Examples of such modules are the General Purpose Register File, the Status Register and the

data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing

general operations and calculations.

7.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.

The I/O clock is also used by the External Interrupt module, but note that some external inter-

rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O

clock is halted. Also, TWI address recognition is handled in all sleep modes.

7.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-

taneously with the CPU clock.

General I/O
modules

Asynchronous
timer/counter

CPU Core RAM

clk
I/O

clk
ASY

AVR clock
control unit

clk
CPU

Flash and
EEPROM

clk
FLASH

Source clock

Watchdog timerReset logic

Clock
multiplexer

Watchdog clock

Calibrated RC
oscillator

Timer/counter
oscillator

Crystal
oscillator

External clock

ADC

clk
ADC

System clock
prescaler

Watchdog
oscillator

USB

clk
USB (48MHz)

PLL clock
prescaler

clk
Pllin (2MHz)

USB PLL
X24

41

7593L–AVR–09/12

AT90USB64/128

7.1.4 Asynchronous Timer Clock – clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly

from an external clock or an external 32kHz clock crystal. The dedicated clock domain allows

using this Timer/Counter as a real-time counter even when the device is in sleep mode.

7.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks

in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion

results.

7.1.6 USB Clock – clkUSB

The USB is provided with a dedicated clock domain. This clock is generated with an on-chip PLL

running at 48MHz. The PLL always multiply its input frequency by 24. Thus the PLL clock regis-

ter should be programmed by software to generate a 2MHz clock on the PLL input.

7.2 Clock sources

The device has the following clock source options, selectable by Flash Fuse bits as shown

below. The clock from the selected source is input to the AVR clock generator, and routed to the

appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

7.2.1 Default clock source

The device is shipped with Low Power Crystal Oscillator (8.0MHz-max) enabled and with the

fuse CKDIV8 programmed, resulting in 1.0MHz system clock (with a 8MHz crystal). The default

fuse configuration is CKSEL = "1110", SUT = "01", CKDIV8 = "0". This default setting ensures

that all users can make their desired clock source setting using any available programming

interface.

7.2.2 Clock startup sequence

Any clock source needs a sufficient VCC to start oscillating and a minimum number of oscillating

cycles before it can be considered stable.

To ensure sufficient VCC, the device issues an internal reset with a time-out delay (tTOUT) after

the device reset is released by all other reset sources. “On-chip debug system” on page 56

describes the start conditions for the internal reset. The delay (tTOUT) is timed from the Watchdog

Oscillator and the number of cycles in the delay is set by the SUTx and CKSELx fuse bits. The

selectable delays are shown in Table 7-2. The frequency of the Watchdog Oscillator is voltage

Table 7-1. Device clocking options select (1).

Device clocking option CKSEL3..0

Low power crystal oscillator 1111 - 1000

Reserved 0111 - 0110

Low frequency crystal oscillator 0101 - 0100

Reserved 0011

Calibrated internal RC oscillator 0010

External clock 0000

Reserved 0001

42

7593L–AVR–09/12

AT90USB64/128

dependent as shown in “Atmel AT90USB64/128 typical characteristics” on page 404.

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum VCC. The

delay will not monitor the actual voltage and it will be required to select a delay longer than the

VCC rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be

used. A BOD circuit will ensure sufficient VCC before it releases the reset, and the time-out delay

can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is

not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-

ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal

reset active for a given number of clock cycles. The reset is then released and the device will

start to execute. The recommended oscillator start-up time is dependent on the clock type, and

varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when

the device starts up from reset. When starting up from Power-save or Power-down mode, VCC is

assumed to be at a sufficient level and only the start-up time is included.

7.3 Low power crystal oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be

configured for use as an On-chip Oscillator, as shown in Figure 7-2 on page 43. Either a quartz

crystal or a ceramic resonator may be used.

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 out-

put. It gives the lowest power consumption, but is not capable of driving other clock inputs, and

may be more susceptible to noise in noisy environments. In these cases, refer to the “These

options are intended for use with ceramic resonators and will ensure frequency stability at start-

up. They can also be used with crystals when not operating close to the maximum frequency of

the device, and if frequency stability at start-up is not important for the application.” on page 44.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the

capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the

electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for

use with crystals are given in Table 7-3 on page 43. For ceramic resonators, the capacitor val-

ues given by the manufacturer should be used.

Table 7-2. Number of watchdog oscillator cycles.

Typical time-out (VCC = 5.0V) Typical time-out (VCC = 3.0V) Number of cycles

0ms 0ms 0

4.1ms 4.3ms 512

65ms 69ms 8K (8,192)

43

7593L–AVR–09/12

AT90USB64/128

Figure 7-2. Crystal oscillator connections.

The low power oscillator can operate in three different modes, each optimized for a specific fre-

quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 7-3.

Notes: 1. The frequency ranges are preliminary values. Actual values are TBD.

2. This option should not be used with crystals, only with ceramic resonators.

3. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8. It must be ensured
that the resulting divided clock meets the frequency specification of the device.

The CKSEL0 Fuse together with the SUT1..0 fuses select the start-up times as shown in Table

7-4.

Table 7-3. Low power crystal oscillator operating modes (3).

 Frequency range (1) [MHz] CKSEL3..1

Recommended range for capacitors C1

and C2 [pF]

0.4 - 0.9 100 (2) –

0.9 - 3.0 101 12 - 22

3.0 - 8.0 110 12 - 22

8.0 - 16.0 111 12 - 22

Table 7-4. Start-up times for the low power crystal oscillator clock selection.

Oscillator source /

power conditions

Start-up time from

power-down and

power-save

Additional delay

from reset

(VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator, fast
rising power

258CK 14CK + 4.1ms (1) 0 00

Ceramic resonator, slowly
rising power

258CK 14CK + 65ms (1) 0 01

Ceramic resonator, BOD
enabled

1KCK 14CK (2) 0 10

Ceramic resonator, fast
rising power

1KCK 14CK + 4.1ms (2) 0 11

Ceramic resonator, slowly
rising power

1KCK 14CK + 65ms (2) 1 00

XTAL2

XTAL1

GND

C2

C1

44

7593L–AVR–09/12

AT90USB64/128

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

Note: 1. The device is shipped with this option selected.

7.4 Low frequency crystal oscillator

The device can utilize a 32.768kHz watch crystal as clock source by a dedicated low frequency

crystal oscillator. The crystal should be connected as shown in Figure 7-2 on page 43. When this

Oscillator is selected, start-up times are determined by the SUT Fuses and CKSEL0 as shown in

Table 7-6.

Crystal Oscillator, BOD
enabled

16KCK 14CK 1 01

Crystal Oscillator, fast
rising power

16KCK 14CK + 4.1ms 1 10

Crystal Oscillator, slowly
rising power

16KCK 14CK + 65ms 1 11

Table 7-5. Start-up times for the internal calibrated RC oscillator clock selection.

Power conditions

Start-up time from power-

down and power-save

Additional delay from

reset (VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms (1) 10

Reserved 11

Table 7-4. Start-up times for the low power crystal oscillator clock selection. (Continued)

Oscillator source /

power conditions

Start-up time from

power-down and

power-save

Additional delay

from reset

(VCC = 5.0V) CKSEL0 SUT1..0

Table 7-6. Start-up times for the low frequency crystal oscillator clock selection.

Power conditions

Start-up time from

power-down and

power-save

Additional delay

from reset

(VCC = 5.0V) CKSEL0 SUT1..0

BOD enabled 1KCK 14CK (1) 0 00

Fast rising power 1KCK 14CK + 4.1ms (1) 0 01

Slowly rising power 1KCK 14CK + 65ms (1) 0 10

Reserved 0 11

BOD enabled 32KCK 14CK 1 00

Fast rising power 32KCK 14CK + 4.1ms 1 01

Slowly rising power 32KCK 14CK + 65ms 1 10

Reserved 1 11

45

7593L–AVR–09/12

AT90USB64/128

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.

7.5 Calibrated internal RC oscillator

The calibrated internal RC oscillator by default provides a 8.0MHz clock. The frequency is nomi-

nal value at 3V and 25°C. The device is shipped with the CKDIV8 Fuse programmed. See

“System clock prescaler” on page 47 for more details. This clock may be selected as the system

clock by programming the CKSEL Fuses as shown in Table 7-7. If selected, it will operate with

no external components. During reset, hardware loads the calibration byte into the OSCCAL

Register and thereby automatically calibrates the RC oscillator. At 3V and 25°C, this calibration

gives a frequency of 8MHz ±10%. The oscillator can be calibrated to any frequency in the range

7.3 - 8.1MHz within ±10% accuracy, by changing the OSCCAL register. When this oscillator is

used as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and for

the Reset Time-out. For more information on the pre-programmed calibration value, see Section

“Calibration byte” on page 362

Notes: 1. The device is shipped with this option selected.

2. The frequency ranges are preliminary values. Actual values are TBD.

3. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8.

When this oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 7-5 on page 44.

Note: 1. The device is shipped with this option selected.

7.5.1 OSCCAL – Oscillator Calibration Register

• Bits 7..0 – CAL7..0: Oscillator calibration value

The Oscillator Calibration Register is used to trim the calibrated internal RC oscillator to remove

process variations from the oscillator frequency. The factory-calibrated value is automatically

written to this register during chip reset, giving an oscillator frequency of 8.0MHz at 25°C. The

application software can write this register to change the oscillator frequency. The oscillator can

Table 7-7. Internal calibrated RC oscillator operating modes (1)(3).

Frequency range (2) [MHz] CKSEL3..0

7.3 - 8.1 0010

Table 7-8. Start-up times for the internal calibrated RC oscillator clock selection.

Power conditions

Start-up time from power-

down and power-save

Additional delay from

reset (VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms (1) 10

Reserved 11

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value Device specific calibration value

46

7593L–AVR–09/12

AT90USB64/128

be calibrated to any frequency in the range 7.3 - 8.1MHz within ±10% accuracy. Calibration out-

side that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write

times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more

than 8.8MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the

lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-

quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher

frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00

gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the

range. Incrementing CAL6..0 by 1 will give a frequency increment of less than 2% in the fre-

quency range 7.3 - 8.1MHz.

7.6 External clock

The device can utilize a external clock source as shown in Figure 7-3. To run the device on an

external clock, the CKSEL fuses must be programmed as shown in Table 7-1 on page 41.

Figure 7-3. External clock drive configuration.

When this clock source is selected, start-up times are determined by the SUT fuses as shown in

Table 7-9.

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-

quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from

one clock cycle to the next can lead to unpredictable behavior. If changes of more than 2% is

required, ensure that the MCU is kept in Reset during the changes.

Table 7-9. Start-up times for the external clock selection.

Power conditions

Start-up time from power-

down and power-save

Additional delay from

reset (VCC = 5.0V) SUT1..0

BOD enabled 6CK 14CK 00

Fast rising power 6CK 14CK + 4.1ms 01

Slowly rising power 6CK 14CK + 65ms 10

Reserved 11

NC

EXTERNAL
CLOCK
SIGNAL

XTAL2

XTAL1

GND

47

7593L–AVR–09/12

AT90USB64/128

Note that the System Clock Prescaler can be used to implement run-time changes of the internal

clock frequency while still ensuring stable operation. Refer to “System clock prescaler” on page

47 for details.

7.7 Clock output buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT

Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other cir-

cuits on the system. The clock also will be output during reset, and the normal operation of I/O

pin will be overridden when the fuse is programmed. Any clock source, including the internal RC

Oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is

used, it is the divided system clock that is output.

7.8 Timer/counter oscillator

The device can operate its Timer/Counter2 from an external 32.768kHz watch crystal or a exter-

nal clock source. See Figure 7-2 on page 43 for crystal connection.

Applying an external clock source to TOSC1 requires EXCLK in the ASSR Register written to

logic one. See “Asynchronous operation of the Timer/Counter” on page 161 for further descrip-

tion on selecting external clock as input instead of a 32kHz crystal.

7.9 System clock prescaler

The Atmel AT90USB64/128 has a system clock prescaler, and the system clock can be divided

by setting the “CLKPR – Clock Prescale Register” on page 48. This feature can be used to

decrease the system clock frequency and the power consumption when the requirement for pro-

cessing power is low. This can be used with all clock source options, and it will affect the clock

frequency of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH are

divided by a factor as shown in Table 7-10 on page 48.

When switching between prescaler settings, the System Clock Prescaler ensures that no

glitches occurs in the clock system. It also ensures that no intermediate frequency is higher than

neither the clock frequency corresponding to the previous setting, nor the clock frequency corre-

sponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,

which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the

state of the prescaler - even if it were readable, and the exact time it takes to switch from one

clock division to the other cannot be exactly predicted. From the time the CLKPS values are writ-

ten, it takes between T1 + T2 and T1 + 2 × T2 before the new clock frequency is active. In this

interval, two active clock edges are produced. Here, T1 is the previous clock period, and T2 is

the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed

to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is

not interrupted.

48

7593L–AVR–09/12

AT90USB64/128

7.9.1 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE

bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is

cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the

CLKPCE bit within this timeout period does neither extend the timeout period, nor clear the CLK-

PCE bit.

• Bits 3..0 – CLKPS3..0: Clock Prescaler Select Bits 3 - 0

These bits define the division factor between the selected clock source and the internal system

clock. These bits can be written run-time to vary the clock frequency to suit the application

requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-

nous peripherals is reduced when a division factor is used. The division factors are given in

Table 7-10.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,

the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to

“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock

source has a higher frequency than the maximum frequency of the device at the present operat-

ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8

Fuse setting. The Application software must ensure that a sufficient division factor is chosen if

the selected clock source has a higher frequency than the maximum frequency of the device at

the present operating conditions. The device is shipped with the CKDIV8 fuse programmed.

Table 7-10. Clock prescaler select.

Bit 7 6 5 4 3 2 1 0

CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/write R/W R R R R/W R/W R/W R/W

Initial value 0 0 0 0 See bit description

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock division factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

49

7593L–AVR–09/12

AT90USB64/128

7.10 PLL

The PLL is used to generate internal high frequency (48MHz) clock for USB interface, the PLL

input is generated from an external low-frequency (the crystal oscillator or external clock input

pin from XTAL1). The internal RC oscillator can not be used for USB operations.

7.10.1 Internal PLL for USB interface

The internal PLL in Atmel AT90USB64/128 generates a clock frequency that is 24× multiplied

from nominally 2MHz input. The source of the 2MHz PLL input clock is the output of the internal

PLL clock prescaler that generates the 2MHz (see Section 7.10.2 for PLL interface).

Figure 7-4. PLL clocking system.

7.10.2 PLLCSR – PLL Control and Status Register

• Bit 7..5 – Res: Reserved bits

These bits are reserved bits in the AT90USB64/128 and always read as zero.

• Bit 4..2 – PLLP2:0 PLL prescaler

These bits allow to configure the PLL input prescaler to generate the 2MHz input clock for the

PLL.

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock division factor

8MHz
RC OSCILLATOR

XTAL1

XTAL2
OSCILLATORS

PLL
24x

PLLE

Lock
detector

PLOCK

clkUSB

System clock

clk
2MHzPLL clock

prescaler
(48MHz)

Bit 7 6 5 4 3 2 1 0

$29 ($29) PLLP2 PLLP1 PLLP0 PLLE PLOCK PLLCSR

Read/write R R R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0/1 0

50

7593L–AVR–09/12

AT90USB64/128

Note: 1. For Atmel AT90USB128x only. Do not use with Atmel AT90USB64x.

2. For AT90USB64x only. Do not use with AT90USB128x.

• Bit 1 – PLLE: PLL Enable

When the PLLE is set, the PLL is started.

• Bit 0 – PLOCK: PLL Lock Detector

When the PLOCK bit is set, the PLL is locked to the reference clock. After the PLL is enabled, it

takes about 100ms for the PLL to lock.

To clear PLOCK, clear PLLE and PLLPx bits.

Table 7-11. PLL input prescaler configurations.

PLLP2 PLLP1 PLLP0 Clock division factor

External XTAL required for USB

operation [MHz]

0 0 0 Reserved -

0 0 1 Reserved -

0 1 0 Reserved -

0 1 1 4 8

1 0 0 Reserved -

1 0 1 8 (1) 16 (1)

1 1 0 8 (2) 16 (2)

1 1 1 Reserved -

51

7593L–AVR–09/12

AT90USB64/128

8. Power management and sleep modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving

power. The AVR provides various sleep modes allowing the user to tailor the power consump-

tion to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a

SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select

which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be

activated by the SLEEP instruction. See Table 8-1 for a summary. If an enabled interrupt occurs

while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in

addition to the start-up time, executes the interrupt routine, and resumes execution from the

instruction following SLEEP. The contents of the Register File and SRAM are unaltered when

the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and

executes from the Reset Vector.

Figure 7-1 on page 40 presents the different clock systems in the Atmel AT90USB64/128, and

their distribution. The figure is helpful in selecting an appropriate sleep mode.

8.0.1 SMCR – Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

• Bits 3, 2, 1 – SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the six available sleep modes as shown in Table 8-1.

Note: 1. Standby modes are only recommended for use with external crystals or resonators.

• Bit 1 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP

instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s

purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of

the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0

– – – – SM2 SM1 SM0 SE SMCR

Read/write R R R R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 8-1. Sleep mode select.

SM2 SM1 SM0 Sleep mode

0 0 0 Idle

0 0 1 ADC noise reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby (1)

1 1 1 Extended Standby (1)

52

7593L–AVR–09/12

AT90USB64/128

8.1 Idle mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle

mode, stopping the CPU but allowing the USB, SPI, USART, Analog Comparator, ADC, 2-wire

Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This

sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal

ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the

Analog Comparator interrupt is not required, the Analog Comparator can be powered down by

setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will

reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-

cally when this mode is entered.

8.2 ADC noise reduction mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC

Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, 2-wire

Serial Interface address match, Timer/Counter2 and the Watchdog to continue operating (if

enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the

other clocks to run (including clkUSB).

This improves the noise environment for the ADC, enabling higher resolution measurements. If

the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the

ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a

Watchdog interrupt, a Brown-out Reset, a 2-wire serial interface interrupt, a Timer/Counter2

interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT7:4 or a pin

change interrupt can wakeup the MCU from ADC Noise Reduction mode.

8.3 Power-down mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-

down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the 2-

wire Serial Interface, and the Watchdog continue operating (if enabled). Only an External Reset,

a Watchdog Reset, a Brown-out Reset, 2-wire Serial Interface address match, an external level

interrupt on INT7:4, an external interrupt on INT3:0, a pin change interrupt or an asynchronous

USB interrupt sources (VBUSTI, WAKEUPI, IDTI and HWUPI), can wake up the MCU. This

sleep mode basically halts all generated clocks, allowing operation of asynchronous modules

only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed

level must be held for some time to wake up the MCU. Refer to “External interrupts” on page 92

for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs

until the wake-up becomes effective. This allows the clock to restart and become stable after

having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the

Reset Time-out period, as described in “Clock sources” on page 41.

8.4 Power-save mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-

save mode. This mode is identical to Power-down, with one exception:

53

7593L–AVR–09/12

AT90USB64/128

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from

either Timer Overflow or Output Compare event from Timer/Counter2 if the corresponding

Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit in

SREG is set.

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save

mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save

mode. If the Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is

stopped during sleep. If the Timer/Counter2 is not using the synchronous clock, the clock source

is stopped during sleep. Note that even if the synchronous clock is running in Power-save, this

clock is only available for the Timer/Counter2.

8.5 Standby mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the

SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down

with the exception that the Oscillator is kept running. From Standby mode, the device wakes up

in six clock cycles. Note that in Stanby mode the PLL is disabled and the USB interface will not

function.

8.6 Extended Standby mode

When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the

SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to

Power-save mode with the exception that the Oscillator is kept running. From Extended Standby

mode, the device wakes up in six clock cycles.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.

2. If Timer/Counter2 is running in asynchronous mode.

3. For INT7:4, only level interrupt.

4. Asynchronous USB interrupts are VBUSTI, WAKEUPI, IDTI and HWUPI.

Table 8-2. Active clock domains and wake-up sources in the different sleep modes.

Active clock domains Oscillators Wake-up sources

Sleep mode c
lk

C
P

U

c
lk

F
L

A
S

H

c
lk

IO

c
lk

A
D

C

c
lk

A
S

Y

M
a
in

 c
lo

c
k

s
o

u
rc

e

e
n

a
b

le
d

T
im

e
r

o
s
c
il

la
to

r

e
n

a
b

le
d

IN
T

7
:0

 a
n

d

P
in

 C
h

a
n

g
e

T
W

I
a

d
d

re
s

s

m
a
tc

h

T
im

e
r2

S
P

M
/

E
E

P
R

O
M

 r
e

a
d

y

A
D

C

W
D

T
 i

n
te

rr
u

p
t

O
th

e
r

I/
O

U
S

B
 s

y
n

c
h

ro
n

o
u

s

in
te

rr
u

p
ts

U
S

B
 a

s
y

n
c
h

o
n

o
u

s

in
te

rr
u

p
ts

 (4
)

Idle X X X X X (2) X X X X X X X X X

ADCNRM X X X X (2) X (3) X X (2) X X X X X

Power-down X (3) X X X

Power-save X X (2) X (3) X X X X

Standby (1) X X (3) X X X

Extended
standby

X (2) X X (2) X (3) X X X X

54

7593L–AVR–09/12

AT90USB64/128

8.7 Power Reduction Register

The Power Reduction Register, PRR, provides a method to stop the clock to individual peripher-

als to reduce power consumption. The current state of the peripheral is frozen and the I/O

registers can not be read or written. Resources used by the peripheral when stopping the clock

will remain occupied, hence the peripheral should in most cases be disabled before stopping the

clock. Waking up a module, which is done by clearing the bit in PRR, puts the module in the

same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall

power consumption. In all other sleep modes, the clock is already stopped.

8.7.1 PRR0 – Power Reduction Register 0

• Bit 7 - PRTWI: Power Reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When

waking up the TWI again, the TWI should be re initialized to ensure proper operation.

• Bit 6 - PRTIM2: Power Reduction Timer/Counter2

Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode (AS2

is 0). When the Timer/Counter2 is enabled, operation will continue like before the shutdown.

• Bit 5 - PRTIM0: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0

is enabled, operation will continue like before the shutdown.

• Bit 4 - Res: Reserved bit

This bit is reserved and will always read as zero.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1

is enabled, operation will continue like before the shutdown.

• Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to

the module. When waking up the SPI again, the SPI should be re initialized to ensure proper

operation.

• Bit 1 - Res: Reserved bit

These bits are reserved and will always read as zero.

• Bit 0 - PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.

The analog comparator cannot use the ADC input MUX when the ADC is shut down.

Bit 7 6 5 4 3 2 1 0

PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI - PRADC PRR0

Read/write R/W R/W R/W R R/W R/W R R/W

Initial value 0 0 0 0 0 0 0 0

55

7593L–AVR–09/12

AT90USB64/128

8.7.2 PRR1 – Power Reduction Register 1

• Bit 7 - PRUSB: Power Reduction USB

Writing a logic one to this bit shuts down the USB by stopping the clock to the module. When

waking up the USB again, the USB should be re initialized to ensure proper operation.

• Bit 6..4 - Res: Reserved bits

These bits are reserved and will always read as zero.

• Bit 3 - PRTIM3: Power Reduction Timer/Counter3

Writing a logic one to this bit shuts down the Timer/Counter3 module. When the Timer/Counter3

is enabled, operation will continue like before the shutdown.

• Bit 2..1 - Res: Reserved bits

These bits are reserved and will always read as zero.

• Bit 0 - PRUSART1: Power Reduction USART1

Writing a logic one to this bit shuts down the USART1 by stopping the clock to the module.

When waking up the USART1 again, the USART1 should be re-initialized to ensure proper

operation.

8.8 Minimizing power consumption

There are several issues to consider when trying to minimize the power consumption in an AVR

controlled system. In general, sleep modes should be used as much as possible, and the sleep

mode should be selected so that as few as possible of the device’s functions are operating. All

functions not needed should be disabled. In particular, the following modules may need special

consideration when trying to achieve the lowest possible power consumption.

8.8.1 Analog to digital converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-

abled before entering any sleep mode. When the ADC is turned off and on again, the next

conversion will be an extended conversion. Refer to “ADC – Analog to Digital Converter” on

page 307 for details on ADC operation.

8.8.2 Analog comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering

ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,

the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up

to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all

sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep

mode. Refer to “Analog Comparator” on page 304 for details on how to configure the Analog

Comparator.

Bit 7 6 5 4 3 2 1 0

PRUSB – – – PRTIM3 – – PRUSART1 PRR1

Read/write R/W R R R R/W R R R/W

Initial value 0 0 0 0 0 0 0 0

56

7593L–AVR–09/12

AT90USB64/128

8.8.3 Brown-out detector

If the Brown-out Detector is not needed by the application, this module should be turned off. If

the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep

modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-

nificantly to the total current consumption. Refer to “Brown-out detection” on page 60 for details

on how to configure the Brown-out Detector.

8.8.4 Internal voltage reference

The internal voltage reference will be enabled when needed by the Brown-out Detection, the

Analog Comparator or the ADC. If these modules are disabled as described in the sections

above, the internal voltage reference will be disabled and it will not be consuming power. When

turned on again, the user must allow the reference to start up before the output is used. If the

reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal volt-

age reference” on page 62 for details on the start-up time.

8.8.5 Watchdog timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the

Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume

power. In the deeper sleep modes, this will contribute significantly to the total current consump-

tion. Refer to “Interrupts” on page 68 for details on how to configure the Watchdog Timer.

8.8.6 Port pins

When entering a sleep mode, all port pins should be configured to use minimum power. The

most important is then to ensure that no pins drive resistive loads. In sleep modes where both

the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will

be disabled. This ensures that no power is consumed by the input logic when not needed. In

some cases, the input logic is needed for detecting wake-up conditions, and it will then be

enabled. Refer to the section “Digital input enable and sleep modes” on page 75 for details on

which pins are enabled. If the input buffer is enabled and the input signal is left floating or have

an analog signal level close to VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal

level close to VCC/2 on an input pin can cause significant current even in active mode. Digital

input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and

DIDR0). Refer to “DIDR1 – Digital Input Disable Register 1” on page 306 and “DIDR0 – Digital

Input Disable Register 0” on page 326 for details.

8.8.7 On-chip debug system

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enters sleep mode,

the main clock source is enabled, and hence, always consumes power. In the deeper sleep

modes, this will contribute significantly to the total current consumption.

There are three alternative ways to disable the OCD system:

• Disable the OCDEN Fuse

• Disable the JTAGEN Fuse

• Write one to the JTD bit in MCUCR

57

7593L–AVR–09/12

AT90USB64/128

9. System control and reset

9.1 Resetting the AVR

During reset, all I/O Registers are set to their initial values, and the program starts execution

from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – Absolute

Jump – instruction to the reset handling routine. If the program never enables an interrupt

source, the Interrupt Vectors are not used, and regular program code can be placed at these

locations. This is also the case if the Reset Vector is in the Application section while the Interrupt

Vectors are in the Boot section or vice versa. The circuit diagram in Figure 9-1 on page 58

shows the reset logic. Table 9-1 on page 58 defines the electrical parameters of the reset

circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes

active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal

reset. This allows the power to reach a stable level before normal operation starts. The time-out

period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-

ferent selections for the delay period are presented in “Clock sources” on page 41.

9.2 Reset sources

The Atmel AT90USB64/128 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset

threshold (VPOT)

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer

than the minimum pulse length

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the

Watchdog is enabled

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out

Reset threshold (VBOT) and the Brown-out Detector is enabled

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one

of the scan chains of the JTAG system. Refer to Section “IEEE 1149.1 (JTAG) boundary-

scan” on page 333 for details

58

7593L–AVR–09/12

AT90USB64/128

Figure 9-1. Reset logic.

Notes: 1. The POR will not work unless the supply voltage has been below VPOT (falling).

9.3 Power-on reset

A Power-on Reset (POR) pulse is generated by an on-chip detection circuit. The detection level

is defined in Table 9-1. The POR is activated whenever VCC is below the detection level. The

POR circuit can be used to trigger the start-up reset, as well as to detect a failure in supply

voltage.

A Power-on Reset (POR) circuit ensures that the device is properly reset from Power-on if Vcc

started from VPOR with a rise rate upper than VCCRR. Reaching the Power-on Reset threshold

Table 9-1. Reset characteristics.

Symbol Parameter Condition Min. Typ. Max. Units

VPOT

Power-on reset threshold voltage (rising) 1.4 2.3

V
Power-on reset threshold voltage (falling) (1) 1.3 2.3

VPOR
VCC start voltage to ensure internal power-
on reset signal

-0.1 0.1

VCCRR
VCC rise rate to ensure internal power_on
reset signal

0.3 V/ms

VRST RESET pin threshold voltage
0.2
VCC

0.85
VCC

V

tRST Minimum pulse width on RESET Pin 5V, 25°C 400 ns

MCU status

register (MCUSR)

Brown-out
reset circuitBODLEVEL [2..0]

Delay counters

CKSEL[3:0]

CK

TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
generator

SPIKE
FILTER

Pull-up resistor

J
T

R
F

JTAG reset
register

Watchdog
oscillator

SUT[1:0]

Power-on reset
circuit

59

7593L–AVR–09/12

AT90USB64/128

voltage invokes the delay counter, which determines how long the device is kept in RESET after

VCC rise. The RESET signal is activated again, without any delay, when VCC decreases below

the detection level.

Figure 9-2. MCU start-up, RESET tied to VCC.

Figure 9-3. MCU start-up, RESET extended externally.

Note: If VPOR or VCCRR parameter range can not be followed, an external reset is required.

9.4 External reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the

minimum pulse width (see Table 9-1 on page 58) will generate a reset, even if the clock is not

running. Shorter pulses are not guaranteed to generate a reset. When the applied signal

reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the

MCU after the Time-out period – tTOUT – has expired.

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

VPOR

RESET

TIMEOUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

VPOR

60

7593L–AVR–09/12

AT90USB64/128

Figure 9-4. External reset during operation.

9.5 Brown-out detection

Atmel AT90USB64/128 has an on-chip Brown-out Detection (BOD) circuit for monitoring the VCC

level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can

be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free

Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ =

VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure

9-5 on page 61), the Brown-out Reset is immediately activated. When VCC increases above the

trigger level (VBOT+ in Figure 9-5 on page 61), the delay counter starts the MCU after the Time-

out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-

ger than tBOD given in Table 9-1 on page 58.

CC

Table 9-2. BODLEVEL fuse coding.

BODLEVEL 2..0 Fuses Min. VBOT Typ. VBOT Max. VBOT Units

111 BOD disabled

110

Reserved101

100

011 2.4 2.6 2.8 V

010 3.2 3.4 3.6

001 3.3 3.5 3.7

000 4.1 4.3 4.5

Table 9-3. Brown-out characteristics.

Symbol Parameter Min. Typ. Max. Units

VHYST Brown-out detector hysteresis 50 mV

tBOD Min. pulse width on brown-out reset ns

IBOD Brown-out detector consumption 25 µA

61

7593L–AVR–09/12

AT90USB64/128

Figure 9-5. Brown-out reset during operation.

9.6 Watchdog reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On

the falling edge of this pulse, the delay timer starts counting the time-out period tTOUT. Refer to

page 63 for details on operation of the Watchdog Timer.

Figure 9-6. Watchdog reset during operation.

9.6.1 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by

the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic

zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a

logic zero to the flag.

VCC

RESET

TIMEOUT

INTERNAL
RESET

VBOT-

VBOT+

tTOUT

CK

CC

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/write R R R R/W R/W R/W R/W R/W

Initial value 0 0 0 See bit description

62

7593L–AVR–09/12

AT90USB64/128

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a

logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a

logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then

Reset the MCUSR as early as possible in the program. If the register is cleared before another

reset occurs, the source of the reset can be found by examining the Reset Flags.

9.7 Internal voltage reference

Atmel AT90USB64/128 features an internal bandgap reference. This reference is used for

Brown-out Detection, and it can be used as an input to the Analog Comparator or the ADC.

9.7.1 Voltage reference enable signals and start-up time

The voltage reference has a start-up time that may influence the way it should be used. The

start-up time is given in Table 9-4. To save power, the reference is not always turned on. The

reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user

must always allow the reference to start up before the output from the Analog Comparator or

ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three

conditions above to ensure that the reference is turned off before entering Power-down mode.

Table 9-4. Internal voltage reference characteristics.

Symbol Parameter Condition Min. Typ. Max. Units

VBG Bandgap reference voltage 1.0 1.1 1.2 V

tBG Bandgap reference start-up time 40 70 µs

IBG
Bandgap reference current
consumption

10 µA

63

7593L–AVR–09/12

AT90USB64/128

9.8 Watchdog timer

The Atmel AT90USB64/128 has an enhanced Watchdog Timer (WDT). The main features are:

• Clocked from separate on-chip oscillator

• Three operating modes

– Interrupt

– System reset

– Interrupt and system reset

• Selectable time-out period from 16ms to 8s

• Possible hardware fuse watchdog always on (WDTON) for fail-safe mode

Figure 9-7. Watchdog timer.

The Watchdog Timer (WDT) is a timer counting cycles of a separate on-chip 128kHz oscillator.

The WDT gives an interrupt or a system reset when the counter reaches a given time-out value.

In normal operation mode, it is required that the system uses the WDR - Watchdog Timer Reset

- instruction to restart the counter before the time-out value is reached. If the system doesn't

restart the counter, an interrupt or system reset will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used

to wake the device from sleep-modes, and also as a general system timer. One example is to

limit the maximum time allowed for certain operations, giving an interrupt when the operation

has run longer than expected. In System Reset mode, the WDT gives a reset when the timer

expires. This is typically used to prevent system hang-up in case of runaway code. The third

mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-

rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown

by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-

tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt

mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security, altera-

tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and

changing time-out configuration is as follows:

128kHz
OSCILLATOR

O
S

C
/2

K

O
S

C
/4

K

O
S

C
/8

K

O
S

C
/1

6K

O
S

C
/3

2K

O
S

C
/6

4K

O
S

C
/1

28
K

O
S

C
/2

56
K

O
S

C
/5

12
K

O
S

C
/1

02
4K

WDP0
WDP1
WDP2
WDP3

WATCHDOG
RESET

WDE

WDIF

WDIE

MCU RESET

INTERRUPT

64

7593L–AVR–09/12

AT90USB64/128

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE)
and WDE. A logic one must be written to WDE regardless of the previous value of the
WDE bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

The following code example shows one assembly and one C function for turning off the Watch-

dog Timer. The example assumes that interrupts are controlled (for example by disabling

interrupts globally) so that no interrupts will occur during the execution of these functions.

Note: 1. The example code assumes that the part specific header file is included.

Assembly code example (1)

WDT_off:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Clear WDRF in MCUSR

in r16, MCUSR

andi r16, ~(0<<WDRF)

out MCUSR, r16

; Write logical one to WDCE and WDE

; Keep old prescaler setting to prevent unintentional time-out

in r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

out WDTCSR, r16

; Turn off WDT

ldi r16, (0<<WDE)

out WDTCSR, r16

; Turn on global interrupt

sei

ret

C code example (1)

void WDT_off(void)

{

__disable_interrupt();

__watchdog_reset();

/* Clear WDRF in MCUSR */

MCUSR &= ~(1<<WDRF);

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out
*/

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCSR = 0x00;

__enable_interrupt();

}

65

7593L–AVR–09/12

AT90USB64/128

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out

condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not

set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this

situation, the application software should always clear the Watchdog System Reset Flag

(WDRF) and the WDE control bit in the initialization routine, even if the Watchdog is not in use.

The following code example shows one assembly and one C function for changing the time-out

value of the Watchdog Timer.

Note: 1. The example code assumes that the part specific header file is included.

Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change

in the WDP bits can result in a time-out when switching to a shorter time-out period.

9.8.1 WDTCSR – Watchdog Timer Control Register

Assembly code example (1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

in r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

out WDTCSR, r16

; -- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

out WDTCSR, r16

; -- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C code example (1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed equence */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

Bit 7 6 5 4 3 2 1 0

WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 X 0 0 0

66

7593L–AVR–09/12

AT90USB64/128

• Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-

ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt

handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in

SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is

enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt

Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in

the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE

and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-

ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and

System Reset Mode, WDIE must be set after each interrupt. This should however not be done

within the interrupt service routine itself, as this might compromise the safety-function of the

Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a Sys-

tem Reset will be applied.

• Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,

and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 - WDE: Watchdog System Reset Enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is

set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-

ditions causing failure, and a safe start-up after the failure.

• Bit 5, 2..0 - WDP3..0: Watchdog Timer Prescaler 3, 2, 1, and 0

The WDP3..0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is run-

ning. The different prescaling values and their corresponding time-out periods are shown in

Table 9-6 on page 67.

Table 9-5. Watchdog timer configuration.

WDTON WDE WDIE Mode Action on timeout

0 0 0 Stopped None

0 0 1 Interrupt mode Interrupt

0 1 0 System reset mode Reset

0 1 1
Interrupt and system reset
mode

Interrupt, then go to
system reset mode

1 x x System reset mode Reset

67

7593L–AVR–09/12

AT90USB64/128

.

Table 9-6. Watchdog timer prescale select.

WDP3 WDP2 WDP1 WDP0

Number of WDT oscillator

cycles

Typical time-out at

VCC = 5.0V

0 0 0 0 2K (2048) cycles 16ms

0 0 0 1 4K (4096) cycles 32ms

0 0 1 0 8K (8192) cycles 64ms

0 0 1 1 16K (16384) cycles 0.125s

0 1 0 0 32K (32768) cycles 0.25s

0 1 0 1 64K (65536) cycles 0.5s

0 1 1 0 128K (131072) cycles 1.0s

0 1 1 1 256K (262144) cycles 2.0s

1 0 0 0 512K (524288) cycles 4.0s

1 0 0 1 1024K (1048576) cycles 8.0s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

68

7593L–AVR–09/12

AT90USB64/128

10. Interrupts
This section describes the specifics of the interrupt handling as performed in Atmel

AT90USB64/128. For a general explanation of the AVR interrupt handling, refer to “Reset and

interrupt handling” on page 17.

10.1 Interrupt vectors in AT90USB64/128

Table 10-1. Reset and interrupt vectors.

Vector

no.

Program

address (2) Source Interrupt definition

1 $0000 (1) RESET
External pin, Power-on reset, Brown-out reset,
Watchdog reset, and JTAG AVR reset

2 $0002 INT0 External Interrupt Request 0

3 $0004 INT1 External Interrupt Request 1

4 $0006 INT2 External Interrupt Request 2

5 $0008 INT3 External Interrupt Request 3

6 $000A INT4 External Interrupt Request 4

7 $000C INT5 External Interrupt Request 5

8 $000E INT6 External Interrupt Request 6

9 $0010 INT7 External Interrupt Request 7

10 $0012 PCINT0 Pin Change Interrupt Request 0

11 $0014 USB General USB General Interrupt request

12 $0016 USB Endpoint/Pipe USB ENdpoint/Pipe Interrupt request

13 $0018 WDT Watchdog Time-out Interrupt

14 $001A TIMER2 COMPA Timer/Counter2 Compare Match A

15 $001C TIMER2 COMPB Timer/Counter2 Compare Match B

16 $001E TIMER2 OVF Timer/Counter2 Overflow

17 $0020 TIMER1 CAPT Timer/Counter1 Capture Event

18 $0022 TIMER1 COMPA Timer/Counter1 Compare Match A

19 $0024 TIMER1 COMPB Timer/Counter1 Compare Match B

20 $0026 TIMER1 COMPC Timer/Counter1 Compare Match C

21 $0028 TIMER1 OVF Timer/Counter1 Overflow

22 $002A TIMER0 COMPA Timer/Counter0 Compare Match A

23 $002C TIMER0 COMPB Timer/Counter0 Compare match B

24 $002E TIMER0 OVF Timer/Counter0 Overflow

25 $0030 SPI, STC SPI Serial Transfer Complete

26 $0032 USART1 RX USART1 Rx Complete

27 $0034 USART1 UDRE USART1 Data Register Empty

28 $0036 USART1TX USART1 Tx Complete

29 $0038 ANALOG COMP Analog Comparator

69

7593L–AVR–09/12

AT90USB64/128

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see “Memory programming” on page 359.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.

Table 10-2 shows reset and Interrupt Vectors placement for the various combinations of

BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt

Vectors are not used, and regular program code can be placed at these locations. This is also

the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the

Boot section or vice versa.

Note: 1. The Boot Reset Address is shown in Table 29-8 on page 357. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

10.1.1 Moving interrupts between application and boot space

The General Interrupt Control Register controls the placement of the Interrupt Vector table.

10.1.2 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash

memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot

30 $003A ADC ADC Conversion Complete

31 $003C EE READY EEPROM Ready

32 $003E TIMER3 CAPT Timer/Counter3 Capture Event

33 $0040 TIMER3 COMPA Timer/Counter3 Compare Match A

34 $0042 TIMER3 COMPB Timer/Counter3 Compare Match B

35 $0044 TIMER3 COMPC Timer/Counter3 Compare Match C

36 $0046 TIMER3 OVF Timer/Counter3 Overflow

37 $0048 TWI 2-wire Serial Interface

38 $004A SPM READY Store Program Memory Ready

Table 10-2. Reset and interrupt vectors placement (1).

BOOTRST IVSEL Reset address Interrupt vectors start address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

Table 10-1. Reset and interrupt vectors. (Continued)

Vector

no.

Program

address (2) Source Interrupt definition

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/write R/W R R R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

70

7593L–AVR–09/12

AT90USB64/128

Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-

mined by the BOOTSZ Fuses. Refer to Section “Memory programming” on page 359 for details.

To avoid unintentional changes of Interrupt Vector tables, a special write procedure must be fol-

lowed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.

b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled

in the cycle IVCE is set, and they remain disabled until after the instruction following the write to

IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status

Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section “Memory programming” on page 359
for details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by

hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable

interrupts, as explained in the IVSEL description above. See code example below.

Assembly code example

Move_interrupts:

; Get MCUCR

in r16, MCUCR

mov r17, r16

; Enable change of Interrupt Vectors

ori r16, (1<<IVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section

ori r17, (1<<IVSEL)

out MCUCR, r17

ret

C code example

void Move_interrupts(void)

{

unsigned char temp;

/* Get MCUCR */

temp = MCUCR;

/* Enable change of Interrupt Vectors */

MCUCR = temp | (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = temp | (1<<IVSEL);

}

71

7593L–AVR–09/12

AT90USB64/128

11. I/O-ports

11.1 Introduction

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.

This means that the direction of one port pin can be changed without unintentionally changing

the direction of any other pin with the SBI and CBI instructions. The same applies when chang-

ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as

input). Each output buffer has symmetrical drive characteristics with both high sink and source

capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-

vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have

protection diodes to both VCC and Ground as indicated in Figure 11-1. Refer to “Electrical char-

acteristics for Atmel AT90USB64/128” on page 390 for a complete list of parameters.

Figure 11-1. I/O pin equivalent schematic.

All registers and bit references in this section are written in general form. A lower case “x” repre-

sents the numbering letter for the port, and a lower case “n” represents the bit number. However,

when using the register or bit defines in a program, the precise form must be used. For example,

PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-

ters and bit locations are listed in “Register description for I/O-ports” on page 89.

Three I/O memory address locations are allocated for each port, one each for the Data Register

– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins

I/O location is read only, while the Data Register and the Data Direction Register are read/write.

However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-

ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the

pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as general digital I/O” on page 72.

Most port pins are multiplexed with alternate functions for the peripheral features on the device.

How each alternate function interferes with the port pin is described in “Alternate port functions”

on page 76. Refer to the individual module sections for a full description of the alternate

functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the

other pins in the port as general digital I/O.

72

7593L–AVR–09/12

AT90USB64/128

11.2 Ports as general digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 11-2 shows a func-

tional description of one I/O-port pin, here generically called Pxn.

Figure 11-2. General digital I/O (1).

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

11.2.1 Configuring the pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register

description for I/O-ports” on page 89, the DDxn bits are accessed at the DDRx I/O address, the

PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,

Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input

pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is

activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to

be configured as an output pin. The port pins are tri-stated when reset condition becomes active,

even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven

high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port

pin is driven low (zero).

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O

: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
A
TA

 B
U

S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER

73

7593L–AVR–09/12

AT90USB64/128

11.2.2 Toggling the pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.

Note that the SBI instruction can be used to toggle one single bit in a port.

11.2.3 Switching between input and output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}

= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output

low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled state is fully acceptable, as

a high-impedant environment will not notice the difference between a strong high driver and a

pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-

ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user

must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}

= 0b11) as an intermediate step.

Table 11-1 summarizes the control signals for the pin value.

11.2.4 Reading the pin value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the

PINxn Register bit. As shown in Figure 11-2 on page 72, the PINxn Register bit and the preced-

ing latch constitute a synchronizer. This is needed to avoid metastability if the physical pin

changes value near the edge of the internal clock, but it also introduces a delay. Figure 11-3 on

page 74 shows a timing diagram of the synchronization when reading an externally applied pin

value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min

respectively.

Table 11-1. Port pin configurations.

DDxn PORTxn

PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

74

7593L–AVR–09/12

AT90USB64/128

Figure 11-3. Synchronization when reading an externally applied pin value.

Consider the clock period starting shortly after the first falling edge of the system clock. The latch

is closed when the clock is low, and goes transparent when the clock is high, as indicated by the

shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock

goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-

cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed

between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-

cated in Figure 11-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of

the clock. In this case, the delay tpd through the synchronizer is one system clock period.

Figure 11-4. Synchronization when reading a software assigned pin value.

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define

the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin

values are read back again, but as previously discussed, a nop instruction is included to be able

to read back the value recently assigned to some of the pins.

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

tpd

75

7593L–AVR–09/12

AT90USB64/128

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

11.2.5 Digital input enable and sleep modes

As shown in Figure 11-2 on page 72, the digital input signal can be clamped to ground at the

input of the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep

Controller in Power-down mode, Power-save mode, and Standby mode to avoid high power

consumption if some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt

request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various

other alternate functions as described in “Alternate port functions” on page 76.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as

“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt

is not enabled, the corresponding External Interrupt Flag will be set when resuming from the

above mentioned Sleep mode, as the clamping in these sleep mode produces the requested

logic change.

11.2.6 Unconnected pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even

though most of the digital inputs are disabled in the deep sleep modes as described above, float-

Assembly code example (1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C code example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...

76

7593L–AVR–09/12

AT90USB64/128

ing inputs should be avoided to reduce current consumption in all other modes where the digital

inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.

In this case, the pull-up will be disabled during reset. If low power consumption during reset is

important, it is recommended to use an external pull-up or pull-down. Connecting unused pins

directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is

accidentally configured as an output.

11.3 Alternate port functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 11-5

shows how the port pin control signals from the simplified Figure 11-2 on page 72 can be over-

ridden by alternate functions. The overriding signals may not be present in all port pins, but the

figure serves as a generic description applicable to all port pins in the AVR microcontroller

family.

Figure 11-5. Alternate port functions (1).

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O

: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
 B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE

DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE

SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

WPx

77

7593L–AVR–09/12

AT90USB64/128

Table 11-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-

ure 11-5 on page 76 are not shown in the succeeding tables. The overriding signals are

generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the

overriding signals to the alternate function. Refer to the alternate function description for further

details.

Table 11-2. Generic description of overriding signals for alternate functions.

Signal name Full name Description

PUOE
Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the
PUOV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.

PUOV
Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when
PUOV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.

DDOE
Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled
by the DDOV signal. If this signal is cleared, the Output
driver is enabled by the DDxn Register bit.

DDOV
Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled
when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE
Port Value
Override Enable

If this signal is set and the Output Driver is enabled, the
port value is controlled by the PVOV signal. If PVOE is
cleared, and the Output Driver is enabled, the port Value
is controlled by the PORTxn Register bit.

PVOV
Port Value
Override Value

If PVOE is set, the port value is set to PVOV, regardless
of the setting of the PORTxn Register bit.

PTOE
Port Toggle
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input
Enable Override
Enable

If this bit is set, the Digital Input Enable is controlled by
the DIEOV signal. If this signal is cleared, the Digital Input
Enable is determined by MCU state (Normal mode, sleep
mode).

DIEOV
Digital Input
Enable Override
Value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state
(Normal mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the schmitt
trigger but before the synchronizer. Unless the Digital
Input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AIO
Analog
Input/Output

This is the Analog Input/output to/from alternate
functions. The signal is connected directly to the pad, and
can be used bi-directionally.

78

7593L–AVR–09/12

AT90USB64/128

11.3.1 MCUCR – MCU Control Register

• Bit 4 – PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and

PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-

figuring the pin” on page 72 for more details about this feature.

11.3.2 Alternate functions of Port A

The Port A has an alternate function as the address low byte and data lines for the External

Memory Interface.

Table 11-4 and Table 11-5 on page 79 relates the alternate functions of Port A to the overriding

signals shown in Figure 11-5 on page 76.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/write R/W R R R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 11-3. Port A pins alternate functions.

Port pin Alternate function

PA7 AD7 (External memory interface address and data bit 7)

PA6 AD6 (External memory interface address and data bit 6)

PA5 AD5 (External memory interface address and data bit 5)

PA4 AD4 (External memory interface address and data bit 4)

PA3 AD3 (External memory interface address and data bit 3)

PA2 AD2 (External memory interface address and data bit 2)

PA1 AD1 (External memory interface address and data bit 1)

PA0 AD0 (External memory interface address and data bit 0)

Table 11-4. Overriding signals for alternate functions in PA7..PA4.

Signal

name PA7/AD7 PA6/AD6 PA5/AD5 PA4/AD4

PUOE SRE SRE SRE SRE

PUOV
~(WR | ADA (1)) •
PORTA7 • PUD

~(WR | ADA) •
PORTA6 • PUD

~(WR | ADA) •
PORTA5 • PUD

~(WR | ADA) •
PORTA4 • PUD

DDOE SRE SRE SRE SRE

DDOV WR | ADA WR | ADA WR | ADA WR | ADA

PVOE SRE SRE SRE SRE

PVOV
A7 • ADA | D7
OUTPUT • WR

A6 • ADA | D6
OUTPUT • WR

A5 • ADA | D5
OUTPUT • WR

A4 • ADA | D4
OUTPUT • WR

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D7 INPUT D6 INPUT D5 INPUT D4 INPUT

AIO – – – –

79

7593L–AVR–09/12

AT90USB64/128

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See “Exter-
nal memory interface” on page 31 for details.

11.3.3 Alternate functions of Port B

The Port B pins with alternate functions are shown in Table 11-6.

The alternate pin configuration is as follows:

• OC0A/OC1C/PCINT7, bit 7

OC0A, Output Compare Match A output: The PB7 pin can serve as an external output for the

Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB7 set “one”) to

serve this function. The OC0A pin is also the output pin for the PWM mode timer function.

Table 11-5. Overriding signals for alternate functions in PA3..PA0.

Signal

name PA3/AD3 PA2/AD2 PA1/AD1 PA0/AD0

PUOE SRE SRE SRE SRE

PUOV
~(WR | ADA) •
PORTA3 • PUD

~(WR | ADA) •
PORTA2 • PUD

~(WR | ADA) •
PORTA1 • PUD

~(WR | ADA) •
PORTA0 • PUD

DDOE SRE SRE SRE SRE

DDOV WR | ADA WR | ADA WR | ADA WR | ADA

PVOE SRE SRE SRE SRE

PVOV
A3 • ADA | D3
OUTPUT • WR

A2• ADA | D2
OUTPUT • WR

A1 • ADA | D1
OUTPUT • WR

A0 • ADA | D0
OUTPUT • WR

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D3 INPUT D2 INPUT D1 INPUT D0 INPUT

AIO – – – –

Table 11-6. Port B pins alternate functions.

Port pin Alternate functions

PB7
OC0A/OC1C/PCINT7 (Output Compare and PWM Output A for Timer/Counter0,
Output Compare and PWM Output C for Timer/Counter1 or Pin Change Interrupt 7)

PB6
OC1B/PCINT6 (Output Compare and PWM Output B for Timer/Counter1 or Pin
Change Interrupt 6)

PB5
OC1A/PCINT5 (Output Compare and PWM Output A for Timer/Counter1 or Pin
Change Interrupt 5)

PB4
OC2A/PCINT4 (Output Compare and PWM Output A for Timer/Counter2 or Pin
Change Interrupt 4)

PB3
PDO/MISO/PCINT3 (Programming Data Output or SPI Bus Master Input/Slave
Output or Pin Change Interrupt 3)

PB2
PDI/MOSI/PCINT2 (Programming Data Input orSPI Bus Master Output/Slave Input
or Pin Change Interrupt 2)

PB1 SCK/PCINT1 (SPI Bus Serial Clock or Pin Change Interrupt 1)

PB0 SS/PCINT0 (SPI Slave Select input or Pin Change Interrupt 0)

80

7593L–AVR–09/12

AT90USB64/128

OC1C, Output Compare Match C output: The PB7 pin can serve as an external output for the

Timer/Counter1 Output Compare C. The pin has to be configured as an output (DDB7 set (one))

to serve this function. The OC1C pin is also the output pin for the PWM mode timer function.

PCINT7, Pin Change Interrupt source 7: The PB7 pin can serve as an external interrupt source.

• OC1B/PCINT6, bit 6

OC1B, Output Compare Match B output: The PB6 pin can serve as an external output for the

Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set (one))

to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

PCINT6, Pin Change Interrupt source 6: The PB6 pin can serve as an external interrupt source.

• OC1A/PCINT5, bit 5

OC1A, Output Compare Match A output: The PB5 pin can serve as an external output for the

Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set (one))

to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

PCINT5, Pin Change Interrupt source 5: The PB5 pin can serve as an external interrupt source.

• OC2A/PCINT4, bit 4

OC2A, Output Compare Match output: The PB4 pin can serve as an external output for the

Timer/Counter2 Output Compare. The pin has to be configured as an output (DDB4 set (one)) to

serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

PCINT4, Pin Change Interrupt source 4: The PB4 pin can serve as an external interrupt source.

• PDO/MISO/PCINT3 – Port B, bit 3

PDO, SPI Serial Programming Data Output. During Serial Program Downloading, this pin is

used as data output line for the Atmel AT90USB64/128.

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a

master, this pin is configured as an input regardless of the setting of DDB3. When the SPI is

enabled as a slave, the data direction of this pin is controlled by DDB3. When the pin is forced to

be an input, the pull-up can still be controlled by the PORTB3 bit.

PCINT3, Pin Change Interrupt source 3: The PB3 pin can serve as an external interrupt source.

• PDI/MOSI/PCINT2 – Port B, bit 2

PDI, SPI Serial Programming Data Input. During Serial Program Downloading, this pin is used

as data input line for the AT90USB64/128.

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a

slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI is

enabled as a master, the data direction of this pin is controlled by DDB2. When the pin is forced

to be an input, the pull-up can still be controlled by the PORTB2 bit.

PCINT2, Pin Change Interrupt source 2: The PB2 pin can serve as an external interrupt source.

• SCK/PCINT1 – Port B, bit 1

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a

slave, this pin is configured as an input regardless of the setting of DDB1. When the SPI0 is

enabled as a master, the data direction of this pin is controlled by DDB1. When the pin is forced

to be an input, the pull-up can still be controlled by the PORTB1 bit.

81

7593L–AVR–09/12

AT90USB64/128

PCINT1, Pin Change Interrupt source 1: The PB1 pin can serve as an external interrupt source.

• SS/PCINT0 – Port B, bit 0

SS: Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an

input regardless of the setting of DDB0. As a slave, the SPI is activated when this pin is driven

low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDB0.

When the pin is forced to be an input, the pull-up can still be controlled by the PORTB0 bit.

Table 11-7 and Table 11-8 relate the alternate functions of Port B to the overriding signals

shown in Figure 11-5 on page 76. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the

MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

PCINT0, Pin Change Interrupt source 0: The PB0 pin can serve as an external interrupt source..

Table 11-7. Overriding signals for alternate functions in PB7..PB4.

Signal

name

PB7/PCINT7/OC0A/

OC1C PB6/PCINT6/OC1B PB5/PCINT5/OC1A PB4/PCINT4/OC2A

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE
OC0/OC1C
ENABLE

OC1B ENABLE OC1A ENABLE OC2A ENABLE

PVOV OC0/OC1C OC1B OC1A OC2A

DIEOE PCINT7 • PCIE0 PCINT6 • PCIE0 PCINT5 • PCIE0 PCINT4 • PCIE0

DIEOV 1 1 1 1

DI PCINT7 INPUT PCINT6 INPUT PCINT5 INPUT PCINT4 INPUT

AIO – – – –

Table 11-8. Overriding signals for alternate functions in PB3..PB0.

Signal

name

PB3/PD0/PCINT3/

MISO

PB2/PDI/PCINT2/

MOSI

PB1/PCINT1/

SCK

PB0/PCINT0/

SS

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB3 • PUD PORTB2 • PUD PORTB1 • PUD PORTB0 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV
SPI SLAVE
OUTPUT

SPI MSTR OUTPUT SCK OUTPUT 0

DIEOE PCINT3 • PCIE0 PCINT2 • PCIE0 PCINT1 • PCIE0 PCINT0 • PCIE0

DIEOV 1 1 1 1

DI
SPI MSTR INPUT

PCINT3 INPUT

SPI SLAVE INPUT

PCINT2 INPUT

SCK INPUT

PCINT1 INPUT

SPI SS

PCINT0 INPUT

AIO – – – –

82

7593L–AVR–09/12

AT90USB64/128

11.3.4 Alternate functions of Port C

The Port C alternate function is as follows:

Table 11-10 and Table 11-11 on page 83 relate the alternate functions of Port C to the overriding

signals shown in Figure 11-5 on page 76.

Table 11-9. Port C pins alternate functions.

Port pin Alternate function

PC7
A15/IC.3/CLKO(External Memory interface address bit 15 or Input Capture Timer 3 or CLKO
(Divided System Clock)

PC6
A14/OC.3A(External Memory interface address bit 14 or Output Compare and PWM output
A for Timer/Counter3)

PC5
A13/OC.3B(External Memory interface address bit 13 or Output Compare and PWM output
B for Timer/Counter3)

PC4
A12/OC.3C(External Memory interface address bit 12 or Output Compare and PWM output
C for Timer/Counter3)

PC3 A11/T.3(External Memory interface address bit 11or Timer/Counter3 Clok Input)

PC2 A10(External Memory interface address bit 10)

PC1 A9(External Memory interface address bit 9)

PC0 A8(External Memory interface address bit 8)

Table 11-10. Overriding signals for alternate functions in PC7..PC4.

Signal

name PC7/A15/IC.3/CLKO PC6/A14/OC.3A PC5/A13/OC.3B PC4/A12/OC.3C

PUOE SRE • (XMM<1)
SRE •
(XMM<2)|OC3A
enable

SRE •
(XMM<3)|OC3B
enable

SRE •
(XMM<4)|OC3C
enable

PUOV 0 0 0 0

DDOE SRE • (XMM<1) SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

DDOV 1 1 1 1

PVOE SRE • (XMM<1) SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

PVOV A15

if (SRE.XMM<2)
then A14

else OC3A

if (SRE.XMM<2)
then A13

else OC3B

if (SRE.XMM<2)
then A12

else OC3C

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI ICP3 input – – –

AIO – – – –

83

7593L–AVR–09/12

AT90USB64/128

11.3.5 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 11-12.

The alternate pin configuration is as follows:

• T0 – Port D, bit 7

T0, Timer/Counter0 counter source.

• T1 – Port D, bit 6

T1, Timer/Counter1 counter source.

• XCK1 – Port D, bit 5

XCK1, USART1 External clock. The Data Direction Register (DDD5) controls whether the clock

is output (DDD5 set) or input (DDD5 cleared). The XCK1 pin is active only when the USART1

operates in Synchronous mode.

Table 11-11. Overriding signals for alternate functions in PC3..PC0.

Signal

name PC3/A11/T.3 PC2/A10 PC1/A9 PC0/A8

PUOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

PUOV 0 0 0 0

DDOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

DDOV 1 1 1 1

PVOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

PVOV A11 A10 A9 A8

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI T3 input – – –

AIO – – – –

Table 11-12. Port D pins alternate functions.

Port pin Alternate function

PD7 T0 (Timer/Counter0 Clock Input)

PD6 T1 (Timer/Counter1 Clock Input)

PD5 XCK1 (USART1 External Clock Input/Output)

PD4 ICP1 (Timer/Counter1 Input Capture Trigger)

PD3 INT3/TXD1 (External Interrupt3 Input or USART1 Transmit Pin)

PD2 INT2/RXD1 (External Interrupt2 Input or USART1 Receive Pin)

PD1
INT1/SDA/OC2B (External Interrupt1 Input or TWI Serial DAta or Output Compare for
Timer/Counter2)

PD0
INT0/SCL/OC0B (External Interrupt0 Input or TWI Serial CLock or Output Compare for
Timer/Counter0)

84

7593L–AVR–09/12

AT90USB64/128

• ICP1 – Port D, bit 4

ICP1 – Input Capture Pin 1: The PD4 pin can act as an input capture pin for Timer/Counter1.

• INT3/TXD1 – Port D, bit 3

INT3, External Interrupt source 3: The PD3 pin can serve as an external interrupt source to the

MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is

enabled, this pin is configured as an output regardless of the value of DDD3.

• INT2/RXD1 – Port D, bit 2

INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt source to the

MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is enabled

this pin is configured as an input regardless of the value of DDD2. When the USART forces this

pin to be an input, the pull-up can still be controlled by the PORTD2 bit.

• INT1/SDA/OC2B – Port D, bit 1

INT1, External Interrupt source 1. The PD1 pin can serve as an external interrupt source to the

MCU.

SDA, 2-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the 2-wire

Serial Interface, pin PD1 is disconnected from the port and becomes the Serial Data I/O pin for

the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress spikes

shorter than 50ns on the input signal, and the pin is driven by an open drain driver with slew-rate

limitation.

• INT0/SCL/OC0B – Port D, bit 0

INT0, External Interrupt source 0. The PD0 pin can serve as an external interrupt source to the

MCU.

SCL, 2-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the 2-

wire Serial Interface, pin PD0 is disconnected from the port and becomes the Serial Clock I/O

pin for the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress

spikes shorter than 50ns on the input signal, and the pin is driven by an open drain driver with

slew-rate limitation.

Table 11-13 on page 85 and Table 11-14 on page 85 relates the alternate functions of Port D to

the overriding signals shown in Figure 11-5 on page 76.

85

7593L–AVR–09/12

AT90USB64/128

Note: 1. When enabled, the 2-wire Serial Interface enables Slew-Rate controls on the output pins PD0
and PD1. This is not shown in this table. In addition, spike filters are connected between the
AIO outputs shown in the port figure and the digital logic of the TWI module.

Table 11-13. Overriding signals for alternate functions PD7..PD4.

Signal name PD7/T0 PD6/T1 PD5/XCK1 PD4/ICP1

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 XCK1 OUTPUT ENABLE 0

DDOV 0 0 1 0

PVOE 0 0 XCK1 OUTPUT ENABLE 0

PVOV 0 0 XCK1 OUTPUT 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI T0 INPUT T1 INPUT XCK1 INPUT ICP1 INPUT

AIO – – – –

Table 11-14. Overriding signals for alternate functions in PD3..PD0 (1).

Signal name PD3/INT3/TXD1 PD2/INT2/RXD1

PD1/INT1/SDA/OC2

B

PD0/INT0/SCL/OC0

B

PUOE TXEN1 RXEN1 TWEN TWEN

PUOV 0 PORTD2 • PUD PORTD1 • PUD PORTD0 • PUD

DDOE TXEN1 RXEN1 TWEN TWEN

DDOV 1 0 SDA_OUT SCL_OUT

PVOE TXEN1 0
TWEN | OC2B
ENABLE

TWEN | OC0B
ENABLE

PVOV TXD1 0 OC2B OC0B

DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INT0 ENABLE

DIEOV 1 1 1 1

DI INT3 INPUT INT2 INPUT/RXD1 INT1 INPUT INT0 INPUT

AIO – – SDA INPUT SCL INPUT

86

7593L–AVR–09/12

AT90USB64/128

11.3.6 Alternate functions of Port E

The Port E pins with alternate functions are shown in Table 11-15.

• INT7/AIN.1/UVCON – Port E, bit 7

INT7, External Interrupt source 7: The PE7 pin can serve as an external interrupt source.

AIN1 – Analog Comparator Negative input. This pin is directly connected to the negative input of

the Analog Comparator.

UVCON - When using USB host mode, this pin allows to control an external VBUS generator

(active high).

• INT6/AIN.0 – Port E, bit 6

INT6, External Interrupt source 6: The PE6 pin can serve as an external interrupt source.

AIN0 – Analog Comparator Negative input. This pin is directly connected to the negative input of

the Analog Comparator.

• INT5/TOSC2 – Port E, bit 5

INT5, External Interrupt source 5: The PE5 pin can serve as an External Interrupt source.

TOSC2, Timer/Counter2 Oscillator pin1. When the AS2 bit in ASSR is set to enable asynchro-

nous clocking of Timer/Counter2, pin PE5 is disconnected from the port, and becomes the ouput

of the inverting Oscillator amplifier. In this mode, a crystal is connected to this pin, and the pin

can not be used as an I/O pin.

• INT4/TOSC1 – Port E, bit 4

INT4, External Interrupt source 4: The PE4 pin can serve as an External Interrupt source.

TOSC1, Timer/Counter2 Oscillator pin2. When the AS2 bit in ASSR is set to enable asynchro-

nous clocking of Timer/Counter2, pin PE4 is disconnected from the port, and becomes the input

of the inverting Oscillator amplifier. In this mode, a crystal is connected to this pin, and the pin

can not be used as an I/O pin.

• UID – Port E, bit 3

ID pin of the USB bus.

Table 11-15. Port E pins alternate functions.

Port pin Alternate function

PE7
INT7/AIN.1/UVCON (External Interrupt 7 Input, Analog Comparator Positive Input
or VBUS Control)

PE6 INT6/AIN.0 (External Interrupt 6 Input or Analog Comparator Positive Input)

PE5 INT5/TOSC2 (External Interrupt 5 Input or RTC Oscillator Timer/Counter2))

PE4 INT4/TOSC2 (External Interrupt4 Input or RTC Oscillator Timer/Counter2)

PE3 UID

PE2 ALE/HWB (Address latch to extenal memory or Hardware bootloader activation)

PE1 RD (Read strobe to external memory)

PE0 WR (Write strobe to external memory)

87

7593L–AVR–09/12

AT90USB64/128

• ALE/HWB – Port E, bit 2

ALE is the external data memory Address latch enable.

HWB allows to execute the boot loader section after reset when tied to ground during external

reset pulse. The HWB mode of this pin is active only when the HWBE fuse is enable.

• RD – Port E, bit 1

RD is the external data memory read control enable.

• WR – Port E, bit 0

WR is the external data memory write control enable.

Table 11-16. Overriding signals for alternate functions PE7..PE4.

Signal

name

PE7/INT7/AIN.1/

UVCON PE6/INT6/AIN.0 PE5/INT5/TOSC1 PE4/INT4/TOSC2

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE UVCONE 0 0 0

DDOV UVCONE 0 0 0

PVOE UVCONE 0 0 0

PVOV UVCON 0 0 0

DIEOE INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE

DIEOV 1 1 1 1

DI INT7 INPUT INT6 INPUT INT5 INPUT INT4 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

Table 11-17. Overriding signals for alternate functions in PE3..PE0.

Signal

name PE3/UID PE2/ALE/HWB PE1/RD PE0/WR

PUOE UIDE 0 SRE SRE

PUOV 1 0 0 0

DDOE UIDE SRE SRE SRE

DDOV 0 1 1 0

PVOE 0 SRE SRE SRE

PVOV 0 ALE RD WR

DIEOE UIDE 0 0 0

DIEOV 1 0 0 1

DI UID HWB – –

PE0 0 0 0 0

AIO – – – –

88

7593L–AVR–09/12

AT90USB64/128

11.3.7 Alternate functions of Port F

The Port F has an alternate function as analog input for the ADC as shown in Table 11-18. If

some Port F pins are configured as outputs, it is essential that these do not switch when a con-

version is in progress. This might corrupt the result of the conversion. If the JTAG interface is

enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even

if a Reset occurs.

• TDI, ADC7 – Port F, bit 7

ADC7, Analog to Digital Converter, Channel 7.

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Reg-

ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TDO, ADC6 – Port F, bit 6

ADC6, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When

the JTAG interface is enabled, this pin can not be used as an I/O pin.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

• TMS, ADC5 – Port F, bit 5

ADC5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state

machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TCK, ADC4 – Port F, bit 4

ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is

enabled, this pin can not be used as an I/O pin.

• ADC3 – ADC0 – Port F, bit 3..0

Analog to Digital Converter, Channel 3..0.

Table 11-18. Port F pins alternate functions.

Port pin Alternate function

PF7 ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)

PF6 ADC6/TDO (ADC input channel 6 or JTAG Test Data Output)

PF5 ADC5/TMS (ADC input channel 5 or JTAG Test Mode Select)

PF4 ADC4/TCK (ADC input channel 4 or JTAG Test ClocK)

PF3 ADC3 (ADC input channel 3)

PF2 ADC2 (ADC input channel 2)

PF1 ADC1 (ADC input channel 1)

PF0 ADC0 (ADC input channel 0)

89

7593L–AVR–09/12

AT90USB64/128

11.4 Register description for I/O-ports

11.4.1 PORTA – Port A Data Register

Table 11-19. Overriding signals for alternate functions in PF7..PF4.

Signal name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV 1 0 1 1

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0
SHIFT_IR +
SHIFT_DR

0 0

PVOE 0 JTAGEN 0 0

PVOV 0 TDO 0 0

DIEOE JTAGEN JTAGEN JTAGEN JTAGEN

DIEOV 0 0 0 0

DI – – – –

AIO TDI/ADC7 INPUT ADC6 INPUT TMS/ADC5 INPUT TCK/ADC4 INPUT

Table 11-20. Overriding signals for alternate functions in PF3..PF0.

Signal name PF3/ADC3 PF2/ADC2 PF1/ADC1 PF0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Bit 7 6 5 4 3 2 1 0

PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

90

7593L–AVR–09/12

AT90USB64/128

11.4.2 DDRA – Port A Data Direction Register

11.4.3 PINA – Port A Input Pins Address

11.4.4 PORTB – Port B Data Register

11.4.5 DDRB – Port B Data Direction Register

11.4.6 PINB – Port B Input Pins Address

11.4.7 PORTC – Port C Data Register

11.4.8 DDRC – Port C Data Direction Register

11.4.9 PINC – Port C Input Pins Address

11.4.10 PORTD – Port D Data Register

Bit 7 6 5 4 3 2 1 0

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

91

7593L–AVR–09/12

AT90USB64/128

11.4.11 DDRD – Port D Data Direction Register

11.4.12 PIND – Port D Input Pins Address

11.4.13 PORTE – Port E Data Register

11.4.14 DDRE – Port E Data Direction Register

11.4.15 PINE – Port E Input Pins Address

11.4.16 PORTF – Port F Data Register

11.4.17 DDRF – Port F Data Direction Register

11.4.18 PINF – Port F Input Pins Address

Bit 7 6 5 4 3 2 1 0

DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 PORTE

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 DDRE

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 PINE

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 PORTF

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 DDRF

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 PINF

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value N/A N/A N/A N/A N/A N/A N/A N/A

92

7593L–AVR–09/12

AT90USB64/128

12. External interrupts
The External Interrupts are triggered by the INT7:0 pin or any of the PCINT7..0 pins. Observe

that, if enabled, the interrupts will trigger even if the INT7:0 or PCINT7..0 pins are configured as

outputs. This feature provides a way of generating a software interrupt.

The Pin change interrupt PCI0 will trigger if any enabled PCINT7:0 pin toggles. PCMSK0 Regis-

ter control which pins contribute to the pin change interrupts. Pin change interrupts on PCINT7

..0 are detected asynchronously. This implies that these interrupts can be used for waking the

part also from sleep modes other than Idle mode.

The External Interrupts can be triggered by a falling or rising edge or a low level. This is set up

as indicated in the specification for the External Interrupt Control Registers – EICRA (INT3:0)

and EICRB (INT7:4). When the external interrupt is enabled and is configured as level triggered,

the interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising

edge interrupts on INT7:4 requires the presence of an I/O clock, described in “System clock and

clock options” on page 40. Low level interrupts and the edge interrupt on INT3:0 are detected

asynchronously. This implies that these interrupts can be used for waking the part also from

sleep modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level

must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If

the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-

rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described

in “System clock and clock options” on page 40.

12.0.1 EICRA – External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bits 7..0 – ISC31, ISC30 – ISC00, ISC00: External Interrupt 3 - 0 Sense Control bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the

corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that

activate the interrupts are defined in Table 12-1. Edges on INT3..INT0 are registered asynchro-

nously. Pulses on INT3:0 pins wider than the minimum pulse width given in Table 12-2 will

generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level

interrupt is selected, the low level must be held until the completion of the currently executing

instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an inter-

rupt request as long as the pin is held low. When changing the ISCn bit, an interrupt can occur.

Therefore, it is recommended to first disable INTn by clearing its Interrupt Enable bit in the

EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt flag should be

cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the

interrupt is re-enabled.

Bit 7 6 5 4 3 2 1 0

ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 EICRA

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

93

7593L–AVR–09/12

AT90USB64/128

Note: 1. n = 3, 2, 1or 0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

12.0.2 EICRB – External Interrupt Control Register B

• Bits 7..0 – ISC71, ISC70 - ISC41, ISC40: External Interrupt 7 - 4 Sense Control Bits

The External Interrupts 7 - 4 are activated by the external pins INT7:4 if the SREG I-flag and the

corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that

activate the interrupts are defined in Table 12-3. The value on the INT7:4 pins are sampled

before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one

clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an inter-

rupt. Observe that CPU clock frequency can be lower than the XTAL frequency if the XTAL

divider is enabled. If low level interrupt is selected, the low level must be held until the comple-

tion of the currently executing instruction to generate an interrupt. If enabled, a level triggered

interrupt will generate an interrupt request as long as the pin is held low.

Note: 1. n = 7, 6, 5 or 4.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

12.0.3 EIMSK – External Interrupt Mask Register

Table 12-1. Interrupt sense control (1).

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request.

0 1 Any edge of INTn generates asynchronously an interrupt request.

1 0 The falling edge of INTn generates asynchronously an interrupt request.

1 1 The rising edge of INTn generates asynchronously an interrupt request.

Table 12-2. Asynchronous external interrupt characteristics.

Symbol Parameter Condition Min. Typ. Max. Units

tINT
Minimum pulse width for asynchronous
external interrupt

50 ns

Bit 7 6 5 4 3 2 1 0

ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 EICRB

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 12-3. Interrupt sense control (1).

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request.

0 1 Any logical change on INTn generates an interrupt request.

1 0 The falling edge between two samples of INTn generates an interrupt request.

1 1 The rising edge between two samples of INTn generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

INT7 INT6 INT5 INT4 INT3 INT2 INT1 IINT0 EIMSK

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

94

7593L–AVR–09/12

AT90USB64/128

• Bits 7..0 – INT7 – INT0: External Interrupt Request 7 - 0 Enable

When an INT7 – INT0 bit is written to one and the I-bit in the Status Register (SREG) is set

(one), the corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the

External Interrupt Control Registers – EICRA and EICRB – defines whether the external inter-

rupt is activated on rising or falling edge or level sensed. Activity on any of these pins will trigger

an interrupt request even if the pin is enabled as an output. This provides a way of generating a

software interrupt.

12.0.4 EIFR – External Interrupt Flag Register

• Bits 7..0 – INTF7 - INTF0: External Interrupt Flags 7 - 0

When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0 becomes

set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT7:0 in EIMSK, are

set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine

is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags are

always cleared when INT7:0 are configured as level interrupt. Note that when entering sleep

mode with the INT3:0 interrupts disabled, the input buffers on these pins will be disabled. This

may cause a logic change in internal signals which will set the INTF3:0 flags. See “Digital input

enable and sleep modes” on page 75 for more information.

12.0.5 PCICR – Pin Change Interrupt Control Register

• Bit 0 – PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin

change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.

The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Interrupt

Vector. PCINT7..0 pins are enabled individually by the PCMSK0 Register.

12.0.6 PCIFR – Pin Change Interrupt Flag Register

• Bit 0 – PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set

(one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the MCU will jump to the

corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-

natively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 IINTF0 EIFR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – PCIE0 PCICR

Read/write R R R R R R R R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – PCIF0 PCIFR

Read/write R R R R R R R R/W

Initial value 0 0 0 0 0 0 0 0

95

7593L–AVR–09/12

AT90USB64/128

12.0.7 PCMSK0 – Pin Change Mask Register 0

• Bit 7..0 – PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O

pin. If PCINT7..0 is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the

corresponding I/O pin. If PCINT7..0 is cleared, pin change interrupt on the corresponding I/O pin

is disabled.

Bit 7 6 5 4 3 2 1 0

PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

96

7593L–AVR–09/12

AT90USB64/128

13. Timer/Counter0, Timer/Counter1, and Timer/Counter3 prescalers

Timer/Counter0, 1, and 3 share the same prescaler module, but the Timer/Counters can have
different prescaler settings. The description below applies to all Timer/Counters. Tn is used as a
general name, n = 0, 1 or 3.

13.1 Internal clock source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or
fCLK_I/O/1024.

13.2 Prescaler reset

The prescaler is free running, that is, operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by the Timer/Counter Tn. Since the prescaler is not affected by
the Timer/Counter’s clock select, the state of the prescaler will have implications for situations
where a prescaled clock is used. One example of prescaling artefacts occurs when the timer is
enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from
when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles,
where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

13.3 External clock source

An external clock source applied to the Tn pin can be used as Timer/Counter clock (clkTn). The
Tn pin is sampled once every system clock cycle by the pin synchronization logic. The synchro-
nized (sampled) signal is then passed through the edge detector. Figure 13-1 shows a functional
equivalent block diagram of the Tn synchronization and edge detector logic. The registers are
clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the
high period of the internal system clock.

The edge detector generates one clkTn pulse for each positive (CSn2:0 = 7) or negative (CSn2:0
= 6) edge it detects.

Figure 13-1. Tn/T0 pin sampling.

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the Tn pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn has been stable for at least one
system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Tn_sync

(To clock
select logic)

Edge detectorSynchronization

D QD Q

LE

D QTn

clk
I/O

97

7593L–AVR–09/12

AT90USB64/128

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 13-2. Prescaler for synchronous Timer/Counters

13.4 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSRASY and PSRSYNC bits is kept, hence keeping the correspond-
ing prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are
halted and can be configured to the same value without the risk of one of them advancing during
configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared
by hardware, and the Timer/Counters start counting simultaneously.

• Bit 0 – PSRSYNC: Prescaler Reset for Synchronous Timer/Counters

When this bit is one, Timer/Counter0 and Timer/Counter1 and Timer/Counter3 prescaler will be
Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note
that Timer/Counter0, Timer/Counter1 and Timer/Counter3 share the same prescaler and a reset
of this prescaler will affect all timers.

PSR10

Clear

Tn

Tn

clk
I/O

Synchronization

Synchronization

TIMER/COUNTERn CLOCK SOURCE
clk

Tn

TIMER/COUNTERn CLOCK SOURCE
clk

Tn

CSn0

CSn1

CSn2

CSn0

CSn1

CSn2

Bit 7 6 5 4 3 2 1 0

TSM – – – – – PSRASY PSRSYNC GTCCR

Read/write R/W R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

98

7593L–AVR–09/12

AT90USB64/128

14. 8-bit Timer/Counter0 with PWM
Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output

Compare Units, and with PWM support. It allows accurate program execution timing (event man-

agement) and wave generation. The main features are:

• Two independent output compare units

• Double buffered output compare registers

• Clear timer on compare match (auto reload)

• Glitch free, phase correct pulse width modulator (PWM)

• Variable PWM period

• Frequency generator

• Three independent interrupt sources (TOV0, OCF0A, and OCF0B)

14.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual

placement of I/O pins, refer to “Pinout Atmel AT90USB64/128-TQFP.” on page 3. CPU accessi-

ble I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O

Register and bit locations are listed in the “8-bit Timer/Counter register description” on page 108.

Figure 14-1. 8-bit Timer/Counter block diagram.

14.1.1 Registers

The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit

registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the

Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer Inter-

rupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on

the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source

is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

Clock select

Timer/Counter

D
A
TA

 B
U

S

OCRnA

OCRnB

=

=

TCNTn

Waveform
generation

Waveform
generation

OCnA

OCnB

=

Fixed
TOP
value

Control logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn

(int.req.)

OCnA

(int.req.)

OCnB

(Int.Req.)

TCCRnA TCCRnB

Tn
Edge

detector

(From prescaler)

clk
Tn

99

7593L–AVR–09/12

AT90USB64/128

The double buffered Output Compare Registers (OCR0A and OCR0B) are compared with the

Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-

erator to generate a PWM or variable frequency output on the Output Compare pins (OC0A and

OC0B). See “Output compare unit” on page 100. for details. The Compare Match event will also

set the Compare Flag (OCF0A or OCF0B) which can be used to generate an Output Compare

interrupt request.

14.1.2 Definitions

Many register and bit references in this section are written in general form. A lower case “n”

replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-

pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or

bit defines in a program, the precise form must be used, that is, TCNT0 for accessing

Timer/Counter0 counter value and so on.

The definitions in the table below are also used extensively throughout the document.

14.2 Timer/Counter clock sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source

is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits

located in the Timer/Counter Control Register (TCCR0B). For details on clock sources and pres-

caler, see “Timer/Counter0, Timer/Counter1, and Timer/Counter3 prescalers” on page 96.

14.3 Counter unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure

14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter unit block diagram.

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the

count sequence. The TOP value can be assigned to be the fixed value 0xFF

(MAX) or the value stored in the OCR0A Register. The assignment is dependent

on the mode of operation.

DATA BUS

TCNTn Control logic

count

TOVn

(int.req.)

Clock select

top

Tn
Edge

detector

(From prescaler)

clk
Tn

bottom

direction

clear

100

7593L–AVR–09/12

AT90USB64/128

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,

selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the

timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of

whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in

the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the Timer/Counter

Control Register B (TCCR0B). There are close connections between how the counter behaves

(counts) and how waveforms are generated on the Output Compare outputs OC0A and OC0B.

For more details about advanced counting sequences and waveform generation, see “Modes of

operation” on page 103.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by

the WGM02:0 bits. TOV0 can be used for generating a CPU interrupt.

14.4 Output compare unit

The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers

(OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a

match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock

cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output

Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-

cuted. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit

location. The Waveform Generator uses the match signal to generate an output according to

operating mode set by the WGM02:0 bits and Compare Output mode (COM0x1:0) bits. The

maximum and bottom signals are used by the Waveform Generator for handling the special

cases of the extreme values in some modes of operation (“Modes of operation” on page 103).

Figure 14-3 on page 101 shows a block diagram of the Output Compare unit.

101

7593L–AVR–09/12

AT90USB64/128

Figure 14-3. Output Compare Unit, block diagram.

The OCR0x Registers are double buffered when using any of the Pulse Width Modulation

(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-

ble buffering is disabled. The double buffering synchronizes the update of the OCR0x Compare

Registers to either top or bottom of the counting sequence. The synchronization prevents the

occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0x Register access may seem complex, but this is not case. When the double buffering

is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is dis-

abled the CPU will access the OCR0x directly.

14.4.1 Force output compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOC0x) bit. Forcing Compare Match will not set the

OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real Compare

Match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set, cleared or

toggled).

14.4.2 Compare match blocking by TCNT0 write

All CPU write operations to the TCNT0 Register will block any Compare Match that occur in the

next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be initial-

ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is

enabled.

14.4.3 Using the output compare unit

Since writing TCNT0 in any mode of operation will block all Compare Matches for one timer

clock cycle, there are risks involved when changing TCNT0 when using the Output Compare

Unit, independently of whether the Timer/Counter is running or not. If the value written to TCNT0

equals the OCR0x value, the Compare Match will be missed, resulting in incorrect waveform

generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is

down-counting.

OCFnx (int.req.)

= (8-bit comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform generator

top

FOCn

COMnX1:0

bottom

102

7593L–AVR–09/12

AT90USB64/128

The setup of the OC0x should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OC0x value is to use the Force Output Com-

pare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their values even when

changing between Waveform Generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value.

Changing the COM0x1:0 bits will take effect immediately.

14.5 Compare Match Output Unit

The Compare Output mode (COM0x1:0) bits have two functions. The Waveform Generator uses

the COM0x1:0 bits for defining the Output Compare (OC0x) state at the next Compare Match.

Also, the COM0x1:0 bits control the OC0x pin output source. Figure 14-4 shows a simplified

schematic of the logic affected by the COM0x1:0 bit setting. The I/O Registers, I/O bits, and I/O

pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers

(DDR and PORT) that are affected by the COM0x1:0 bits are shown. When referring to the

OC0x state, the reference is for the internal OC0x Register, not the OC0x pin. If a system reset

occur, the OC0x Register is reset to “0”.

Figure 14-4. Compare Match Output Unit, schematic.

The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform

Generator if either of the COM0x1:0 bits are set. However, the OC0x pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x value is visi-

ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0x state before the out-

put is enabled. Note that some COM0x1:0 bit settings are reserved for certain modes of

operation. See “8-bit Timer/Counter register description” on page 108.

14.5.1 Compare output mode and waveform generation

The Waveform Generator uses the COM0x1:0 bits differently in Normal, CTC, and PWM modes.

For all modes, setting the COM0x1:0 = 0 tells the Waveform Generator that no action on the

OC0x Register is to be performed on the next Compare Match. For compare output actions in

PORT

DDR

D Q

D Q

OCnx

PinOCnx

D Q
Waveform
generator

COMnx1

COMnx0

0

1

D
A
TA

 B
U

S

FOCn

clkI/O

103

7593L–AVR–09/12

AT90USB64/128

the non-PWM modes refer to Table 14-1 on page 109. For fast PWM mode, refer to Table 14-2

on page 109, and for phase correct PWM refer to Table 14-3 on page 109.

A change of the COM0x1:0 bits state will have effect at the first Compare Match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC0x strobe bits.

14.6 Modes of operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,

is defined by the combination of the Waveform Generation mode (WGM02:0) and Compare Out-

put mode (COM0x1:0) bits. The Compare Output mode bits do not affect the counting sequence,

while the Waveform Generation mode bits do. The COM0x1:0 bits control whether the PWM out-

put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes

the COM0x1:0 bits control whether the output should be set, cleared, or toggled at a Compare

Match (See “Compare Match Output Unit” on page 102.).

For detailed timing information see “Timer/Counter timing diagrams” on page 107.

14.6.1 Normal mode

The simplest mode of operation is the Normal mode (WGM02:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-

tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same

timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth

bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt

that automatically clears the TOV0 Flag, the timer resolution can be increased by software.

There are no special cases to consider in the Normal mode, a new counter value can be written

anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Out-

put Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

14.6.2 Clear Timer on Compare Match (CTC) mode

In Clear Timer on Compare or CTC mode (WGM02:0 = 2), the OCR0A Register is used to

manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter

value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence

also its resolution. This mode allows greater control of the Compare Match output frequency. It

also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-5 on page 104. The counter value

(TCNT0) increases until a Compare Match occurs between TCNT0 and OCR0A, and then coun-

ter (TCNT0) is cleared.

104

7593L–AVR–09/12

AT90USB64/128

Figure 14-5. CTC mode, timing diagram.

An interrupt can be generated each time the counter value reaches the TOP value by using the

OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating

the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-

ning with none or a low prescaler value must be done with care since the CTC mode does not

have the double buffering feature. If the new value written to OCR0A is lower than the current

value of TCNT0, the counter will miss the Compare Match. The counter will then have to count to

its maximum value (0xFF) and wrap around starting at 0x00 before the Compare Match can

occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical

level on each Compare Match by setting the Compare Output mode bits to toggle mode

(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for

the pin is set to output. The waveform generated will have a maximum frequency of fOC0 =

fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following

equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x00.

14.6.3 Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGM02:0 = 3 or 7) provides a high fre-

quency PWM waveform generation option. The fast PWM differs from the other PWM option by

its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-

TOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR0A when WGM2:0 = 7. In non-

inverting Compare Output mode, the Output Compare (OC0x) is cleared on the Compare Match

between TCNT0 and OCR0x, and set at BOTTOM. In inverting Compare Output mode, the out-

put is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the

operating frequency of the fast PWM mode can be twice as high as the phase correct PWM

mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited

for power regulation, rectification, and DAC applications. High frequency allows physically small

sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.

The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

TCNTn

OCn
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx

fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=

105

7593L–AVR–09/12

AT90USB64/128

PWM mode is shown in Figure 14-6. The TCNT0 value is in the timing diagram shown as a his-

togram for illustrating the single-slope operation. The diagram includes non-inverted and

inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent Com-

pare Matches between OCR0x and TCNT0.

Figure 14-6. Fast PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches TOP. If the inter-

rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins.

Setting the COM0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output

can be generated by setting the COM0x1:0 to three: Setting the COM0A1:0 bits to one allows

the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not available

for the OC0B pin (see Table 14-2 on page 109). The actual OC0x value will only be visible on

the port pin if the data direction for the port pin is set as output. The PWM waveform is gener-

ated by setting (or clearing) the OC0x Register at the Compare Match between OCR0x and

TCNT0, and clearing (or setting) the OC0x Register at the timer clock cycle the counter is

cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM

waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will

be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result

in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0

bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OC0x to toggle its logical level on each Compare Match (COM0x1:0 = 1). The waveform

generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This

TCNTn

OCRnx update and
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM
fclk_I/O

N 256⋅
------------------=

106

7593L–AVR–09/12

AT90USB64/128

feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-

put Compare unit is enabled in the fast PWM mode.

14.6.4 Phase correct PWM mode

The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct

PWM waveform generation option. The phase correct PWM mode is based on a dual-slope

operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-

TOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In non-

inverting Compare Output mode, the Output Compare (OC0x) is cleared on the Compare Match

between TCNT0 and OCR0x while up-counting, and set on the Compare Match while down-

counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation

has lower maximum operation frequency than single slope operation. However, due to the sym-

metric feature of the dual-slope PWM modes, these modes are preferred for motor control

applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.

When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal

to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown

on Figure 14-7. The TCNT0 value is in the timing diagram shown as a histogram for illustrating

the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The

small horizontal line marks on the TCNT0 slopes represent Compare Matches between OCR0x

and TCNT0.

Figure 14-7. Phase correct PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The

Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM

value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the

OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM. An inverted

PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A0 bits to

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx update

107

7593L–AVR–09/12

AT90USB64/128

one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is

not available for the OC0B pin (see Table 14-3 on page 109). The actual OC0x value will only be

visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is

generated by clearing (or setting) the OC0x Register at the Compare Match between OCR0x

and TCNT0 when the counter increments, and setting (or clearing) the OC0x Register at Com-

pare Match between OCR0x and TCNT0 when the counter decrements. The PWM frequency for

the output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the

output will be continuously low and if set equal to MAX the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 14-7 on page 106 OCnx has a transition from high to low

even though there is no Compare Match. The point of this transition is to guarantee symmetry

around BOTTOM. There are two cases that give a transition without Compare Match.

• OCR0A changes its value from MAX, like in Figure 14-7 on page 106. When the OCR0A

value is MAX the OCn pin value is the same as the result of a down-counting Compare

Match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the

result of an up-counting Compare Match

• The timer starts counting from a value higher than the one in OCR0A, and for that reason

misses the Compare Match and hence the OCn change that would have happened on the

way up

14.7 Timer/Counter timing diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a

clock enable signal in the following figures. The figures include information on when Interrupt

Flags are set. Figure 14-8 contains timing data for basic Timer/Counter operation. The figure

shows the count sequence close to the MAX value in all modes other than phase correct PWM

mode.

Figure 14-8. Timer/Counter timing diagram, no prescaling.

Figure 14-9 on page 108 shows the same timing data, but with the prescaler enabled.

fOCnxPCPWM

fclk_I/O

N 510⋅
------------------=

clkTn
(clk

I/O
/1)

TOVn

clk
I/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

108

7593L–AVR–09/12

AT90USB64/128

Figure 14-9. Timer/Counter timing diagram, with prescaler (fclk_I/O/8).

Figure 14-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC

mode and PWM mode, where OCR0A is TOP.

Figure 14-10. Timer/Counter timing diagram, setting of OCF0x, with prescaler (fclk_I/O/8).

Figure 14-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast

PWM mode where OCR0A is TOP.

Figure 14-11. Timer/Counter timing diagram, clear timer on Compare Match mode, with pres-
caler (fclk_I/O/8)

14.8 8-bit Timer/Counter register description

14.8.1 TCCR0A – Timer/Counter Control Register A

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clk
I/O

clkTn
(clk

I/O
/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clkTn
(clk

I/O
/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clkTn
(clk

I/O
/8)

Bit 7 6 5 4 3 2 1 0

COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A

Read/write R/W R/W R/W R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

109

7593L–AVR–09/12

AT90USB64/128

• Bits 7:6 – COM01A:0: Compare Match Output A Mode

These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0

bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin

must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the

WGM02:0 bit setting. Table 14-1 shows the COM0A1:0 bit functionality when the WGM02:0 bits

are set to a normal or CTC mode (non-PWM).

Table 14-2 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 104
for more details.

Table 14-3 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM mode” on
page 106 for more details.

Table 14-1. Compare Output mode, non-PWM mode.

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on Compare Match

1 0 Clear OC0A on Compare Match

1 1 Set OC0A on Compare Match

Table 14-2. Compare Output mode, Fast PWM mode (1).

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0 Clear OC0A on Compare Match, set OC0A at TOP

1 1 Set OC0A on Compare Match, clear OC0A at TOP

Table 14-3. Compare Output mode, phase correct PWM mode (1).

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match when up-counting. Set OC0A on Compare
Match when down-counting.

1 1
Set OC0A on Compare Match when up-counting. Clear OC0A on Compare
Match when down-counting.

110

7593L–AVR–09/12

AT90USB64/128

• Bits 5:4 – COM0B1:0: Compare Match Output B mode

These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B1:0

bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0B pin

must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the

WGM02:0 bit setting. Table 14-1 shows the COM0A1:0 bit functionality when the WGM02:0 bits

are set to a normal or CTC mode (non-PWM).

Table 14-2 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 104
for more details.

Table 14-3 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM mode” on
page 106 for more details.

• Bits 3, 2 – Res: Reserved bits

These bits are reserved bits in the Atmel AT90USB64/128 and will always read as zero.

Table 14-4. Compare Output mode, non-PWM mode.

COM01 COM00 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on Compare Match

1 0 Clear OC0B on Compare Match

1 1 Set OC0B on Compare Match

Table 14-5. Compare Output mode, fast PWM mode (1).

COM01 COM00 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved.

1 0 Clear OC0B on Compare Match, set OC0B at TOP.

1 1 Set OC0B on Compare Match, clear OC0B at TOP.

Table 14-6. Compare Output mode, phase correct PWM mode (1).

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved.

1 0
Clear OC0B on Compare Match when up-counting. Set OC0B on Compare
Match when down-counting.

1 1
Set OC0B on Compare Match when up-counting. Clear OC0B on Compare
Match when down-counting.

111

7593L–AVR–09/12

AT90USB64/128

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting

sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-

form generation to be used, see Table 14-7. Modes of operation supported by the Timer/Counter

unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of

Pulse Width Modulation (PWM) modes (see “Modes of operation” on page 103).

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00

14.8.2 TCCR0B – Timer/Counter Control Register B

• Bit 7 – FOC0A: Force Output Compare A

The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when

TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit,

an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is

changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a

strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the

forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force Output Compare B

The FOC0B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when

TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0B bit,

an immediate Compare Match is forced on the Waveform Generation unit. The OC0B output is

changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is implemented as a

Table 14-7. Waveform Generation Mode bit description.

Mode WGM2 WGM1 WGM0

Timer/Counter mode of

operation TOP

Update of

OCRx at

TOV flag

set on (1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, phase correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

5 1 0 1 PWM, phase correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA TOP TOP

Bit 7 6 5 4 3 2 1 0

FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B

Read/write W W R R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

112

7593L–AVR–09/12

AT90USB64/128

strobe. Therefore it is the value present in the COM0B1:0 bits that determines the effect of the

forced compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR0B as TOP.

The FOC0B bit is always read as zero.

• Bits 5:4 – Res: Reserved bits

These bits are reserved bits and will always read as zero.

• Bit 3 – WGM02: Waveform Generation Mode

See the description in the “TCCR0A – Timer/Counter Control Register A” on page 108.

• Bits 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the

counter even if the pin is configured as an output. This feature allows software control of the

counting.

14.8.3 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the

Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare

Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,

introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers.

14.8.4 OCR0A – Output Compare Register A

Table 14-8. Clock Select bit description.

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

TCNT0[7:0] TCNT0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR0A[7:0] OCR0A

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

113

7593L–AVR–09/12

AT90USB64/128

The Output Compare Register A contains an 8-bit value that is continuously compared with the

counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC0A pin.

14.8.5 OCR0B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the

counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC0B pin.

14.8.6 TIMSK0 – Timer/Counter Interrupt Mask Register

• Bits 7..3, 0 – Res: Reserved bits

These bits are reserved bits and will always read as zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the

Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if

a Compare Match in Timer/Counter occurs, that is, when the OCF0B bit is set in the

Timer/Counter Interrupt Flag Register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the

Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed

if a Compare Match in Timer/Counter0 occurs, that is, when the OCF0A bit is set in the

Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the

Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an

overflow in Timer/Counter0 occurs, that is, when the TOV0 bit is set in the Timer/Counter 0 Inter-

rupt Flag Register – TIFR0.

14.8.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bits 7..3, 0 – Res: Reserved bits

These bits are reserved bits in the Atmel AT90USB64/128 and will always read as zero.

Bit 7 6 5 4 3 2 1 0

OCR0B[7:0] OCR0B

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – OCF0B OCF0A TOV0 TIFR0

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

114

7593L–AVR–09/12

AT90USB64/128

• Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag

The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data in

OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the cor-

responding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one to

the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt Enable),

and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed.

• Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag

The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the data

in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing the cor-

responding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to

the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt Enable),

and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware

when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by

writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt

Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 14-7, “Waveform

Generation Mode bit description.” on page 111.

115

7593L–AVR–09/12

AT90USB64/128

15. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)
The 16-bit Timer/Counter unit allows accurate program execution timing (event management),

wave generation, and signal timing measurement. The main features are:

• True 16-bit design (that is, allows 16-bit PWM)

• Three independent output compare units

• Double buffered output compare registers

• One input capture unit

• Input capture noise canceler

• Clear timer on compare match (auto reload)

• Glitch-free, phase correct pulse width modulator (PWM)

• Variable PWM period

• Frequency generator

• External event counter

• Ten independent interrupt sources (TOV1, OCF1A, OCF1B, OCF1C, ICF1, TOV3, OCF3A, OCF3B,

OCF3C, and ICF3)

15.1 Overview

Most register and bit references in this section are written in general form. A lower case “n”

replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit

channel. However, when using the register or bit defines in a program, the precise form must be

used, that is, TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1 on page 116. For

the actual placement of I/O pins, see “Pinout Atmel AT90USB64/128-TQFP.” on page 3. CPU

accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific

I/O Register and bit locations are listed in the “16-bit Timer/Counter (Timer/Counter1 and

Timer/Counter3)” on page 115.

The Power Reduction Timer/Counter1 bit, PRTIM1, in “PRR0 – Power Reduction Register 0” on

page 54 must be written to zero to enable Timer/Counter1 module.

The Power Reduction Timer/Counter3 bit, PRTIM3, in “PRR1 – Power Reduction Register 1” on

page 55 must be written to zero to enable Timer/Counter3 module.

116

7593L–AVR–09/12

AT90USB64/128

Figure 15-1. 16-bit Timer/Counter block diagram (1).

Note: 1. Refer to Figure 1-1 on page 3, Table 11-6 on page 79, and Table 11-9 on page 82 for
Timer/Counter1 and 3 and 3 pin placement and description.

15.1.1 Registers

The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B/C), and Input Capture Reg-

ister (ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16-

bit registers. These procedures are described in the section “Accessing 16-bit registers” on page

117. The Timer/Counter Control Registers (TCCRnA/B/C) are 8-bit registers and have no CPU

access restrictions. Interrupt requests (shorten as Int.Req.) signals are all visible in the Timer

Interrupt Flag Register (TIFRn). All interrupts are individually masked with the Timer Interrupt

Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure since these registers

are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on

the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source

is selected. The output from the clock select logic is referred to as the timer clock (clkTn).

The double buffered Output Compare Registers (OCRnA/B/C) are compared with the

Timer/Counter value at all time. The result of the compare can be used by the Waveform Gener-

ator to generate a PWM or variable frequency output on the Output Compare pin (OCnA/B/C).

ICFn (Int.Req.)

TOVn

(int.req.)

Clock select

Timer/Counter

D
A

T
A

B
U

S

ICRn

=

=

=

TCNTn

Waveform

generation

Waveform

generation

Waveform

generation

OCnA

OCnB

OCnC

Noise

canceler
ICPn

=

Fixed

TOP

values

Edge

detector

Control logic

= 0

TOP BOTTOM

Count

Clear

Direction

OCFnA

(Int.Req.)

OCFnB

(Int.Req.)

OCFnC

(Int.Req.)

TCCRnA TCCRnB TCCRnC

(From Analog

Comparator Ouput)

Tn
Edge

detector

(From prescaler)

TCLK

OCRnC

OCRnB

OCRnA

117

7593L–AVR–09/12

AT90USB64/128

See “Output Compare units” on page 124.. The compare match event will also set the Compare

Match Flag (OCFnA/B/C) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-

gered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (see

“Analog Comparator” on page 304) The Input Capture unit includes a digital filtering unit (Noise

Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined

by either the OCRnA Register, the ICRn Register, or by a set of fixed values. When using

OCRnA as TOP value in a PWM mode, the OCRnA Register can not be used for generating a

PWM output. However, the TOP value will in this case be double buffered allowing the TOP

value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used

as an alternative, freeing the OCRnA to be used as PWM output.

15.1.2 Definitions

The following definitions are used extensively throughout the document:

15.2 Accessing 16-bit registers

The TCNTn, OCRnA/B/C, and ICRn are 16-bit registers that can be accessed by the AVR CPU

via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write opera-

tions. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-

bit access. The same Temporary Register is shared between all 16-bit registers within each 16-

bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of

a 16-bit register is written by the CPU, the high byte stored in the Temporary Register, and the

low byte written are both copied into the 16-bit register in the same clock cycle. When the low

byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the

Temporary Register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the Temporary Register for the high byte. Reading the OCRnA/B/C

16-bit registers does not involve using the Temporary Register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low

byte must be read before the high byte.

The following code examples show how to access the 16-bit timer registers assuming that no

interrupts updates the temporary register. The same principle can be used directly for accessing

the OCRnA/B/C and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit

access.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be one of the fixed values:
0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCRnA or ICRn
Register. The assignment is dependent of the mode of operation.

118

7593L–AVR–09/12

AT90USB64/128

Note: 1. See “About code examples” on page 10.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt

occurs between the two instructions accessing the 16-bit register, and the interrupt code

updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-

ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both

the main code and the interrupt code update the temporary register, the main code must disable

the interrupts during the 16-bit access.

Assembly code examples (1)

...

; Set TCNTn to 0x01FF

ldi r17,0x01

ldi r16,0xFF

out TCNTnH,r17

out TCNTnL,r16

; Read TCNTn into r17:r16

in r16,TCNTnL

in r17,TCNTnH

...

C code examples (1)

unsigned int i;

...

/* Set TCNTn to 0x01FF */

TCNTn = 0x1FF;

/* Read TCNTn into i */

i = TCNTn;

...

119

7593L–AVR–09/12

AT90USB64/128

The following code examples show how to do an atomic read of the TCNTn Register contents.

Reading any of the OCRnA/B/C or ICRn Registers can be done by using the same principle.

Note: 1. See “About code examples” on page 10.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

Assembly code example (1)

TIM16_ReadTCNTn:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNTn into r17:r16

in r16,TCNTnL

in r17,TCNTnH

; Restore global interrupt flag

out SREG,r18

ret

C code example (1)

unsigned int TIM16_ReadTCNTn(void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

__disable_interrupt();

/* Read TCNTn into i */

i = TCNTn;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}

120

7593L–AVR–09/12

AT90USB64/128

The following code examples show how to do an atomic write of the TCNTn Register contents.

Writing any of the OCRnA/B/C or ICRn Registers can be done by using the same principle.

Note: 1. See “About code examples” on page 10.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-

ten to TCNTn.

15.2.1 Reusing the Temporary High Byte register

If writing to more than one 16-bit register where the high byte is the same for all registers written,

then the high byte only needs to be written once. However, note that the same rule of atomic

operation described previously also applies in this case.

15.3 Timer/Counter clock sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source

is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits

located in the Timer/Counter control Register B (TCCRnB). For details on clock sources and

prescaler, see Section “Timer/Counter0, Timer/Counter1, and Timer/Counter3 prescalers” on

page 96.

Assembly code example (1)

TIM16_WriteTCNTn:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNTn to r17:r16

out TCNTnH,r17

out TCNTnL,r16

; Restore global interrupt flag

out SREG,r18

ret

C code example (1)

void TIM16_WriteTCNTn(unsigned int i)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

__disable_interrupt();

/* Set TCNTn to i */

TCNTn = i;

/* Restore global interrupt flag */

SREG = sreg;

}

121

7593L–AVR–09/12

AT90USB64/128

15.4 Counter unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.

Figure 15-2 shows a block diagram of the counter and its surroundings.

Figure 15-2. Counter unit block diagram.

Signal description (internal signals):

Count Increment or decrement TCNTn by 1.

Direction Select between increment and decrement.

Clear Clear TCNTn (set all bits to zero).

clkTn Timer/Counter clock.

TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-

taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight

bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an

access to the TCNTnH I/O location, the CPU accesses the high byte temporary register (TEMP).

The temporary register is updated with the TCNTnH value when the TCNTnL is read, and

TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the

CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.

It is important to notice that there are special cases of writing to the TCNTn Register when the

counter is counting that will give unpredictable results. The special cases are described in the

sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkTn). The clkTn can be generated from an external or internal clock source,

selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the

timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of

whether clkTn is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits

(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).

There are close connections between how the counter behaves (counts) and how waveforms

are generated on the Output Compare outputs OCnx. For more details about advanced counting

sequences and waveform generation, see Section “Modes of operation” on page 127.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control logic

Count

Clear

Direction

TOVn

(Int.Req.)

Clock select

TOP BOTTOM

Tn
Edge

detector

(From prescaler)

clk
Tn

122

7593L–AVR–09/12

AT90USB64/128

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by

the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

15.5 Input Capture unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give

them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-

tiple events, can be applied via the ICPn pin or alternatively, for the Timer/Counter1 only, via the

Analog Comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle,

and other features of the signal applied. Alternatively the time-stamps can be used for creating a

log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 15-3. The elements of

the block diagram that are not directly a part of the input capture unit are gray shaded. The small

“n” in register and bit names indicates the Timer/Counter number.

Figure 15-3. Input Capture Unit block diagram.

Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 ICP – not
Timer/Counter3, 4, or 5.

When a change of the logic level (an event) occurs on the Input Capture Pin (ICPn), alternatively

on the analog Comparator output (ACO), and this change confirms to the setting of the edge

detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter

(TCNTn) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at

the same system clock as the TCNTn value is copied into ICRn Register. If enabled (TICIEn =

1), the input capture flag generates an input capture interrupt. The ICFn flag is automatically

cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by

writing a logical one to its I/O bit location.

ICFn (int.req.)

Analog
comparator

WRITE ICRn (16-bit register)

ICRnH (8-bit)

Noise
canceler

ICPn

Edge
detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*

123

7593L–AVR–09/12

AT90USB64/128

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low

byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied

into the high byte Temporary Register (TEMP). When the CPU reads the ICRnH I/O location it

will access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes

the ICRn Register for defining the counter’s TOP value. In these cases the Waveform Genera-

tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn

Register. When writing the ICRn Register the high byte must be written to the ICRnH I/O location

before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to Section “Accessing 16-bit

registers” on page 117.

15.5.1 Input Capture Trigger Source

The main trigger source for the input capture unit is the Input Capture Pin (ICPn).

Timer/Counter1 can alternatively use the analog comparator output as trigger source for the

input capture unit. The Analog Comparator is selected as trigger source by setting the analog

Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register

(ACSR). Be aware that changing trigger source can trigger a capture. The input capture flag

must therefore be cleared after the change.

Both the Input Capture Pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled

using the same technique as for the Tn pin (Figure 13-1 on page 96). The edge detector is also

identical. However, when the noise canceler is enabled, additional logic is inserted before the

edge detector, which increases the delay by four system clock cycles. Note that the input of the

noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-

form Generation mode that uses ICRn to define TOP.

An input capture can be triggered by software by controlling the port of the ICPn pin.

15.5.2 Noise Canceler

The Noise Canceler improves noise immunity by using a simple digital filtering scheme. The

noise canceler input is monitored over four samples, and all four must be equal for changing the

output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in

Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces addi-

tional four system clock cycles of delay from a change applied to the input, to the update of the

ICRn Register. The noise canceler uses the system clock and is therefore not affected by the

prescaler.

15.5.3 Using the Input Capture unit

The main challenge when using the Input Capture unit is to assign enough processor capacity

for handling the incoming events. The time between two events is critical. If the processor has

not read the captured value in the ICRn Register before the next event occurs, the ICRn will be

overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-

rupt handler routine as possible. Even though the Input Capture interrupt has relatively high

priority, the maximum interrupt response time is dependent on the maximum number of clock

cycles it takes to handle any of the other interrupt requests.

124

7593L–AVR–09/12

AT90USB64/128

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is

actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after

each capture. Changing the edge sensing must be done as early as possible after the ICRn

Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be

cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,

the clearing of the ICFn Flag is not required (if an interrupt handler is used).

15.6 Output Compare units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register

(OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output

Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Com-

pare Flag generates an Output Compare interrupt. The OCFnx Flag is automatically cleared

when the interrupt is executed. Alternatively the OCFnx Flag can be cleared by software by writ-

ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to

generate an output according to operating mode set by the Waveform Generation mode

(WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals

are used by the Waveform Generator for handling the special cases of the extreme values in

some modes of operation (see “Modes of operation” on page 127)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (that

is, counter resolution). In addition to the counter resolution, the TOP value defines the period

time for waveforms generated by the Waveform Generator.

Figure 15-4 shows a block diagram of the Output Compare unit. The small “n” in the register and

bit names indicates the device number (n = n for Timer/Counter n), and the “x” indicates Output

Compare unit (A/B/C). The elements of the block diagram that are not directly a part of the Out-

put Compare unit are gray shaded.

Figure 15-4. Output Compare Unit, block diagram.

OCFnx (int.req.)

= (16-bit comparator)

OCRnx buffer (16-bit register)

OCRnxH buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL buf. (8-bit)

TCNTn (16-bit counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform generator
TOP

BOTTOM

125

7593L–AVR–09/12

AT90USB64/128

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation

(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the

double buffering is disabled. The double buffering synchronizes the update of the OCRnx Com-

pare Register to either TOP or BOTTOM of the counting sequence. The synchronization

prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-

put glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering

is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-

abled the CPU will access the OCRnx directly. The content of the OCR1x (Buffer or Compare)

Register is only changed by a write operation (the Timer/Counter does not update this register

automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte

temporary register (TEMP). However, it is a good practice to read the low byte first as when

accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Reg-

ister since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be

written first. When the high byte I/O location is written by the CPU, the TEMP Register will be

updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits,

the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare

Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to Section “Accessing 16-bit reg-

isters” on page 117.

15.6.1 Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOCnx) bit. Forcing compare match will not set the

OCFnx Flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare

match had occurred (the COMn1:0 bits settings define whether the OCnx pin is set, cleared or

toggled).

15.6.2 Compare Match Blocking by TCNTn write

All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer

clock cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the

same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

15.6.3 Using the Output Compare unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock

cycle, there are risks involved when changing TCNTn when using any of the Output Compare

channels, independent of whether the Timer/Counter is running or not. If the value written to

TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect wave-

form generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP

values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.

Similarly, do not write the TCNTn value equal to BOTTOM when the counter is counting down.

The setup of the OCnx should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-

pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when

changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value.

Changing the COMnx1:0 bits will take effect immediately.

126

7593L–AVR–09/12

AT90USB64/128

15.7 Compare Match Output unit

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses

the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next compare match.

Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 15-5 shows a simplified

schematic of the logic affected by the COMnx1:0 bit setting. The I/O Registers, I/O bits, and I/O

pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers

(DDR and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the

OCnx state, the reference is for the internal OCnx Register, not the OCnx pin. If a system reset

occur, the OCnx Register is reset to “0”.

Figure 15-5. Compare Match Output unit, schematic.

The general I/O port function is overridden by the Output Compare (OCnx) from the Waveform

Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visi-

ble on the pin. The port override function is generally independent of the Waveform Generation

mode, but there are some exceptions. Refer to Table 15-1 on page 137, Table 15-2 on page

137, and Table 15-3 on page 138 for details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the out-

put is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of

operation. See “16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)” on page 115.

The COMnx1:0 bits have no effect on the Input Capture unit.

15.7.1 Compare Output mode and Waveform generation

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes.

For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the

OCnx Register is to be performed on the next compare match. For compare output actions in the

PORT

DDR

D Q

D Q

OCnx

pinOCnx

D Q
Waveform
generator

COMnx1

COMnx0

0

1
D

A
TA

 B
U

S

FOCnx

clkI/O

127

7593L–AVR–09/12

AT90USB64/128

non-PWM modes refer to Table 15-1 on page 137. For fast PWM mode refer to Table 15-2 on

page 137, and for phase correct and phase and frequency correct PWM refer to Table 15-3 on

page 138.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOCnx strobe bits.

15.8 Modes of operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,

is defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Out-

put mode (COMnx1:0) bits. The Compare Output mode bits do not affect the counting sequence,

while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM out-

put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes

the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare

match (see “Compare Match Output unit” on page 126).

For detailed timing information refer to “Timer/Counter timing diagrams” on page 134.

15.8.1 Normal mode

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the

BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in

the same timer clock cycle as the TCNTn becomes zero. The TOVn Flag in this case behaves

like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow

interrupt that automatically clears the TOVn Flag, the timer resolution can be increased by soft-

ware. There are no special cases to consider in the Normal mode, a new counter value can be

written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum

interval between the external events must not exceed the resolution of the counter. If the interval

between events are too long, the timer overflow interrupt or the prescaler must be used to

extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the

Output Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

15.8.2 Clear Timer on Compare Match (CTC) mode

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn Register

are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when

the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 =

12). The OCRnA or ICRn define the top value for the counter, hence also its resolution. This

mode allows greater control of the compare match output frequency. It also simplifies the opera-

tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-6 on page 128. The counter value

(TCNTn) increases until a compare match occurs with either OCRnA or ICRn, and then counter

(TCNTn) is cleared.

128

7593L–AVR–09/12

AT90USB64/128

Figure 15-6. CTC mode, timing diagram.

An interrupt can be generated at each time the counter value reaches the TOP value by either

using the OCFnA or ICFn Flag according to the register used to define the TOP value. If the

interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-

ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a

low prescaler value must be done with care since the CTC mode does not have the double buff-

ering feature. If the new value written to OCRnA or ICRn is lower than the current value of

TCNTn, the counter will miss the compare match. The counter will then have to count to its max-

imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.

In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode

using OCRnA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical

level on each compare match by setting the Compare Output mode bits to toggle mode

(COMnA1:0 = 1). The OCnA value will not be visible on the port pin unless the data direction for

the pin is set to output (DDR_OCnA = 1). The waveform generated will have a maximum fre-

quency of fOCnA = fclk_I/O/2 when OCRnA is set to zero (0x0000). The waveform frequency is

defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x0000.

15.8.3 Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a

high frequency PWM waveform generation option. The fast PWM differs from the other PWM

options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts

from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is set on

the compare match between TCNTn and OCRnx, and cleared at TOP. In inverting Compare

Output mode output is cleared on compare match and set at TOP. Due to the single-slope oper-

ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct

and phase and frequency correct PWM modes that use dual-slope operation. This high fre-

quency makes the fast PWM mode well suited for power regulation, rectification, and DAC

applications. High frequency allows physically small sized external components (coils, capaci-

tors), hence reduces total system cost.

TCNTn

OCnA
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)

fOCnA
fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=

129

7593L–AVR–09/12

AT90USB64/128

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or

OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the max-

imum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can be

calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the

fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 =

14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer

clock cycle. The timing diagram for the fast PWM mode is shown in Figure 15-7. The figure

shows fast PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the

timing diagram shown as a histogram for illustrating the single-slope operation. The diagram

includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn

slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will

be set when a compare match occurs.

Figure 15-7. Fast PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition

the OCnA or ICFn Flag is set at the same timer clock cycle as TOVn is set when either OCRnA

or ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-

dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

Note that when using fixed TOP values the unused bits are masked to zero when any of the

OCRnx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP

value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low

value when the counter is running with none or a low prescaler value, there is a risk that the new

ICRn value written is lower than the current value of TCNTn. The result will then be that the

counter will miss the compare match at the TOP value. The counter will then have to count to the

MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.

The OCRnA Register however, is double buffered. This feature allows the OCRnA I/O location

RFPWM
TOP 1+()log

2()log
-----------------------------------=

TCNTn

OCRnx / TOP Update
and TOVn Interrupt Flag
Set and OCnA Interrupt
Flag Set or ICFn
Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

130

7593L–AVR–09/12

AT90USB64/128

to be written anytime. When the OCRnA I/O location is written the value written will be put into

the OCRnA Buffer Register. The OCRnA Compare Register will then be updated with the value

in the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is done

at the same timer clock cycle as the TCNTn is cleared and the TOVn Flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using

ICRn, the OCRnA Register is free to be used for generating a PWM output on OCnA. However,

if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA

as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.

Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output

can be generated by setting the COMnx1:0 to three (see Table on page 137). The actual OCnx

value will only be visible on the port pin if the data direction for the port pin is set as output

(DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at

the compare match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at

the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM

waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the out-

put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP

will result in a constant high or low output (depending on the polarity of the output set by the

COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1). This applies only

if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have

a maximum frequency of fOCnA = fclk_I/O/2 when OCRnA is set to zero (0x0000). This feature is

similar to the OCnA toggle in CTC mode, except the double buffer feature of the Output Com-

pare unit is enabled in the fast PWM mode.

15.8.4 Phase correct PWM mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3,

10, or 11) provides a high resolution phase correct PWM waveform generation option. The

phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-

slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from

TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is

cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the

compare match while downcounting. In inverting Output Compare mode, the operation is

inverted. The dual-slope operation has lower maximum operation frequency than single slope

operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes

are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined

by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to

fOCnxPWM

fclk_I/O

N 1 TOP+()⋅
-----------------------------------=

131

7593L–AVR–09/12

AT90USB64/128

0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolu-

tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either

one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn

(WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the

TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock

cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure

shows phase correct PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn

value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The

diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on

the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx Inter-

rupt Flag will be set when a compare match occurs.

Figure 15-8. Phase correct PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When

either OCRnA or ICRn is used for defining the TOP value, the OCnA or ICFn Flag is set accord-

ingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer

value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter

reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

Note that when using fixed TOP values, the unused bits are masked to zero when any of the

OCRnx Registers are written. As the third period shown in Figure 15-8 illustrates, changing the

TOP actively while the Timer/Counter is running in the phase correct mode can result in an

unsymmetrical output. The reason for this can be found in the time of update of the OCRnx Reg-

RPCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

132

7593L–AVR–09/12

AT90USB64/128

ister. Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This

implies that the length of the falling slope is determined by the previous TOP value, while the

length of the rising slope is determined by the new TOP value. When these two values differ the

two slopes of the period will differ in length. The difference in length gives the unsymmetrical

result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct

mode when changing the TOP value while the Timer/Counter is running. When using a static

TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the

OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted

PWM output can be generated by setting the COMnx1:0 to three (see Table 15-3 on page 138).

The actual OCnx value will only be visible on the port pin if the data direction for the port pin is

set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx

Register at the compare match between OCRnx and TCNTn when the counter increments, and

clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when

the counter decrements. The PWM frequency for the output when using phase correct PWM can

be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the

output will be continuously low and if set equal to TOP the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If

OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output

will toggle with a 50% duty cycle.

15.8.5 Phase and frequency correct PWM mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM

mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-

form generation option. The phase and frequency correct PWM mode is, like the phase correct

PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM

(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the

Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while

upcounting, and set on the compare match while downcounting. In inverting Compare Output

mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-

quency compared to the single-slope operation. However, due to the symmetric feature of the

dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM

mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 15-

8 on page 131 and Figure 15-9 on page 133).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either

ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

133

7593L–AVR–09/12

AT90USB64/128

the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can

be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value

matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The

counter has then reached the TOP and changes the count direction. The TCNTn value will be

equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency

correct PWM mode is shown on Figure 15-9. The figure shows phase and frequency correct

PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the timing dia-

gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-

inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-

sent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a

compare match occurs.

Figure 15-9. Phase and frequency correct PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx

Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn

is used for defining the TOP value, the OCnA or ICFn Flag set when TCNTn has reached TOP.

The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the

TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

As Figure 15-9 shows the output generated is, in contrast to the phase correct mode, symmetri-

cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising

and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore

frequency correct.

RPFCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

134

7593L–AVR–09/12

AT90USB64/128

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using

ICRn, the OCRnA Register is free to be used for generating a PWM output on OCnA. However,

if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as

TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-

forms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and

an inverted PWM output can be generated by setting the COMnx1:0 to three (see Table 15-3 on

page 138). The actual OCnx value will only be visible on the port pin if the data direction for the

port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing)

the OCnx Register at the compare match between OCRnx and TCNTn when the counter incre-

ments, and clearing (or setting) the OCnx Register at compare match between OCRnx and

TCNTn when the counter decrements. The PWM frequency for the output when using phase

and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the

output will be continuously low and if set equal to TOP the output will be set to high for non-

inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A

is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle

with a 50% duty cycle.

15.9 Timer/Counter timing diagrams

The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore shown as a

clock enable signal in the following figures. The figures include information on when Interrupt

Flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for

modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting of OCFnx.

Figure 15-10. Timer/Counter timing diagram, setting of OCFnx, no prescaling.

Figure 15-11 on page 135 shows the same timing data, but with the prescaler enabled.

fOCnxPFCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

clkTn
(clk

I/O
/1)

OCFnx

clk
I/O

OCRnx

TCNTn

OCRnx value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

135

7593L–AVR–09/12

AT90USB64/128

Figure 15-11. Timer/Counter timing diagram, setting of OCFnx, with prescaler (fclk_I/O/8).

Figure 15-12 shows the count sequence close to TOP in various modes. When using phase and

frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams

will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.

The same renaming applies for modes that set the TOVn Flag at BOTTOM.

Figure 15-12. Timer/Counter timing diagram, no prescaling.

Figure 15-13 on page 136 shows the same timing data, but with the prescaler enabled.

OCFnx

OCRnx

TCNTn

OCRnx value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clkTn
(clk

I/O
/8)

TOVn (FPWM)

and ICFn (if used

as TOP)

OCRnx
(update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx value New OCRnx value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clk

I/O
/1)

clk
I/O

136

7593L–AVR–09/12

AT90USB64/128

Figure 15-13. Timer/Counter timing diagram, with prescaler (fclk_I/O/8).

15.10 16-bit Timer/Counter register description

15.10.1 TCCR1A – Timer/Counter1 Control Register A

15.10.2 TCCR3A – Timer/Counter3 Control Register A

• Bit 7:6 – COMnA1:0: Compare Output Mode for Channel A

• Bit 5:4 – COMnB1:0: Compare Output Mode for Channel B

• Bit 3:2 – COMnC1:0: Compare Output Mode for Channel C

The COMnA1:0, COMnB1:0, and COMnC1:0 control the output compare pins (OCnA, OCnB,

and OCnC respectively) behavior. If one or both of the COMnA1:0 bits are written to one, the

OCnA output overrides the normal port functionality of the I/O pin it is connected to. If one or

both of the COMnB1:0 bits are written to one, the OCnB output overrides the normal port func-

tionality of the I/O pin it is connected to. If one or both of the COMnC1:0 bits are written to one,

the OCnC output overrides the normal port functionality of the I/O pin it is connected to. How-

ever, note that the Data Direction Register (DDR) bit corresponding to the OCnA, OCnB or

OCnC pin must be set in order to enable the output driver.

TOVn (FPWM)

and ICFn (if used

as TOP)

OCRnx
(update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx value New OCRnx value

TOP - 1 TOP BOTTOM BOTTOM + 1

clk I/O

clk
Tn

(clk
I/O

/8)

Bit 7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 TCCR1A

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 TCCR3A

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

137

7593L–AVR–09/12

AT90USB64/128

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0 bits is

dependent of the WGMn3:0 bits setting. Table 15-1 shows the COMnx1:0 bit functionality when

the WGMn3:0 bits are set to a normal or a CTC mode (non-PWM).

Table 15-2 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast

PWM mode.

Note: A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and
COMnA1/COMnB1/COMnC1 is set. In this case the compare match is ignored, but the set or clear
is done at TOP. See “Fast PWM mode” on page 104. for more details.

Table 15-3 on page 138 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to

the phase correct and frequency correct PWM mode.

Table 15-1. Compare Output mode, non-PWM.

COMnA1/COMnB1/

COMnC1

COMnA0/COMnB0/

COMnC0 Description

0 0
Normal port operation, OCnA/OCnB/OCnC
disconnected.

0 1 Toggle OCnA/OCnB/OCnC on compare match.

1 0
Clear OCnA/OCnB/OCnC on compare match (set
output to low level).

1 1
Set OCnA/OCnB/OCnC on compare match (set
output to high level).

Table 15-2. Compare Output mode, fast PWM.

COMnA1/COMnB1/

COMnC0

COMnA0/COMnB0/

COMnC0 Description

0 0
Normal port operation, OCnA/OCnB/OCnC
disconnected.

0 1

WGM13:0 = 14 or 15: Toggle OC1A on Compare
Match, OC1B and OC1C disconnected (normal port
operation). For all other WGM1 settings, normal port
operation, OC1A/OC1B/OC1C disconnected.

1 0
Clear OCnA/OCnB/OCnC on compare match, set
OCnA/OCnB/OCnC at TOP

1 1
Set OCnA/OCnB/OCnC on compare match, clear
OCnA/OCnB/OCnC at TOP

138

7593L–AVR–09/12

AT90USB64/128

Note: A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and
COMnA1/COMnB1//COMnC1 is set. See “Phase correct PWM mode” on page 106. for more
details.

• Bit 1:0 – WGMn1:0: Waveform Generation mode

Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting

sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-

form generation to be used, see Table 15-4 on page 138. Modes of operation supported by the

Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode,

and three types of Pulse Width Modulation (PWM) modes. (See “Modes of operation” on page

103.).

Table 15-3. Compare Output mode, phase correct and phase and frequency correct PWM.

COMnA1/COMnB/

COMnC1

COMnA0/COMnB0/

COMnC0 Description

0 0
Normal port operation, OCnA/OCnB/OCnC
disconnected.

0 1

WGM13:0 = 8, 9 10 or 11: Toggle OC1A on
Compare Match, OC1B and OC1C
disconnected (normal port operation). For all
other WGM1 settings, normal port operation,
OC1A/OC1B/OC1C disconnected.

1 0

Clear OCnA/OCnB/OCnC on compare
match when up-counting. Set
OCnA/OCnB/OCnC on compare match
when counting down.

1 1

Set OCnA/OCnB/OCnC on compare match
when up-counting. Clear
OCnA/OCnB/OCnC on compare match
when counting down.

Table 15-4. Waveform Generation mode bit description (1).

Mode WGMn3

WGMn2

(CTCn)

WGMn1

(PWMn1)

WGMn0

(PWMn0)

Timer/Counter mode of

operation TOP

Update of

OCRnx at

TOVn flag

set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, phase correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, phase correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, phase correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCRnA Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0
PWM, phase and frequency
Correct

ICRn BOTTOM BOTTOM

9 1 0 0 1
PWM, phase and frequency
Correct

OCRnA BOTTOM BOTTOM

10 1 0 1 0 PWM, phase correct ICRn TOP BOTTOM

139

7593L–AVR–09/12

AT90USB64/128

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

15.10.3 TCCR1B – Timer/Counter1 Control Register B

15.10.4 TCCR3B – Timer/Counter3 Control Register B

• Bit 7 – ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is

activated, the input from the Input Capture Pin (ICPn) is filtered. The filter function requires four

successive equal valued samples of the ICPn pin for changing its output. The input capture is

therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICESn: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICPn) that is used to trigger a capture

event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and

when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the

Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this

can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the

TCCRnA and the TCCRnB Register), the ICPn is disconnected and consequently the input cap-

ture function is disabled.

• Bit 5 – Reserved bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be

written to zero when TCCRnB is written.

• Bit 4:3 – WGMn3:2: Waveform Generation mode

See TCCRnA Register description.

11 1 0 1 1 PWM, phase correct OCRnA TOP BOTTOM

12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICRn TOP TOP

15 1 1 1 1 Fast PWM OCRnA TOP TOP

Table 15-4. Waveform Generation mode bit description (1). (Continued)

Mode WGMn3

WGMn2

(CTCn)

WGMn1

(PWMn1)

WGMn0

(PWMn0)

Timer/Counter mode of

operation TOP

Update of

OCRnx at

TOVn flag

set on

Bit 7 6 5 4 3 2 1 0

ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/write R/W R/W R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30 TCCR3B

Read/write R/W R/W R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

140

7593L–AVR–09/12

AT90USB64/128

• Bit 2:0 – CSn2:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter, see Figure

14-8 on page 107 and Figure 14-9 on page 108.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the

counter even if the pin is configured as an output. This feature allows software control of the

counting.

15.10.5 TCCR1C – Timer/Counter1 Control Register C

15.10.6 TCCR3C – Timer/Counter3 Control Register C

• Bit 7 – FOCnA: Force Output Compare for Channel A

• Bit 6 – FOCnB: Force Output Compare for Channel B

• Bit 5 – FOCnC: Force Output Compare for Channel C

The FOCnA/FOCnB/FOCnC bits are only active when the WGMn3:0 bits specifies a non-PWM

mode. When writing a logical one to the FOCnA/FOCnB/FOCnC bit, an immediate compare

match is forced on the waveform generation unit. The OCnA/OCnB/OCnC output is changed

according to its COMnx1:0 bits setting. Note that the FOCnA/FOCnB/FOCnC bits are imple-

mented as strobes. Therefore it is the value present in the COMnx1:0 bits that determine the

effect of the forced compare.

A FOCnA/FOCnB/FOCnC strobe will not generate any interrupt nor will it clear the timer in Clear

Timer on Compare Match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCnB/FOCnB bits are always read as zero.

• Bit 4:0 – Reserved bits

These bits are reserved for future use. For ensuring compatibility with future devices, these bits

must be written to zero when TCCRnC is written.

Table 15-5. Clock Select bit description.

CSn2 CSn1 CSn0 Description

0 0 0 No clock source. (Timer/Counter stopped)

0 0 1 clkI/O/1 (no prescaling

0 1 0 clkI/O/8 (from prescaler)

0 1 1 clkI/O/64 (from prescaler)

1 0 0 clkI/O/256 (from prescaler)

1 0 1 clkI/O/1024 (from prescaler)

1 1 0 External clock source on Tn pin. Clock on falling edge

1 1 1 External clock source on Tn pin. Clock on rising edge

Bit 7 6 5 4 3 2 1 0

FOC1A FOC1B FOC1C – – – – – TCCR1C

Read/write W W W R R R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

FOC3A FOC3B FOC3C – – – – – TCCR3C

Read/write W W W R R R R R

Initial value 0 0 0 0 0 0 0 0

141

7593L–AVR–09/12

AT90USB64/128

15.10.7 TCNT1H and TCNT1L – Timer/Counter1

15.10.8 TCNT3H and TCNT3L – Timer/Counter3

The two Timer/Counter I/O locations (TCNTnH and TCNTnL, combined TCNTn) give direct

access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To

ensure that both the high and low bytes are read and written simultaneously when the CPU

accesses these registers, the access is performed using an 8-bit temporary High Byte Register

(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit

registers” on page 117.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a com-

pare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following timer clock

for all compare units.

15.10.9 OCR1AH and OCR1AL – Output Compare Register 1 A

15.10.10 OCR1BH and OCR1BL – Output Compare Register 1 B

15.10.11 OCR1CH and OCR1CL – Output Compare Register 1 C

Bit 7 6 5 4 3 2 1 0

TCNT1[15:8] TCNT1H

TCNT1[7:0] TCNT1L

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TCNT3[15:8] TCNT3H

TCNT3[7:0] TCNT3L

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH

OCR1A[7:0] OCR1AL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH

OCR1B[7:0] OCR1BL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1C[15:8] OCR1CH

OCR1C[7:0] OCR1CL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

142

7593L–AVR–09/12

AT90USB64/128

15.10.12 OCR3AH and OCR3AL – Output Compare Register 3 A

15.10.13 OCR3BH and OCR3BL – Output Compare Register 3 B

15.10.14 OCR3CH and OCR3CL – Output Compare Register 3 C

The Output Compare Registers contain a 16-bit value that is continuously compared with the

counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are

written simultaneously when the CPU writes to these registers, the access is performed using an

8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other

16-bit registers. See “Accessing 16-bit registers” on page 117.

15.10.15 ICR1H and ICR1L – Input Capture Register 1

15.10.16 ICR3H and ICR3L – Input Capture Register 3

The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the

ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture

can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read

simultaneously when the CPU accesses these registers, the access is performed using an 8-bit

temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit

registers. See “Accessing 16-bit registers” on page 117.

Bit 7 6 5 4 3 2 1 0

OCR3A[15:8] OCR3AH

OCR3A[7:0] OCR3AL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR3B[15:8] OCR3BH

OCR3B[7:0] OCR3BL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR3C[15:8] OCR3CH

OCR3C[7:0] OCR3CL

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H

ICR1[7:0] ICR1L

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR3[15:8] ICR3H

ICR3[7:0] ICR3L

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

143

7593L–AVR–09/12

AT90USB64/128

15.10.17 TIMSK1 – Timer/Counter1 Interrupt Mask Register

15.10.18 TIMSK3 – Timer/Counter3 Interrupt Mask Register

• Bit 5 – ICIEn: Timer/Countern, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Countern Input Capture interrupt is enabled. The corresponding Interrupt

Vector (see “Interrupts” on page 68) is executed when the ICFn Flag, located in TIFRn, is set.

• Bit 3 – OCIEnC: Timer/Countern, Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The corresponding

Interrupt Vector (see “Interrupts” on page 68) is executed when the OCFnC Flag, located in

TIFRn, is set.

• Bit 2 – OCIEnB: Timer/Countern, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The corresponding

Interrupt Vector (see “Interrupts” on page 68) is executed when the OCFnB Flag, located in

TIFRn, is set.

• Bit 1 – OCIEnA: Timer/Countern, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The corresponding

Interrupt Vector (see “Interrupts” on page 68) is executed when the OCFnA Flag, located in

TIFRn, is set.

• Bit 0 – TOIEn: Timer/Countern, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding Interrupt Vector

(see “Interrupts” on page 68) is executed when the TOVn Flag, located in TIFRn, is set.

15.10.19 TIFR1 – Timer/Counter1 Interrupt Flag Register

15.10.20 TIFR3 – Timer/Counter3 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

– – ICIE1 – OCIE1C OCIE1B OCIE1A TOIE1 TIMSK1

Read/write R R R/W R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE3 – OCIE3C OCIE3B OCIE3A TOIE3 TIMSK3

Read/write R R R/W R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICF1 – OCF1C OCF1B OCF1A TOV1 TIFR1

Read/write R R R/W R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICF3 – OCF3C OCF3B OCF3A TOV3 TIFR3

Read/write R R R/W R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

144

7593L–AVR–09/12

AT90USB64/128

• Bit 5 – ICFn: Timer/Countern, Input Capture Flag

This flag is set when a capture event occurs on the ICPn pin. When the Input Capture Register

(ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn Flag is set when the coun-

ter reaches the TOP value.

ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,

ICFn can be cleared by writing a logic one to its bit location.

• Bit 3– OCFnC: Timer/Countern, Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output

Compare Register C (OCRnC).

Note that a Forced Output Compare (FOCnC) strobe will not set the OCFnC Flag.

OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is exe-

cuted. Alternatively, OCFnC can be cleared by writing a logic one to its bit location.

• Bit 2 – OCFnB: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output

Compare Register B (OCRnB).

Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB Flag.

OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is exe-

cuted. Alternatively, OCFnB can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn value matches the Output Com-

pare Register A (OCRnA).

Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA Flag.

OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is exe-

cuted. Alternatively, OCFnA can be cleared by writing a logic one to its bit location.

• Bit 0 – TOVn: Timer/Countern, Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes,

the TOVn Flag is set when the timer overflows. Refer to Table 15-4 on page 138 for the TOVn

Flag behavior when using another WGMn3:0 bit setting.

TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is executed.
Alternatively, TOVn can be cleared by writing a logic one to its bit location.

145

7593L–AVR–09/12

AT90USB64/128

16. 8-bit Timer/Counter2 with PWM and asynchronous operation
Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The main

features are:

• Single channel counter

• Clear timer on compare match (auto reload)

• Glitch-free, phase correct pulse width modulator (PWM)

• Frequency generator

• 10-bit clock prescaler

• Overflow and compare match interrupt sources (TOV2, OCF2A and OCF2B)

• Allows clocking from external 32kHz watch crystal independent of the I/O clock

16.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 16-1. For the actual

placement of I/O pins, see “Pin configurations” on page 3. CPU accessible I/O Registers, includ-

ing I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations

are listed in the “8-bit Timer/Counter register description” on page 156.

The Power Reduction Timer/Counter2 bit, PRTIM2, in “PRR0 – Power Reduction Register 0” on

page 54 must be written to zero to enable Timer/Counter2 module.

Figure 16-1. 8-bit Timer/Counter, block diagram.

Timer/counter

D
A
TA

 B
U

S

OCRnA

OCRnB

=

=

TCNTn

Waveform
generation

Waveform
generation

OCnA

OCnB

=

Fixed
TOP
value

Control logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn

(int.req.)

OCnA

(int.req.)

OCnB

(int.req.)

TCCRnA TCCRnB

clk
Tn

ASSRn

Synchronization unit

Prescaler

T/C
oscillator

clk
I/O

clk
ASY

asynchronous mode
 select (ASn)

Synchronized status flags

TOSC1

TOSC2

Status flags

clk
I/O

146

7593L–AVR–09/12

AT90USB64/128

16.1.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit reg-

isters. Interrupt request (abbreviated to Int.Req.) signals are all visible in the Timer Interrupt Flag

Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register

(TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from

the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by

the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock

source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-

tive when no clock source is selected. The output from the Clock Select logic is referred to as the

timer clock (clkT2).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the

Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-

erator to generate a PWM or variable frequency output on the Output Compare pins (OC2A and

OC2B). See “Output Compare unit” on page 147. for details. The compare match event will also

set the Compare Flag (OCF2A or OCF2B) which can be used to generate an Output Compare

interrupt request.

16.1.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n”

replaces the Timer/Counter number, in this case 2. However, when using the register or bit

defines in a program, the precise form must be used, that is, TCNT2 for accessing

Timer/Counter2 counter value and so on.

The definitions in the table below are also used extensively throughout the section.

16.2 Timer/Counter clock sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous

clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2

bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter

Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see “ASSR

– Asynchronous Status Register” on page 161. For details on clock sources and prescaler, see

“Timer/Counter prescaler” on page 164.

16.3 Counter unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure

16-2 on page 147 shows a block diagram of the counter and its surrounding environment.

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the

count sequence. The TOP value can be assigned to be the fixed value 0xFF

(MAX) or the value stored in the OCR2A Register. The assignment is dependent

on the mode of operation.

147

7593L–AVR–09/12

AT90USB64/128

Figure 16-2. Counter unit block diagram.

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT2 in the following.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source,

selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the

timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of

whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in

the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter

Control Register B (TCCR2B). There are close connections between how the counter behaves

(counts) and how waveforms are generated on the Output Compare outputs OC2A and OC2B.

For more details about advanced counting sequences and waveform generation, see “Modes of

operation” on page 150.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by

the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt.

16.4 Output Compare unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register

(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a

match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock

cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output

Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-

cuted. Alternatively, the Output Compare Flag can be cleared by software by writing a logical

one to its I/O bit location. The Waveform Generator uses the match signal to generate an output

according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0)

bits. The max and bottom signals are used by the Waveform Generator for handling the special

cases of the extreme values in some modes of operation (“Modes of operation” on page 150).

Figure 15-10 on page 134 shows a block diagram of the Output Compare unit.

DATA BUS

TCNTn Control logic

count

TOVn

(int.req.)

topbottom

direction

clear

TOSC1

T/C

oscillator

TOSC2

Prescaler

clk
I/O

clk
Tn

148

7593L–AVR–09/12

AT90USB64/128

Figure 16-3. Output Compare unit, block diagram.

The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM)

modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double

buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare

Register to either top or bottom of the counting sequence. The synchronization prevents the

occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double buffering

is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is dis-

abled the CPU will access the OCR2x directly.

16.4.1 Force output compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the

OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare

match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or

toggled).

16.4.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the

next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be initial-

ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is

enabled.

16.4.3 Using the Output Compare unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock

cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,

independently of whether the Timer/Counter is running or not. If the value written to TCNT2

equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform

generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is

downcounting.

OCFnx (int.req.)

= (8-bit comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform generator

top

FOCn

COMnX1:0

bottom

149

7593L–AVR–09/12

AT90USB64/128

The setup of the OC2x should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OC2x value is to use the Force Output Com-

pare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when

changing between Waveform Generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare value.

Changing the COM2x1:0 bits will take effect immediately.

16.5 Compare Match Output unit

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses

the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next compare match.

Also, the COM2x1:0 bits control the OC2x pin output source. Figure 16-4 shows a simplified

schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, I/O bits, and I/O

pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers

(DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the

OC2x state, the reference is for the internal OC2x Register, not the OC2x pin.

Figure 16-4. Compare Match Output unit, schematic.

The general I/O port function is overridden by the Output Compare (OC2x) from the Waveform

Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x value is visi-

ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2x state before the out-

put is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of

operation. See “8-bit Timer/Counter register description” on page 156.

PORT

DDR

D Q

D Q

OCnx

pinOCnx

D Q
Waveform
generator

COMnx1

COMnx0

0

1

D
A
TA

 B
U

S

FOCnx

clkI/O

150

7593L–AVR–09/12

AT90USB64/128

16.5.1 Compare Output mode and Waveform generating

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes.

For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the

OC2x Register is to be performed on the next compare match. For compare output actions in the

non-PWM modes refer to Table 16-4 on page 157. For fast PWM mode, refer to Table 16-5 on

page 158, and for phase correct PWM refer to Table 16-6 on page 158.

A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC2x strobe bits.

16.6 Modes of operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,

is defined by the combination of the Waveform Generation mode (WGM22:0) and Compare Out-

put mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting sequence,

while the Waveform Generation mode bits do. The COM2x1:0 bits control whether the PWM out-

put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes

the COM2x1:0 bits control whether the output should be set, cleared, or toggled at a compare

match (see “Compare Match Output unit” on page 149).

For detailed timing information refer to Section “Timer/Counter timing diagrams” on page 154.

16.6.1 Normal mode

The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-

tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same

timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth

bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt

that automatically clears the TOV2 Flag, the timer resolution can be increased by software.

There are no special cases to consider in the Normal mode, a new counter value can be written

anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-

put Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

16.6.2 Clear Timer on Compare Match (CTC) mode

In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to

manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter

value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence

also its resolution. This mode allows greater control of the compare match output frequency. It

also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Table 16-5 on page 151. The counter value

(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then coun-

ter (TCNT2) is cleared.

151

7593L–AVR–09/12

AT90USB64/128

Figure 16-5. CTC mode, timing diagram.

An interrupt can be generated each time the counter value reaches the TOP value by using the

OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating

the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-

ning with none or a low prescaler value must be done with care since the CTC mode does not

have the double buffering feature. If the new value written to OCR2A is lower than the current

value of TCNT2, the counter will miss the compare match. The counter will then have to count to

its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can

occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical

level on each compare match by setting the Compare Output mode bits to toggle mode

(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for

the pin is set to output. The waveform generated will have a maximum frequency of fOC2A =

fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following

equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x00.

16.6.3 Fast PWM mode

The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high fre-

quency PWM waveform generation option. The fast PWM differs from the other PWM option by

its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-

TOM. TOP is defined as 0xFF when WGM22:0 = 3, and OCR2A when MGM22:0 = 7. In non-

inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match

between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode, the out-

put is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the

operating frequency of the fast PWM mode can be twice as high as the phase correct PWM

mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited

for power regulation, rectification, and DAC applications. High frequency allows physically small

sized external components (coils, capacitors), and therefore reduces total system cost.

TCNTn

OCnx
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx

fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=

152

7593L–AVR–09/12

AT90USB64/128

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.

The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

PWM mode is shown in Figure 16-6. The TCNT2 value is in the timing diagram shown as a his-

togram for illustrating the single-slope operation. The diagram includes non-inverted and

inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare

matches between OCR2x and TCNT2.

Figure 16-6. Fast PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the inter-

rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin.

Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output

can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3,

and OCR2A when WGM2:0 = 7 (See Table 16-2 on page 157). The actual OC2x value will only

be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-

form is generated by setting (or clearing) the OC2x Register at the compare match between

OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle the

counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM

waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will

be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result

in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0

bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM
fclk_I/O

N 256⋅
------------------=

153

7593L–AVR–09/12

AT90USB64/128

generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This fea-

ture is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output

Compare unit is enabled in the fast PWM mode.

16.6.4 Phase correct PWM mode

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct

PWM waveform generation option. The phase correct PWM mode is based on a dual-slope

operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-

TOM. TOP is defined as 0xFF when WGM22:0 = 1, and OCR2A when MGM22:0 = 5. In non-

inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match

between TCNT2 and OCR2x while upcounting, and set on the compare match while downcount-

ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has

lower maximum operation frequency than single slope operation. However, due to the symmet-

ric feature of the dual-slope PWM modes, these modes are preferred for motor control

applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.

When the counter reaches TOP, it changes the count direction. The TCNT2 value will be equal

to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown

on Figure 16-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating

the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The

small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x

and TCNT2.

Figure 16-7. Phase correct PWM mode, timing diagram.

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The

Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM

value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the

OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx update

154

7593L–AVR–09/12

AT90USB64/128

output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when

WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (see Table 16-3 on page 157). The actual OC2x

value will only be visible on the port pin if the data direction for the port pin is set as output. The

PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match

between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x

Register at compare match between OCR2x and TCNT2 when the counter decrements. The

PWM frequency for the output when using phase correct PWM can be calculated by the follow-

ing equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the

output will be continuously low and if set equal to MAX the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 16-7 on page 153 OCnx has a transition from high to low

even though there is no Compare Match. The point of this transition is to guarantee symmetry

around BOTTOM. There are two cases that give a transition without Compare Match.

• OCR2A changes its value from MAX, like in Figure 16-7 on page 153. When the OCR2A

value is MAX the OCn pin value is the same as the result of a down-counting compare match.

To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result

of an up-counting Compare Match

• The timer starts counting from a value higher than the one in OCR2A, and for that reason

misses the Compare Match and hence the OCn change that would have happened on the

way up

16.7 Timer/Counter timing diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2)

is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by

the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are

set. Figure 16-8 contains timing data for basic Timer/Counter operation. The figure shows the

count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 16-8. Timer/Counter timing diagram, no prescaling.

fOCnxPCPWM
fclk_I/O

N 510⋅
------------------=

clkTn
(clk

I/O
/1)

TOVn

clk
I/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

155

7593L–AVR–09/12

AT90USB64/128

Figure 16-9 shows the same timing data, but with the prescaler enabled.

Figure 16-9. Timer/Counter timing diagram, with prescaler (fclk_I/O/8).

Figure 16-10 shows the setting of OCF2A in all modes except CTC mode.

Figure 16-10. Timer/Counter timing diagram, setting of OCF2A, with prescaler (fclk_I/O/8).

Figure 16-11 on page 156 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clk
I/O

clkTn
(clk

I/O
/8)

OCFnx

OCRnx

TCNTn

OCRnx value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clkTn
(clk

I/O
/8)

156

7593L–AVR–09/12

AT90USB64/128

Figure 16-11. Timer/Counter timing diagram, clear timer on compare match mode, with pres-
caler (fclk_I/O/8).

16.8 8-bit Timer/Counter register description

16.8.1 TCCR2A – Timer/Counter Control Register A

• Bits 7:6 – COM2A1:0: Compare Match Output A mode

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0

bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2A pin

must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the

WGM22:0 bit setting. Table 16-1 shows the COM2A1:0 bit functionality when the WGM22:0 bits

are set to a normal or CTC mode (non-PWM).

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clkTn
(clk

I/O
/8)

Bit 7 6 5 4 3 2 1 0

COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 TCCR2A

Read/write R/W R/W R/W R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 16-1. Compare output mode, non-PWM mode.

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected

0 1 Toggle OC2A on Compare Match

1 0 Clear OC2A on Compare Match

1 1 Set OC2A on Compare Match

157

7593L–AVR–09/12

AT90USB64/128

Table 16-2 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 151
for more details.

Table 16-3 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM mode” on
page 153 for more details.

• Bits 5:4 – COM2B1:0: Compare Match Output B mode

These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0

bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin

must be set in order to enable the output driver.

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the

WGM22:0 bit setting. Table 16-4 shows the COM2B1:0 bit functionality when the WGM22:0 bits

are set to a normal or CTC mode (non-PWM).

Table 16-2. Compare Output mode, fast PWM mode (1).

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected

0 1
WGM22 = 0: Normal Port Operation, OC0A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0 Clear OC2A on Compare Match, set OC2A at TOP

1 1 Set OC2A on Compare Match, clear OC2A at TOP

Table 16-3. Compare Output mode, phase correct PWM mode (1).

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected

0 1
WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match when up-counting. Set OC2A on Compare
Match when down-counting.

1 1
Set OC2A on Compare Match when up-counting. Clear OC2A on Compare
Match when down-counting.

Table 16-4. Compare Output mode, non-PWM mode.

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected

0 1 Toggle OC2B on Compare Match

1 0 Clear OC2B on Compare Match

1 1 Set OC2B on Compare Match

158

7593L–AVR–09/12

AT90USB64/128

Table 16-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 151
for more details.

Table 16-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM mode” on
page 153 for more details.

• Bits 3, 2 – Res: Reserved bits

These bits are reserved bits in the Atmel AT90USB64/128 and will always read as zero.

• Bits 1:0 – WGM21:0: Waveform Generation mode

Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting

sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-

form generation to be used, see Table 16-7. Modes of operation supported by the Timer/Counter

unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of

Pulse Width Modulation (PWM) modes (see “Modes of operation” on page 150).

Table 16-5. Compare Output mode, fast PWM mode (1).

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0 Clear OC2B on Compare Match, set OC2B at TOP

1 1 Set OC2B on Compare Match, clear OC2B at TOP

Table 16-6. Compare Output mode, phase correct PWM mode (1).

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected

0 1 Reserved

1 0
Clear OC2B on Compare Match when up-counting. Set OC2B on Compare
Match when down-counting

1 1
Set OC2B on Compare Match when up-counting. Clear OC2B on Compare
Match when down-counting

Table 16-7. Waveform Generation mode bit description.

Mode WGM2 WGM1 WGM0

Timer/Counter

mode of operation TOP

Update of

OCRx at

TOV flag

set on (1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, phase correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

159

7593L–AVR–09/12

AT90USB64/128

Notes: 1. MAX= 0xFF

2. BOTTOM= 0x00

16.8.2 TCCR2B – Timer/Counter Control Register B

• Bit 7 – FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when

TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A bit,

an immediate Compare Match is forced on the Waveform Generation unit. The OC2A output is

changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a

strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the

forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR2A as TOP.

The FOC2A bit is always read as zero.

• Bit 6 – FOC2B: Force Output Compare B

The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when

TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B bit,

an immediate Compare Match is forced on the Waveform Generation unit. The OC2B output is

changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is implemented as a

strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the

forced compare.

A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR2B as TOP.

The FOC2B bit is always read as zero.

• Bits 5:4 – Res: Reserved bits

These bits are reserved bits in the AT90USB64/128 and will always read as zero.

• Bit 3 – WGM22: Waveform Generation mode

See the description in the “TCCR2A – Timer/Counter Control Register A” on page 156.

5 1 0 1 PWM, phase correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA TOP TOP

Table 16-7. Waveform Generation mode bit description. (Continued)

Mode WGM2 WGM1 WGM0

Timer/Counter

mode of operation TOP

Update of

OCRx at

TOV flag

set on (1)(2)

Bit 7 6 5 4 3 2 1 0

FOC2A FOC2B – – WGM22 CS22 CS21 CS20 TCCR2B

Read/write W W R R R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

160

7593L–AVR–09/12

AT90USB64/128

• Bit 2:0 – CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table

16-8.

16.8.3 TCNT2 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the

Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare

Match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,

introduces a risk of missing a Compare Match between TCNT2 and the OCR2x Registers.

16.8.4 OCR2A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the

counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC2A pin.

16.8.5 OCR2B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the

counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC2B pin.

Table 16-8. Clock Select bit description.

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkT2S/(no prescaling)

0 1 0 clkT2S/8 (from prescaler)

0 1 1 clkT2S/32 (from prescaler)

1 0 0 clkT2S/64 (from prescaler)

1 0 1 clkT2S/128 (from prescaler)

1 1 0 clkT2S/256 (from prescaler)

1 1 1 clkT2S/1024 (from prescaler)

Bit 7 6 5 4 3 2 1 0

TCNT2[7:0] TCNT2

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR2A[7:0] OCR2A

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR2B[7:0] OCR2B

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

161

7593L–AVR–09/12

AT90USB64/128

16.9 Asynchronous operation of the Timer/Counter

16.9.1 ASSR – Asynchronous Status Register

• Bit 6 – EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input buf-

fer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a

32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected.

Note that the crystal Oscillator will only run when this bit is zero.

• Bit 5 – AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is

written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscil-

lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A,

OCR2B, TCCR2A and TCCR2B might be corrupted.

• Bit 4 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.

When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-

ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 3 – OCR2AUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.

When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-

ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

• Bit 2 – OCR2BUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set.

When OCR2B has been updated from the temporary storage register, this bit is cleared by hard-

ware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new value.

• Bit 1 – TCR2AUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.

When TCCR2A has been updated from the temporary storage register, this bit is cleared by

hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new

value.

• Bit 0 – TCR2BUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set.

When TCCR2B has been updated from the temporary storage register, this bit is cleared by

hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new

value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is

set, the updated value might get corrupted and cause an unintentional interrupt to occur.

Bit 7 6 5 4 3 2 1 0

– EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR

Read/write R R/W R/W R R R R R

Initial value 0 0 0 0 0 0 0 0

162

7593L–AVR–09/12

AT90USB64/128

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different.

When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A

and TCCR2B the value in the temporary storage register is read.

16.9.2 Asynchronous operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of

Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A

safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

b. Select clock source by setting AS2 as appropriate.

c. Write new values to TCNT2, OCR2x, and TCCR2x.

d. To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and TCR2xUB.

e. Clear the Timer/Counter2 Interrupt Flags.

f. Enable interrupts, if needed.

• The CPU main clock frequency must be more than four times the Oscillator frequency

• When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a

temporary register, and latched after two positive edges on TOSC1. The user should not

write a new value before the contents of the temporary register have been transferred to its

destination. Each of the five mentioned registers have their individual temporary register,

which means that, for example, writing to TCNT2 does not disturb an OCR2x write in

progress. To detect that a transfer to the destination register has taken place, the

Asynchronous Status Register – ASSR has been implemented

• When entering Power-save or ADC Noise Reduction mode after having written to TCNT2,

OCR2x, or TCCR2x, the user must wait until the written register has been updated if

Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode

before the changes are effective. This is particularly important if any of the Output Compare2

interrupt is used to wake up the device, since the Output Compare function is disabled during

writing to OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode

before the corresponding OCR2xUB bit returns to zero, the device will never receive a

compare match interrupt, and the MCU will not wake up

• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction

mode, precautions must be taken if the user wants to re-enter one of these modes: The

interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-

entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the

device will fail to wake up. If the user is in doubt whether the time before re-entering Power-

save or ADC Noise Reduction mode is sufficient, the following algorithm can be used to

ensure that one TOSC1 cycle has elapsed:

a. Write a value to TCCR2x, TCNT2, or OCR2x.

b. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

c. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2

is always running, except in Power-down and Standby modes. After a Power-up Reset or

wake-up from Power-down or Standby mode, the user should be aware of the fact that this

Oscillator might take as long as one second to stabilize. The user is advised to wait for at

least one second before using Timer/Counter2 after power-up or wake-up from Power-down

or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after

163

7593L–AVR–09/12

AT90USB64/128

a wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no

matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin

• Description of wake up from Power-save or ADC Noise Reduction mode when the timer is

clocked asynchronously: When the interrupt condition is met, the wake up process is started

on the following cycle of the timer clock, that is, the timer is always advanced by at least one

before the processor can read the counter value. After wake-up, the MCU is halted for four

cycles, it executes the interrupt routine, and resumes execution from the instruction following

SLEEP

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect

result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be

done through a register synchronized to the internal I/O clock domain. Synchronization takes

place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O

clock (clkI/O) again becomes active, TCNT2 will read as the previous value (before entering

sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from

Power-save mode is essentially unpredictable, as it depends on the wake-up time. The

recommended procedure for reading TCNT2 is thus as follows:

a. Write any value to either of the registers OCR2x or TCCR2x.

b. Wait for the corresponding Update Busy Flag to be cleared.

c. Read TCNT2.

• During asynchronous operation, the synchronization of the Interrupt Flags for the

asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore

advanced by at least one before the processor can read the timer value causing the setting of

the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not

synchronized to the processor clock

16.9.3 TIMSK2 – Timer/Counter2 Interrupt Mask Register

• Bit 2 – OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable

When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the

Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is executed

if a compare match in Timer/Counter2 occurs, that is, when the OCF2B bit is set in the

Timer/Counter2 Interrupt Flag Register – TIFR2.

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the

Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed

if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the

Timer/Counter2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the

Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an

overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2 Inter-

rupt Flag Register – TIFR2.

Bit 7 6 5 4 3 2 1 0

– – – – – OCIE2B OCIE2A TOIE2 TIMSK2

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

164

7593L–AVR–09/12

AT90USB64/128

16.9.4 TIFR2 – Timer/Counter2 Interrupt Flag Register

• Bit 2 – OCF2B: Output Compare Flag 2 B

The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the

data in OCR2B – Output Compare Register2. OCF2B is cleared by hardware when executing

the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a logic

one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Interrupt

Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 1 – OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the

data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when executing

the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic

one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt

Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-

ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared

by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-

rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In

PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

16.10 Timer/Counter prescaler

Figure 16-12. Prescaler for Timer/Counter2.

Bit 7 6 5 4 3 2 1 0

– – – – – OCF2B OCF2A TOV2 TIFR2

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clk
I/O clk

T2S

TOSC1

AS2

CS20

CS21

CS22

c
lk

T
2
S
/8

c
lk

T
2
S
/6

4

c
lk

T
2
S
/1

2
8

c
lk

T
2
S
/1

0
2

4

c
lk

T
2
S
/2

5
6

c
lk

T
2
S
/3

2

0PSRASY

Clear

clk
T2

165

7593L–AVR–09/12

AT90USB64/128

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main

system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously

clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter

(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can

then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock

source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal. Apply-

ing an external clock source to TOSC1 is not recommended.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,

clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.

Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a

predictable prescaler.

16.10.1 GTCCR – General Timer/Counter Control Register

• Bit 1 – PSRASY: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared

immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous

mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by

hardware if the TSM bit is set. Refer to the description of the Section “GTCCR – General

Timer/Counter Control Register” on page 97 for a description of the Timer/Counter Synchroniza-

tion mode.

Bit 7 6 5 4 3 2 1 0

TSM – – – – – PSRA-
SY

PSRSY
NC

GTCCR

Read/write R/W R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

166

7593L–AVR–09/12

AT90USB64/128

17. Output Compare Modulator (OCM1C0A)

17.1 Overview

The Output Compare Modulator (OCM) allows generation of waveforms modulated with a carrier

frequency. The modulator uses the outputs from the Output Compare Unit C of the 16-bit

Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. For more details

about these Timer/Counters see “Timer/Counter0, Timer/Counter1, and Timer/Counter3 pres-

calers” on page 96 and “8-bit Timer/Counter2 with PWM and asynchronous operation” on page

145.

Figure 17-1. Output Compare Modulator, block diagram.

When the modulator is enabled, the two output compare channels are modulated together as

shown in the block diagram (Figure 17-1).

17.2 Description

The Output Compare unit 1C and Output Compare unit 2 shares the PB7 port pin for output. The

outputs of the Output Compare units (OC1C and OC0A) overrides the normal PORTB7 Register

when one of them is enabled (that is, when COMnx1:0 is not equal to zero). When both OC1C

and OC0A are enabled at the same time, the modulator is automatically enabled.

The functional equivalent schematic of the modulator is shown on Figure 17-2. The schematic

includes part of the Timer/Counter units and the port B pin 7 output driver circuit.

Figure 17-2. Output Compare Modulator, schematic.

OC1C

Pin

OC1C /

OC0A / PB7

Timer/Counter 1

Timer/Counter 0 OC0A

PORTB7 DDRB7

D QD Q

Pin

COMA01

COMA00

DATABUS

OC1C /

OC0A/ PB7

COM1C1

COM1C0

Modulator

1

0

OC1C

D Q

OC0A

D Q

(From Waveform generator)

(From Waveform generator)

0

1

Vcc

167

7593L–AVR–09/12

AT90USB64/128

When the modulator is enabled the type of modulation (logical AND or OR) can be selected by

the PORTB7 Register. Note that the DDRB7 controls the direction of the port independent of the

COMnx1:0 bit setting.

17.2.1 Timing example

Figure 17-3 illustrates the modulator in action. In this example the Timer/Counter1 is set to oper-

ate in fast PWM mode (non-inverted) and Timer/Counter0 uses CTC waveform mode with toggle

Compare Output mode (COMnx1:0 = 1).

Figure 17-3. Output Compare Modulator, timing diagram.

In this example, Timer/Counter2 provides the carrier, while the modulating signal is generated

by the Output Compare unit C of the Timer/Counter1.

The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction factor is

equal to the number of system clock cycles of one period of the carrier (OC0A). In this example

the resolution is reduced by a factor of two. The reason for the reduction is illustrated in Figure

17-3 at the second and third period of the PB7 output when PORTB7 equals zero. The period 2

high time is one cycle longer than the period 3 high time, but the result on the PB7 output is

equal in both periods.

1 2

OC0A
(CTC mode)

OC1C
(FPWM mode)

PB7
(PORTB7 = 0)

PB7
(PORTB7 = 1)

(Period)
3

clk I/O

168

7593L–AVR–09/12

AT90USB64/128

18. SPI – Serial Peripheral Interface
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the

Atmel AT90USB64/128 and peripheral devices or between several AVR devices. The

AT90USB64/128 SPI includes the following features:

• Full-duplex, three-wire synchronous data transfer

• Master or slave operation

• LSB first or MSB first data transfer

• Seven programmable bit rates

• End of transmission interrupt flag

• Write collision flag protection

• Wake-up from Idle mode

• Double speed (CK/2) Master SPI mode

USART can also be used in Master SPI mode, see “USART in SPI mode” on page 202.

The Power Reduction SPI bit, PRSPI, in “PRR0 – Power Reduction Register 0” on page 54 must

be written to zero to enable SPI module.

Figure 18-1. SPI block diagram (1).

Note: 1. Refer to Figure 1-1 on page 3, and Table 11-6 on page 79 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-2 on page

169. The system consists of two shift Registers, and a Master clock generator. The SPI Master

initiates the communication cycle when pulling low the Slave Select SS pin of the desired Slave.

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128

169

7593L–AVR–09/12

AT90USB64/128

Master and Slave prepare the data to be sent in their respective shift Registers, and the Master

generates the required clock pulses on the SCK line to interchange data. Data is always shifted

from Master to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the

Master In – Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave

by pulling high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This

must be handled by user software before communication can start. When this is done, writing a

byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight

bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of

Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an

interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or

signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be

kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long

as the SS pin is driven high. In this state, software may update the contents of the SPI Data

Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin

until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission

Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt

is requested. The Slave may continue to place new data to be sent into SPDR before reading

the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 18-2. SPI Master-slave interconnection.

The system is single buffered in the transmit direction and double buffered in the receive direc-

tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before

the entire shift cycle is completed. When receiving data, however, a received character must be

read from the SPI Data Register before the next character has been completely shifted in. Oth-

erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure

correct sampling of the clock signal, the frequency of the SPI clock should never exceed fosc/4.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden

according to Table 18-1 on page 170. For more details on automatic port overrides, refer to

“Alternate port functions” on page 76.

SHIFT
ENABLE

170

7593L–AVR–09/12

AT90USB64/128

Note: 1. See “Alternate functions of Port B” on page 79 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a

simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction

Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the

actual data direction bits for these pins. For example, if MOSI is placed on pin PB5, replace

DD_MOSI with DDB5 and DDR_SPI with DDRB.

Table 18-1. SPI pin overrides (1).

Pin Direction, master SPI Direction, slave SPI

MOSI User defined Input

MISO Input User defined

SCK User defined Input

SS User defined Input

171

7593L–AVR–09/12

AT90USB64/128

Note: 1. See “About code examples” on page 10.

Assembly code example (1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

sbis SPSR,SPIF

rjmp Wait_Transmit

ret

C code example (1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}

172

7593L–AVR–09/12

AT90USB64/128

The following code examples show how to initialize the SPI as a Slave and how to perform a

simple reception.

Note: 1. See “About code examples” on page 10.

18.1 SS Pin Functionality

18.1.1 Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is

held low, the SPI is activated, and MISO becomes an output if configured so by the user. All

other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which

Assembly code example (1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C code example (1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return Data Register */

return SPDR;

}

173

7593L–AVR–09/12

AT90USB64/128

means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin

is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous

with the master clock generator. When the SS pin is driven high, the SPI slave will immediately

reset the send and receive logic, and drop any partially received data in the Shift Register.

18.1.2 Master mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the

direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI

system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin

is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin

defined as an input, the SPI system interprets this as another master selecting the SPI as a

slave and starting to send data to it. To avoid bus contention, the SPI system takes the following

actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG
is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-

bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the

MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master

mode.

18.1.3 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if

the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI

operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic

zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,

and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-

ter mode.

Bit 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

174

7593L–AVR–09/12

AT90USB64/128

• Bit 3 – CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low

when idle. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is sum-

marized in Table 18-2:

• Bit 2 – CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or

trailing (last) edge of SCK. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL

functionality is summarized Table 18-3:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have

no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is

shown in Table 18-4:

18.1.4 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in

SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is

in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the

Table 18-2. CPOL functionality.

CPOL Leading edge Trailing edge

0 Rising Falling

1 Falling Rising

Table 18-3. CPHA functionality.

CPHA Leading edge Trailing edge

0 Sample Setup

1 Setup Sample

Table 18-4. Relationship between SCK and the oscillator frequency.

SPI2X SPR1 SPR0 SCK frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR

Read/write R R R R R R R R/W

Initial value 0 0 0 0 0 0 0 0

175

7593L–AVR–09/12

AT90USB64/128

corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the

SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The

WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,

and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved bits

These bits are reserved bits in the Atmel AT90USB64/128 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI

is in Master mode (see Table 18-4 on page 174). This means that the minimum SCK period will

be two CPU clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to

work at fosc/4 or lower.

The SPI interface on the AT90USB64/128 is also used for program memory and EEPROM

downloading or uploading. See page 373 for serial programming and verification.

18.1.5 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File

and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-

ter causes the Shift Register Receive buffer to be read.

18.2 Data modes

There are four combinations of SCK phase and polarity with respect to serial data, which are

determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure

18-3 on page 176 and Figure 18-4 on page 176. Data bits are shifted out and latched in on

opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is

clearly seen by summarizing Table 18-2 on page 174 and Table 18-3 on page 174, as done

below:

Bit 7 6 5 4 3 2 1 0

MSB LSB SPDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value X X X X X X X X Undefined

Table 18-5. CPOL functionality.

Leading edge Trailing edge SPI mode

CPOL=0, CPHA=0 Sample (rising) Setup (falling) 0

CPOL=0, CPHA=1 Setup (rising) Sample (falling) 1

CPOL=1, CPHA=0 Sample (falling) Setup (rising) 2

CPOL=1, CPHA=1 Setup (falling) Sample (rising) 3

176

7593L–AVR–09/12

AT90USB64/128

Figure 18-3. SPI transfer format with CPHA = 0.

Figure 18-4. SPI transfer format with CPHA = 1.

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

177

7593L–AVR–09/12

AT90USB64/128

19. USART
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a

highly flexible serial communication device. The main features are:

• Full duplex operation (independent serial receive and transmit registers)

• Asynchronous or synchronous operation

• Master or slave clocked synchronous operation

• High resolution baud rate generator

• Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits

• Odd or even parity generation and parity check supported by hardware

• Data overrun detection

• Framing error detection

• Noise filtering includes false start bit detection and digital low pass filter

• Three separate interrupts on TX complete, TX data register empty and RX complete

• Multi-processor communication mode

• Double speed asynchronous communication mode

19.1 Overview

A simplified block diagram of the USART Transmitter is shown in Figure 19-1. CPU accessible

I/O registers and I/O pins are shown in bold.

Figure 19-1. USART block diagram (1).

Note: 1. See Figure 1-1 on page 3, Table 11-12 on page 83 and for USART pin placement.

PARITY

GENERATOR

UBRR[H:L]

UDR (Transmit)

UCSRA UCSRB UCSRC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxD

TxD
PIN

CONTROL

UDR (Receive)

PIN

CONTROL

XCK

DATA

RECOVERY

CLOCK

RECOVERY

PIN

CONTROL

TX

CONTROL

RX

CONTROL

PARITY

CHECKER

D
A

T
A

 B
U

S

OSC

SYNC LOGIC

Clock generator

Transmitter

Receiver

178

7593L–AVR–09/12

AT90USB64/128

The dashed boxes in the block diagram separate the three main parts of the USART (listed from

the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.

The Clock Generation logic consists of synchronization logic for external clock input used by

synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is

only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a

serial Shift Register, Parity Generator and Control logic for handling different serial frame for-

mats. The write buffer allows a continuous transfer of data without any delay between frames.

The Receiver is the most complex part of the USART module due to its clock and data recovery

units. The recovery units are used for asynchronous data reception. In addition to the recovery

units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level

receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and

can detect Frame Error, Data OverRun and Parity Errors.

19.2 Clock generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The

USARTn supports four modes of clock operation: Normal asynchronous, Double Speed asyn-

chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART

Control and Status Register C (UCSRnC) selects between asynchronous and synchronous

operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the

UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register

for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or

external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 19-2 shows a block diagram of the clock generation logic.

Figure 19-2. Clock generation logic, block diagram.

Signal description:

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave

operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master

operation.

fOSC XTAL pin frequency (System Clock).

Prescaling

down-counter
/2

UBRR

/4 /2

fosc

UBRR+1

Sync

register

OSC

XCK

pin

txclk

U2X

UMSEL

DDR_XCK

0

1

0

1

xcki

xcko

DDR_XCK
rxclk

0

1

1

0

Edge

detector

UCPOL

179

7593L–AVR–09/12

AT90USB64/128

19.2.1 Internal Clock Generation – The Baud Rate generator

Internal clock generation is used for the asynchronous and the synchronous master modes of

operation. The description in this section refers to Figure 19-2 on page 178.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a

programmable prescaler or baud rate generator. The down-counter, running at system clock

(fosc), is loaded with the UBRRn value each time the counter has counted down to zero or when

the UBRRLn Register is written. A clock is generated each time the counter reaches zero. This

clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The Transmitter divides the

baud rate generator clock output by 2, 8, or 16 depending on mode. The baud rate generator

output is used directly by the Receiver’s clock and data recovery units. However, the recovery

units use a state machine that uses 2, 8, or 16 states depending on mode set by the state of the

UMSELn, U2Xn and DDR_XCKn bits.

Table 19-1 contains equations for calculating the baud rate (in bits per second) and for calculat-

ing the UBRRn value for each mode of operation using an internally generated clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRHn and UBRRLn registers, (0-4095)

Some examples of UBRRn values for some system clock frequencies are found in Table 19-9 on

page 198.

19.2.2 Double speed operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has

effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling

the transfer rate for asynchronous communication. Note however that the Receiver will in this

case only use half the number of samples (reduced from 16 to 8) for data sampling and clock

recovery, and therefore a more accurate baud rate setting and system clock are required when

this mode is used. For the transmitter, there are no downsides.

Table 19-1. Equations for calculating baud rate register setting.

Operating mode

Equation for calculating

baud rate (1)
Equation for calculating UBRR

value

Asynchronous Normal
mode (U2Xn = 0)

Asynchronous Double
Speed mode (U2Xn = 1)

Synchronous Master
mode

BAUD
fOSC

16 UBRRn 1+()
--= UBRRn

fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRRn 1+()
---------------------------------------= UBRRn

fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+()
---------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

180

7593L–AVR–09/12

AT90USB64/128

19.2.3 External clock

External clocking is used by the synchronous slave modes of operation. The description in this

section refers to Figure 19-2 on page 178 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the

chance of meta-stability. The output from the synchronization register must then pass through

an edge detector before it can be used by the Transmitter and Receiver. This process intro-

duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency

is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to

add some margin to avoid possible loss of data due to frequency variations.

19.2.4 Synchronous clock operation

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input

(Slave) or clock output (Master). The dependency between the clock edges and data sampling

or data change is the same. The basic principle is that data input (on RxDn) is sampled at the

opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 19-3. Synchronous mode XCKn timing.

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is

used for data change. As Figure 19-3 shows, when UCPOLn is zero the data will be changed at

rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be changed

at falling XCKn edge and sampled at rising XCKn edge.

19.3 Frame formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop

bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of

the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

fXCK

fOSC

4
-----------<

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

181

7593L–AVR–09/12

AT90USB64/128

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,

up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit

is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can

be directly followed by a new frame, or the communication line can be set to an idle (high) state.

Figure 19-4 illustrates the possible combinations of the frame formats. Bits inside brackets are

optional.

Figure 19-4. Frame formats.

St Start bit, always low

(n) Data bits (0 to 8)

P Parity bit. Can be odd or even

Sp Stop bit, always high

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line

must be high

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in

UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that changing

the setting of any of these bits will corrupt all ongoing communication for both the Receiver and

Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The

USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between

one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores

the second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the

first stop bit is zero.

19.3.1 Parity bit calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the

result of the exclusive or is inverted. The relation between the parity bit and data bits is as

follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

19.4 USART initialization

The USART has to be initialized before any communication can take place. The initialization pro-

cess normally consists of setting the baud rate, setting frame format and enabling the

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

Peven dn 1–
… d3 d2 d1 d0 0

Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1–

… d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕
=

=

182

7593L–AVR–09/12

AT90USB64/128

Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the

Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the

initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no

ongoing transmissions during the period the registers are changed. The TXCn Flag can be used

to check that the Transmitter has completed all transfers, and the RXC Flag can be used to

check that there are no unread data in the receive buffer. Note that the TXCn Flag must be

cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-

tion that are equal in functionality. The examples assume asynchronous operation using polling

(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.

For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16

Registers.

Note: 1. See “About code examples” on page 10.

More advanced initialization routines can be made that include frame format as parameters, dis-

able interrupts and so on. However, many applications use a fixed setting of the baud and

control registers, and for these types of applications the initialization code can be placed directly

in the main routine, or be combined with initialization code for other I/O modules.

19.5 Data transmission – The USART transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB

Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is overrid-

Assembly code example (1)

USART_Init:

; Set baud rate

out UBRRHn, r17

out UBRRLn, r16

; Enable receiver and transmitter

ldi r16, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBSn)|(3<<UCSZn0)

out UCSRnC,r16

ret

C code example (1)

void USART_Init(unsigned int baud)

{

/* Set baud rate */

UBRRHn = (unsigned char)(baud>>8);

UBRRLn = (unsigned char)baud;

/* Enable receiver and transmitter */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set frame format: 8data, 2stop bit */

UCSRnC = (1<<USBSn)|(3<<UCSZn0);

}

183

7593L–AVR–09/12

AT90USB64/128

den by the USART and given the function as the transmitter’s serial output. The baud rate, mode

of operation and frame format must be set up once before doing any transmissions. If synchro-

nous operation is used, the clock on the XCKn pin will be overridden and used as transmission

clock.

19.5.1 Sending frames with 5 to 8 data bits

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The

CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the

transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new

frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or

immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is

loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,

U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the

Data Register Empty (UDREn) Flag. When using frames with less than eight bits, the most sig-

nificant bits written to the UDRn are ignored. The USART has to be initialized before the function

can be used. For the assembly code, the data to be sent is assumed to be stored in Register

R16

Note: 1. See “About code examples” on page 10.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,

before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,

the interrupt routine writes the data into the buffer.

19.5.2 Sending frames with 9 data bits

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in UCS-

RnB before the low byte of the character is written to UDRn. The following code examples show

Assembly code example (1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRnA,UDREn

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDRn,r16

ret

C code example (1)

void USART_Transmit(unsigned char data)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn)))

;

/* Put data into buffer, sends the data */

UDRn = data;

}

184

7593L–AVR–09/12

AT90USB64/128

a transmit function that handles 9-bit characters. For the assembly code, the data to be sent is

assumed to be stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used
after initialization.

2. See “About code examples” on page 10.

The ninth bit can be used for indicating an address frame when using multi processor communi-

cation mode or for other protocol handling as for example synchronization.

19.5.3 Transmitter flags and interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty

(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDREn) Flag indicates whether the transmit buffer is ready to receive

new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer

contains data to be transmitted that has not yet been moved into the Shift Register. For compat-

ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the

USART Data Register Empty Interrupt will be executed as long as UDREn is set (provided that

global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data

transmission is used, the Data Register Empty interrupt routine must either write new data to

Assembly code example (1)(2)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRnA,UDREn

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRnB,TXB8

sbrc r17,0

sbi UCSRnB,TXB8

; Put LSB data (r16) into buffer, sends the data

out UDRn,r16

ret

C code example (1)(2)

void USART_Transmit(unsigned int data)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn))))

;

/* Copy 9th bit to TXB8 */

UCSRnB &= ~(1<<TXB8);

if (data & 0x0100)

UCSRnB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDRn = data;

}

185

7593L–AVR–09/12

AT90USB64/128

UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new

interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift

Register has been shifted out and there are no new data currently present in the transmit buffer.

The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it

can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-

nication interfaces (like the RS-485 standard), where a transmitting application must enter

receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART

Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that

global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-

dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt

is executed.

19.5.4 Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled

(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the

first stop bit of the frame that is sent.

19.5.5 Disabling the transmitter

The disabling of the transmitter (setting the TXEN to zero) will not become effective until ongoing

and pending transmissions are completed, that is, when the Transmit Shift Register and Trans-

mit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter will no

longer override the TxDn pin.

19.6 Data reception – The USART receiver

The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the

UCSRnB Register to one. When the Receiver is enabled, the normal pin operation of the RxDn

pin is overridden by the USART and given the function as the Receiver’s serial input. The baud

rate, mode of operation and frame format must be set up once before any serial reception can

be done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer

clock.

19.6.1 Receiving frames with 5 to 8 data bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start

bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register

until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.

When the first stop bit is received, that is, a complete serial frame is present in the Receive Shift

Register, the contents of the Shift Register will be moved into the receive buffer. The receive

buffer can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the

Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant

186

7593L–AVR–09/12

AT90USB64/128

bits of the data read from the UDRn will be masked to zero. The USART has to be initialized

before the function can be used.

Note: 1. See “About code examples” on page 10.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,

before reading the buffer and returning the value.

19.6.2 Receiving frames with 9 data bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCS-

RnB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn

Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn I/O

location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn,

DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit

characters and the status bits.

Assembly code example (1)

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDRn

ret

C code example (1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get and return received data from buffer */

return UDRn;

}

187

7593L–AVR–09/12

AT90USB64/128

Note: 1. See “About code examples” on page 10.

The receive function example reads all the I/O Registers into the Register File before any com-

putation is done. This gives an optimal receive buffer utilization since the buffer location read will

be free to accept new data as early as possible.

19.6.3 Receive compete flag and interrupt

The USART Receiver has one flag that indicates the Receiver state.

Assembly code example (1)

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRnA

in r17, UCSRnB

in r16, UDRn

; If error, return -1

andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C code example (1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRnA;

resh = UCSRnB;

resl = UDRn;

/* If error, return -1 */

if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

188

7593L–AVR–09/12

AT90USB64/128

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buf-

fer. This flag is one when unread data exist in the receive buffer, and zero when the receive

buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn =

0), the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive

Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-

rupts are enabled). When interrupt-driven data reception is used, the receive complete routine

must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-

rupt will occur once the interrupt routine terminates.

19.6.4 Receiver error flags

The USART Receiver has three error flags: Frame Error (FEn), Data OverRun (DORn) and Par-

ity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is that

they are located in the receive buffer together with the frame for which they indicate the error

status. Due to the buffering of the Error Flags, the UCSRnA must be read before the receive buf-

fer (UDRn), since reading the UDRn I/O location changes the buffer read location. Another

equality for the Error Flags is that they can not be altered by software doing a write to the flag

location. However, all flags must be set to zero when the UCSRnA is written for upward compat-

ibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame

stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),

and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for

detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn

Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all,

except for the first, stop bits. For compatibility with future devices, always set this bit to zero

when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A

Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-

ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there

was one or more serial frame lost between the frame last read from UDRn, and the next frame

read from UDRn. For compatibility with future devices, always write this bit to zero when writing

to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from

the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity

Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For

compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more

details see “Parity bit calculation” on page 181 and “Parity Checker” on page 188.

19.6.5 Parity Checker

The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Par-

ity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the Parity

Checker calculates the parity of the data bits in incoming frames and compares the result with

the parity bit from the serial frame. The result of the check is stored in the receive buffer together

with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software

to check if the frame had a Parity Error.

189

7593L–AVR–09/12

AT90USB64/128

The UPEn bit is set if the next character that can be read from the receive buffer had a Parity

Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is

valid until the receive buffer (UDRn) is read.

19.6.6 Disabling the Receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing

receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver

will no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be

flushed when the Receiver is disabled. Remaining data in the buffer will be lost

19.6.7 Flushing the receive buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be

emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal

operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag

is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See “About code examples” on page 10.

19.7 Asynchronous data reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data

reception. The clock recovery logic is used for synchronizing the internally generated baud rate

clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-

ples and low pass filters each incoming bit, thereby improving the noise immunity of the

Receiver. The asynchronous reception operational range depends on the accuracy of the inter-

nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

19.7.1 Asynchronous clock recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5

on page 190 illustrates the sampling process of the start bit of an incoming frame. The sample

rate is 16 times the baud rate for Normal mode, and eight times the baud rate for Double Speed

mode. The horizontal arrows illustrate the synchronization variation due to the sampling pro-

cess. Note the larger time variation when using the Double Speed mode (U2Xn = 1) of

operation. Samples denoted zero are samples done when the RxDn line is idle (that is, no com-

munication activity).

Assembly code example (1)

USART_Flush:

sbis UCSRnA, RXCn

ret

in r16, UDRn

rjmp USART_Flush

C code example (1)

void USART_Flush(void)

{

unsigned char dummy;

while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

190

7593L–AVR–09/12

AT90USB64/128

Figure 19-5. Start bit sampling.

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the

start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in

the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-

ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the

figure), to decide if a valid start bit is received. If two or more of these three samples have logical

high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts

looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-

ery logic is synchronized and the data recovery can begin. The synchronization process is

repeated for each start bit.

19.7.2 Asynchronous data recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data

recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight

states for each bit in Double Speed mode. Figure 19-6 shows the sampling of the data bits and

the parity bit. Each of the samples is given a number that is equal to the state of the recovery

unit.

Figure 19-6. Sampling of data and parity bit.

The decision of the logic level of the received bit is taken by doing a majority voting of the logic

value to the three samples in the center of the received bit. The center samples are emphasized

on the figure by having the sample number inside boxes. The majority voting process is done as

follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.

If two or all three samples have low levels, the received bit is registered to be a logic 0. This

majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The

recovery process is then repeated until a complete frame is received. Including the first stop bit.

Note that the Receiver only uses the first stop bit of a frame.

Figure 19-7 on page 191 shows the sampling of the stop bit and the earliest possible beginning

of the start bit of the next frame.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

191

7593L–AVR–09/12

AT90USB64/128

Figure 19-7. Stop bit sampling and next start bit sampling.

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop

bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of

the bits used for majority voting. For Normal Speed mode, the first low level sample can be at

point marked (A) in Figure 19-7. For Double Speed mode the first low level must be delayed to

(B). (C) marks a stop bit of full length. The early start bit detection influences the operational

range of the Receiver.

19.7.3 Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit

rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too

slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see

Table 19-2 on page 192) base frequency, the Receiver will not be able to synchronize the

frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal

receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed

mode

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4

for Double Speed mode

SM Middle sample number used for majority voting. SM = 9 for normal speed and

SM = 5 for Double Speed mode

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be

accepted in relation to the receiver baud rate

Table 19-2 on page 192 and Table 19-3 on page 192 list the maximum receiver baud rate error

that can be tolerated. Note that Normal Speed mode has higher toleration of baud rate

variations.

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

Rslow
D 1+()S

S 1– D S⋅ SF+ +

---= Rfast
D 2+()S

D 1+()S SM+

-----------------------------------=

192

7593L–AVR–09/12

AT90USB64/128

The recommendations of the maximum receiver baud rate error was made under the assump-

tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock

(XTAL) will always have some minor instability over the supply voltage range and the tempera-

ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a

resonator the system clock may differ more than 2% depending of the resonators tolerance. The

second source for the error is more controllable. The baud rate generator can not always do an

exact division of the system frequency to get the baud rate wanted. In this case an UBRR value

that gives an acceptable low error can be used if possible.

19.8 Multi-processor Communication mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering

function of incoming frames received by the USART Receiver. Frames that do not contain

address information will be ignored and not put into the receive buffer. This effectively reduces

the number of incoming frames that has to be handled by the CPU, in a system with multiple

MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn

setting, but has to be used differently when it is a part of a system utilizing the Multi-processor

Communication mode.

If the Receiver is set up to receive frames that contain five to eight data bits, then the first stop bit

indicates if the frame contains data or address information. If the Receiver is set up for frames

Table 19-2. Recommended maximum receiver baud rate error for Normal Speed mode
(U2Xn = 0).

D

(Data+Parity Bit) Rslow [%] Rfast [%] Max. total error [%]

Recommended max.

receiver error [%]

5 93.20 106.67 +6.67/-6.8 ±3.0

6 94.12 105.79 +5.79/-5.88 ±2.5

7 94.81 105.11 +5.11/-5.19 ±2.0

8 95.36 104.58 +4.58/-4.54 ±2.0

9 95.81 104.14 +4.14/-4.19 ±1.5

10 96.17 103.78 +3.78/-3.83 ±1.5

Table 19-3. Recommended maximum receiver baud rate error for Double Speed mode
(U2Xn = 1).

D

(Data+Parity Bit) Rslow [%] Rfast [%] Max. total error [%]

Recommended max.

receiver error [%]

5 94.12 105.66 +5.66/-5.88 ±2.5

6 94.92 104.92 +4.92/-5.08 ±2.0

7 95.52 104,35 +4.35/-4.48 ±1.5

8 96.00 103.90 +3.90/-4.00 ±1.5

9 96.39 103.53 +3.53/-3.61 ±1.5

10 96.70 103.23 +3.23/-3.30 ±1.0

193

7593L–AVR–09/12

AT90USB64/128

with nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames.

When the frame type bit (the first stop or the ninth bit) is one, the frame contains an address.

When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a

master MCU. This is done by first decoding an address frame to find out which MCU has been

addressed. If a particular slave MCU has been addressed, it will receive the following data

frames as normal, while the other slave MCUs will ignore the received frames until another

address frame is received.

19.8.1 Using MPCMn

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The

ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame

(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character

frame format.

The following procedure should be used to exchange data in Multi-processor Communication

mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRnA is
set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame.
In the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If
so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from master. The process then
repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the

Receiver must change between using n and n+1 character frame formats. This makes full-

duplex operation difficult since the Transmitter and Receiver uses the same character size set-

ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit

(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The

MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be

cleared when using SBI or CBI instructions.

19.9 USART register description

19.9.1 UDRn – USART I/O Data Register n

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the

same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

194

7593L–AVR–09/12

AT90USB64/128

ister (TXB) will be the destination for data written to the UDRn Register location. Reading the

UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to

zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.

Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-

ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter

will load the data into the Transmit Shift Register when the Shift Register is empty. Then the

data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the

receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-

Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions

(SBIC and SBIS), since these also will change the state of the FIFO.

19.9.2 UCSRnA – USART Control and Status Register A

• Bit 7 – RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive

buffer is empty (that is, does not contain any unread data). If the Receiver is disabled, the

receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag

can be used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and

there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-

matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing

a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see

description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn

is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a

Data Register Empty interrupt (see description of the UDRIEn bit).

UDREn is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. I.e.,

when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the

receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.

Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive

buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/write R R/W R R R R R/W R/W

Initial value 0 0 1 0 0 0 0 0

195

7593L–AVR–09/12

AT90USB64/128

new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this

bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USART Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the

Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer

(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

• Bit 1 – U2Xn: Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-

chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-

bling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to

one, all the incoming frames received by the USART Receiver that do not contain address infor-

mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed

information see “Multi-processor Communication mode” on page 192.

19.9.3 UCSRnB – USART Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt

will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt

will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the TXCn bit in UCSRnA is set.

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable n

Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will

be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written

to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable n

Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-

ation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer

invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port

operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n UCSRnB

Read/write R/W R/W R/W R/W R/W R/W R R/W

Initial value 0 0 0 0 0 0 0 0

196

7593L–AVR–09/12

AT90USB64/128

zero) will not become effective until ongoing and pending transmissions are completed, that is,

when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-

mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size n

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8n: Receive Data Bit 8 n

RXB8n is the ninth data bit of the received character when operating with serial frames with nine

data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8 n

TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames

with nine data bits. Must be written before writing the low bits to UDRn.

19.9.4 UCSRnC – USART Control and Status Register n C

• Bits 7:6 – UMSELn1:0 USART mode select

These bits select the mode of operation of the USARTn as shown in Table 19-4.

Note: 1. See “USART in SPI mode” on page 202 for full description of the Master SPI Mode (MSPIM)
operation

• Bits 5:4 – UPMn1:0: Parity mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will

automatically generate and send the parity of the transmitted data bits within each frame. The

Receiver will generate a parity value for the incoming data and compare it to the UPMn setting.

If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 1 1 0

Table 19-4. UMSELn bits settings.

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM) (1)

Table 19-5. UPMn bits settings.

UPMn1 UPMn0 Parity mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, even parity

1 1 Enabled, odd parity

197

7593L–AVR–09/12

AT90USB64/128

• Bit 3 – USBSn: Stop Bit select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores

this setting.

• Bit 2:1 – UCSZn1:0: Character size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is

used. The UCPOLn bit sets the relationship between data output change and data input sample,

and the synchronous clock (XCKn).

19.9.5 UBRRLn and UBRRHn – USART baud rate registers

Table 19-6. USBS bit settings.

USBSn Stop bit(s)

0 1-bit

1 2-bit

Table 19-7. UCSZn bits settings.

UCSZn2 UCSZn1 UCSZn0 Character size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 19-8. UCPOLn bit settings.

UCPOLn

Transmitted data changed

(output of TxDn pin)

Received data sampled

(input on RxDn pin)

0 Rising XCKn edge Falling XCKn edge

1 Falling XCKn edge Rising XCKn edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRR[11:8] UBRRHn

UBRR[7:0] UBRRLn

7 6 5 4 3 2 1 0

Read/write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

198

7593L–AVR–09/12

AT90USB64/128

• Bit 15:12 – Reserved bits

These bits are reserved for future use. For compatibility with future devices, these bit must be

written to zero when UBRRH is written.

• Bit 11:0 – UBRR11:0: USART baud rate register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four

most significant bits, and the UBRRL contains the eight least significant bits of the USART baud

rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud rate is

changed. Writing UBRRL will trigger an immediate update of the baud rate prescaler.

19.10 Examples of baud rate setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-

chronous operation can be generated by using the UBRR settings in Table 19-9 to Table 19-12

on page 201. UBRR values which yield an actual baud rate differing less than 0.5% from the tar-

get baud rate, are bold in the table. Higher error ratings are acceptable, but the Receiver will

have less noise resistance when the error ratings are high, especially for large serial frames (see

“Asynchronous Operational Range” on page 191). The error values are calculated using the fol-

lowing equation:

Error[%]
BaudRateClosest Match

BaudRate
-- 1–⎝ ⎠
⎛ ⎞ 100%•=

Table 19-9. Examples of UBRRn settings for commonly used oscillator frequencies.

Baud

rate

[bps]

fosc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max. (1) 62.5kbps 125kbps 115.2kbps 230.4kbps 125kbps 250kbps

1. UBRR = 0, Error = 0.0%.

199

7593L–AVR–09/12

AT90USB64/128

Table 19-10. Examples of UBRRn settings for commonly used oscillator frequencies.

Baud

rate

[bps]

fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max. (1) 230.4kbps 460.8kbps 250kbps 0.5Mbps 460.8kbps 921.6kbps

1. UBRR = 0, Error = 0.0%.

200

7593L–AVR–09/12

AT90USB64/128

Table 19-11. Examples of UBRRn settings for commonly used oscillator frequencies.

Baud

rate

[bps]

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max. (1) 0.5Mbps 1Mbps 691.2kbps 1.3824Mbps 921.6kbps 1.8432Mbps

1. UBRR = 0, Error = 0.0%.

201

7593L–AVR–09/12

AT90USB64/128

Table 19-12. Examples of UBRRn settings for commonly used oscillator frequencies.

Baud

rate

[bps]

fosc = 16.0000MHz fosc = 18.4320MHz fosc = 20.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max. (1) 1Mbps 2Mbps 1.152Mbps 2.304Mbps 1.25Mbps 2.5Mbps

1. UBRR = 0, Error = 0.0%.

202

7593L–AVR–09/12

AT90USB64/128

20. USART in SPI mode
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be

set to a master SPI compliant mode of operation. The Master SPI Mode (MSPIM) has the follow-

ing features:

• Full duplex, three-wire synchronous data transfer

• Master operation

• Supports all four SPI modes of operation (Mode 0, 1, 2, and 3)

• LSB first or MSB first data transfer (configurable data order)

• Queued operation (double buffered)

• High resolution baud rate generator

• High speed operation (fXCKmax = fCK/2)

• Flexible interrupt generation

20.1 Overview

Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode of opera-

tion the SPI master control logic takes direct control over the USART resources. These

resources include the transmitter and receiver shift register and buffers, and the baud rate gen-

erator. The parity generator and checker, the data and clock recovery logic, and the RX and TX

control logic is disabled. The USART RX and TX control logic is replaced by a common SPI

transfer control logic. However, the pin control logic and interrupt generation logic is identical in

both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the

control registers changes when using MSPIM.

20.2 Clock generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. For

USART MSPIM mode of operation only internal clock generation (that is, master operation) is

supported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set to

one (that is, as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn

should be set up before the USART in MSPIM is enabled (that is, TXENn and RXENn bit set to

one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous mas-

ter mode. The baud rate or UBRRn setting can therefore be calculated using the same

equations, see Table 20-1.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).

Table 20-1. Equations for calculating baud rate register setting.

Operating mode

Equation for calculating

baud rate (1)
Equation for calculating UBRRn

value

Synchronous Master
mode BAUD

fOSC

2 UBRRn 1+()
---------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

203

7593L–AVR–09/12

AT90USB64/128

BAUD Baud rate (in bits per second, bps)

fOSC System oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL registers, (0-4095)

20.3 SPI data modes and timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which

are determined by control bits UCPHAn and UCPOLn. The data transfer timing diagrams are

shown in Figure 20-1. Data bits are shifted out and latched in on opposite edges of the XCKn

signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and UCPHAn function-

ality is summarized in Table 20-2. Note that changing the setting of any of these bits will corrupt

all ongoing communication for both the Receiver and Transmitter.

Figure 20-1. UCPHAn and UCPOLn data transfer timing diagrams.

20.4 Frame formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in MSPIM

mode has two valid frame formats:

• 8-bit data with MSB first

• 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a total of

eight, are succeeding, ending with the most or least significant bit accordingly. When a complete

frame is transmitted, a new frame can directly follow it, or the communication line can be set to

an idle (high) state.

The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM mode. The

Receiver and Transmitter use the same setting. Note that changing the setting of any of these

bits will corrupt all ongoing communication for both the Receiver and Transmitter.

Table 20-2. UCPOLn and UCPHAn functionality.

UCPOLn UCPHAn SPI mode Leading edge Trailing edge

0 0 0 Sample (rising) Setup (falling)

0 1 1 Setup (rising) Sample (falling)

1 0 2 Sample (falling) Setup (rising)

1 1 3 Setup (falling) Sample (rising)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=

0
U

C
P

H
A

=
1

204

7593L–AVR–09/12

AT90USB64/128

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit com-

plete interrupt will then signal that the 16-bit value has been shifted out.

20.4.1 USART MSPIM initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The

initialization process normally consists of setting the baud rate, setting master mode of operation

(by setting DDR_XCKn to one), setting frame format and enabling the Transmitter and the

Receiver. Only the transmitter can operate independently. For interrupt driven USART opera-

tion, the Global Interrupt Flag should be cleared (and thus interrupts globally disabled) when

doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the
UBRRn must then be written to the desired value after the transmitter is enabled, but before the
first transmission is started. Setting UBRRn to zero before enabling the transmitter is not neces-
sary if the initialization is done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that

there is no ongoing transmissions during the period the registers are changed. The TXCn Flag

can be used to check that the Transmitter has completed all transfers, and the RXCn Flag can

be used to check that there are no unread data in the receive buffer. Note that the TXCn Flag

must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-

tion that are equal in functionality. The examples assume polling (no interrupts enabled). The

baud rate is given as a function parameter. For the assembly code, the baud rate parameter is

assumed to be stored in the r17:r16 registers.

205

7593L–AVR–09/12

AT90USB64/128

Note: 1. See “About code examples” on page 10.

20.5 Data transfer

Using the USART in MSPI mode requires the Transmitter to be enabled, that is, the TXENn bit in

the UCSRnB register is set to one. When the Transmitter is enabled, the normal port operation

of the TxDn pin is overridden and given the function as the Transmitter's serial output. Enabling

the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to one.

When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given

the function as the Receiver's serial input. The XCKn will in both cases be used as the transfer

clock.

Assembly code example (1)

USART_Init:

clr r18

out UBRRnH,r18

out UBRRnL,r18

; Setting the XCKn port pin as output, enables master mode.

sbi XCKn_DDR, XCKn

; Set MSPI mode of operation and SPI data mode 0.

ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)

out UCSRnC,r18

; Enable receiver and transmitter.

ldi r18, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r18

; Set baud rate.

; IMPORTANT: The Baud Rate must be set after the transmitter is
enabled!

out UBRRnH, r17

out UBRRnL, r18

ret

C code example (1)

void USART_Init(unsigned int baud)

{

UBRRn = 0;

/* Setting the XCKn port pin as output, enables master mode. */

XCKn_DDR |= (1<<XCKn);

/* Set MSPI mode of operation and SPI data mode 0. */

UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);

/* Enable receiver and transmitter. */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the transmitter is
enabled */

UBRRn = baud;

}

206

7593L–AVR–09/12

AT90USB64/128

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writ-

ing to the UDRn I/O location. This is the case for both sending and receiving data since the

transmitter controls the transfer clock. The data written to UDRn is moved from the transmit buf-

fer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, that is, if an overflow occurs the character last received will be lost, not the first data in the
buffer. This means that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the
UDRn is not read before all transfers are completed, then byte 3 to be received will be lost, and not
byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on

polling of the Data Register Empty (UDREn) Flag and the Receive Complete (RXCn) Flag. The

USART has to be initialized before the function can be used. For the assembly code, the data to

be sent is assumed to be stored in Register R16 and the data received will be available in the

same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,

before loading it with new data to be transmitted. The function then waits for data to be present

in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the

value.

Note: 1. See “About code examples” on page 10.

Assembly code example (1)

USART_MSPIM_Transfer:

; Wait for empty transmit buffer

sbis UCSRnA, UDREn

rjmp USART_MSPIM_Transfer

; Put data (r16) into buffer, sends the data

out UDRn,r16

; Wait for data to be received

USART_MSPIM_Wait_RXCn:

sbis UCSRnA, RXCn

rjmp USART_MSPIM_Wait_RXCn

; Get and return received data from buffer

in r16, UDRn

ret

C code example (1)

unsigned char USART_Receive(void)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn)));

/* Put data into buffer, sends the data */

UDRn = data;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)));

/* Get and return received data from buffer */

return UDRn;

}

207

7593L–AVR–09/12

AT90USB64/128

20.5.1 Transmitter and receiver flags and interrupts

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM mode

are identical in function to the normal USART operation. However, the receiver error status flags

(FE, DOR, and PE) are not in use and is always read as zero.

20.5.2 Disabling the transmitter or receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to

the normal USART operation.

20.6 USART MSPIM register description

The following section describes the registers used for SPI operation using the USART.

20.6.1 UDRn – USART MSPIM I/O data register

The function and bit description of the USART data register (UDRn) in MSPI mode is identical to

normal USART operation. See “UDRn – USART I/O Data Register n” on page 193.

20.6.2 UCSRnA – USART MSPIM Control and Status Register n A

• Bit 7 - RXCn: USART receive complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive

buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive

buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be

used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 - TXCn: USART transmit complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and

there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-

matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing

a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see

description of the TXCIEn bit).

• Bit 5 - UDREn: USART data register empty

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn

is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a

Data Register Empty interrupt (see description of the UDRIE bit). UDREn is set after a reset to

indicate that the Transmitter is ready.

• Bit 4:0 - Reserved bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,

these bits must be written to zero when UCSRnA is written.

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn - - - - - UCSRnA

Read/write R/W R/W R/W R R R R R

Initial value 0 0 0 0 0 1 1 0

208

7593L–AVR–09/12

AT90USB64/128

20.6.3 UCSRnB – USART MSPIM Control and Status Register n B

• Bit 7 - RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt

will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the RXCn bit in UCSRnA is set.

• Bit 6 - TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt

will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the TXCn bit in UCSRnA is set.

• Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will

be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written

to one and the UDREn bit in UCSRnA is set.

• Bit 4 - RXENn: Receiver Enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will override

normal port operation for the RxDn pin when enabled. Disabling the Receiver will flush the

receive buffer. Only enabling the receiver in MSPI mode (that is, setting RXENn=1 and

TXENn=0) has no meaning since it is the transmitter that controls the transfer clock and since

only master mode is supported.

• Bit 3 - TXENn: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port

operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to

zero) will not become effective until ongoing and pending transmissions are completed, that is,

when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-

mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,

these bits must be written to zero when UCSRnB is written.

20.6.4 UCSRnC – USART MSPIM Control and Status Register n C

• Bit 7:6 - UMSELn1:0: USART Mode Select

These bits select the mode of operation of the USART as shown in Table 20-3 on page 209. See

“UCSRnC – USART Control and Status Register n C” on page 196 for full description of the nor-

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIE RXENn TXENn - - - UCSRnB

Read/write R/W R/W R/W R/W R/W R R R

Initial value 0 0 0 0 0 1 1 0

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 - - - UDORDn UCPHAn UCPOLn UCSRnC

Read/write R/W R/W R R R R/W R/W R/W

Initial value 0 0 0 0 0 1 1 0

209

7593L–AVR–09/12

AT90USB64/128

mal USART operation. The MSPIM is enabled when both UMSELn bits are set to one. The

UDORDn, UCPHAn, and UCPOLn can be set in the same write operation where the MSPIM is

enabled.

• Bit 5:3 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,

these bits must be written to zero when UCSRnC is written.

• Bit 2 - UDORDn: Data Order

When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the

data word is transmitted first. Refer to the Frame Formats section page 4 for details.

• Bit 1 - UCPHAn: Clock Phase

The UCPHAn bit setting determine if data is sampled on the leasing edge (first) or tailing (last)

edge of XCKn. Refer to the SPI Data Modes and Timing section page 4 for details.

• Bit 0 - UCPOLn: Clock Polarity

The UCPOLn bit sets the polarity of the XCKn clock. The combination of the UCPOLn and

UCPHAn bit settings determine the timing of the data transfer. Refer to the SPI Data Modes and

Timing section page 4 for details.

20.6.5 UBRRnL and UBRRnH – USART MSPIM Baud Rate Registers

The function and bit description of the baud rate registers in MSPI mode is identical to normal

USART operation. See “UBRRLn and UBRRHn – USART baud rate registers” on page 197.

20.7 AVR USART MSPIM vs. AVR SPI

The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

• Master mode timing diagram.

• The UCPOLn bit functionality is identical to the SPI CPOL bit

• The UCPHAn bit functionality is identical to the SPI CPHA bit

• The UDORDn bit functionality is identical to the SPI DORD bit

However, since the USART in MSPIM mode reuses the USART resources, the use of the

USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences of

the control register bits, and that only master operation is supported by the USART in MSPIM

mode, the following features differ between the two modules:

• The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no

buffer

• The USART in MSPIM mode receiver includes an additional buffer level

• The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode

Table 20-3. UMSELn bits settings.

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)

210

7593L–AVR–09/12

AT90USB64/128

• The SPI double speed mode (SPI2X) bit is not included. However, the same effect is

achieved by setting UBRRn accordingly

• Interrupt timing is not compatible

• Pin control differs due to the master only operation of the USART in MSPIM mode

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 20-4 on page

210.

Table 20-4. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM SPI Comment

TxDn MOSI Master Out only

RxDn MISO Master In only

XCKn SCK (Functionally identical)

(N/A) SS Not supported by USART in MSPIM

211

7593L–AVR–09/12

AT90USB64/128

21. 2-wire serial interface

21.1 Features
• Simple yet powerful and flexible communication interface, only two bus lines needed

• Both Master and Slave operation supported

• Device can operate as transmitter or receiver

• 7-bit address space allows up to 128 different slave addresses

• Multi-master arbitration support

• Up to 400kHz data transfer speed

• Slew-rate limited output drivers

• Noise suppression circuitry rejects spikes on bus lines

• Fully programmable slave address with general call support

• Address recognition causes wake-up when AVR is in sleep mode

21.2 2-wire Serial Interface bus definition

The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The

TWI protocol allows the systems designer to interconnect up to 128 different devices using only

two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-

ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All

devices connected to the bus have individual addresses, and mechanisms for resolving bus

contention are inherent in the TWI protocol.

Figure 21-1. TWI bus interconnection.

21.2.1 TWI terminology

The following definitions are frequently encountered in this section.

The Power Reduction TWI bit, PRTWI bit in “PRR0 – Power Reduction Register 0” on page 54

must be written to zero to enable the 2-wire Serial Interface.

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

Table 21-1. TWI terminology.

Term Description

Master
The device that initiates and terminates a transmission. The Master also generates the
SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

212

7593L–AVR–09/12

AT90USB64/128

21.2.2 Electrical interconnection

As depicted in Figure 21-1 on page 211, both bus lines are connected to the positive supply volt-

age through pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or

open-collector. This implements a wired-AND function which is essential to the operation of the

interface. A low level on a TWI bus line is generated when one or more TWI devices output a

zero. A high level is output when all TWI devices trim-state their outputs, allowing the pull-up

resistors to pull the line high. Note that all AVR devices connected to the TWI bus must be pow-

ered in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance

limit of 400pF and the 7-bit slave address space. A detailed specification of the electrical charac-

teristics of the TWI is given in “SPI timing characteristics” on page 395. Two different sets of

specifications are presented there, one relevant for bus speeds below 100kHz, and one valid for

bus speeds up to 400kHz.

21.3 Data transfer and frame format

21.3.1 Transferring bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level

of the data line must be stable when the clock line is high. The only exception to this rule is for

generating start and stop conditions.

Figure 21-2. Data validity.

21.3.2 START and STOP conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the

Master issues a START condition on the bus, and it is terminated when the Master issues a

STOP condition. Between a START and a STOP condition, the bus is considered busy, and no

other master should try to seize control of the bus. A special case occurs when a new START

condition is issued between a START and STOP condition. This is referred to as a REPEATED

START condition, and is used when the Master wishes to initiate a new transfer without relin-

quishing control of the bus. After a REPEATED START, the bus is considered busy until the next

STOP. This is identical to the START behavior, and therefore START is used to describe both

START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As

depicted below, START and STOP conditions are signalled by changing the level of the SDA

line when the SCL line is high.

SDA

SCL

Data stable Data stable

Data change

213

7593L–AVR–09/12

AT90USB64/128

Figure 21-3. START, REPEATED START and STOP conditions.

21.3.3 Address packet format

All address packets transmitted on the TWI bus are nine bits long, consisting of seven address

bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read

operation is to be performed, otherwise a write operation should be performed. When a Slave

recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL

(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-

ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then

transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An

address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or

SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the

designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK

cycle. A general call is used when a Master wishes to transmit the same message to several

slaves in the system. When the general call address followed by a Write bit is transmitted on the

bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.

The following data packets will then be received by all the slaves that acknowledged the general

call. Note that transmitting the general call address followed by a Read bit is meaningless, as

this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 21-4. Address packet format.

21.3.4 Data packet format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and

an acknowledge bit. During a data transfer, the Master generates the clock and the START and

SDA

SCL

START STOPREPEATED STARTSTOP START

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

214

7593L–AVR–09/12

AT90USB64/128

STOP conditions, while the Receiver is responsible for acknowledging the reception. An

Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL

cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has

received the last byte, or for some reason cannot receive any more bytes, it should inform the

Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 21-5. Data packet format.

21.3.5 Combining address and data packets into a transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets

and a STOP condition. An empty message, consisting of a START followed by a STOP condi-

tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement

handshaking between the Master and the Slave. The Slave can extend the SCL low period by

pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the

Slave, or the Slave needs extra time for processing between the data transmissions. The Slave

extending the SCL low period will not affect the SCL high period, which is determined by the

Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the

SCL duty cycle.

Figure 21-6 shows a typical data transmission. Note that several data bytes can be transmitted

between the SLA+R/W and the STOP condition, depending on the software protocol imple-

mented by the application software.

Figure 21-6. Typical data transmission.

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
transmitter

SDA from
receiver

SCL from
master

SLA+R/W Data byte
STOP, REPEATED

START or next
data byte

1 2 7 8 9

Data byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

215

7593L–AVR–09/12

AT90USB64/128

21.4 Multi-master bus systems, arbitration and synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken

in order to ensure that transmissions will proceed as normal, even if two or more masters initiate

a transmission at the same time. Two problems arise in multi-master systems:

• An algorithm must be implemented allowing only one of the masters to complete the

transmission. All other masters should cease transmission when they discover that they have

lost the selection process. This selection process is called arbitration. When a contending

master discovers that it has lost the arbitration process, it should immediately switch to Slave

mode to check whether it is being addressed by the winning master. The fact that multiple

masters have started transmission at the same time should not be detectable to the slaves,

i.e. the data being transferred on the bus must not be corrupted

• Different masters may use different SCL frequencies. A scheme must be devised to

synchronize the serial clocks from all masters, in order to let the transmission proceed in a

lockstep fashion. This will facilitate the arbitration process

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from

all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one

from the Master with the shortest high period. The low period of the combined clock is equal to

the low period of the Master with the longest low period. Note that all masters listen to the SCL

line, effectively starting to count their SCL high and low time-out periods when the combined

SCL line goes high or low, respectively.

Figure 21-7. SCL synchronization between multiple masters.

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting

data. If the value read from the SDA line does not match the value the Master had output, it has

lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value

while another Master outputs a low value. The losing Master should immediately go to Slave

mode, checking if it is being addressed by the winning Master. The SDA line should be left high,

but losing masters are allowed to generate a clock signal until the end of the current data or

address packet. Arbitration will continue until only one Master remains, and this may take many

TA low TA high

SCL from
Master A

SCL from
Master B

SCL bus

line

TBlow TBhigh

Masters start
Counting low period

Masters start
Counting high period

216

7593L–AVR–09/12

AT90USB64/128

bits. If several masters are trying to address the same Slave, arbitration will continue into the

data packet.

Figure 21-8. Arbitration between two masters.

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit

• A STOP condition and a data bit

• A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never

occur. This implies that in multi-master systems, all data transfers must use the same composi-

tion of SLA+R/W and data packets. In other words: All transmissions must contain the same

number of data packets, otherwise the result of the arbitration is undefined.

21.5 Overview of the TWI module

The TWI module is comprised of several submodules, as shown in Figure 21-9 on page 217. All

registers drawn in a thick line are accessible through the AVR data bus.

SDA from
Master A

SDA from
Master B

SDA line

Synchronized
SCL line

START Master A loses

arbitration, SDAA SDA

217

7593L–AVR–09/12

AT90USB64/128

Figure 21-9. Overview of the TWI module.

21.5.1 SCL and SDA pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a

slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike

suppression unit removing spikes shorter than 50ns. Note that the internal pull-ups in the AVR

pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as

explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need

for external ones.

21.5.2 Bit Rate Generator unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-

trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status

Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the

CPU clock frequency in the Slave must be at least 16 times higher than the SCL frequency. Note

that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock

period. The SCL frequency is generated according to the following equation:

• TWBR = Value of the TWI Bit Rate Register

• TWPS = Value of the prescaler bits in the TWI Status Register

T
W

I
u

n
itAddress register

(TWAR)

Address match unit

Address comparator

Control unit

Control register
(TWCR)

Status register
(TWSR)

State machine and
status control

SCL

Slew-rate
control

Spike
filter

SDA

Slew-rate
control

Spike
filter

Bit rate generator

Bit rate register
(TWBR)

Prescaler

Bus interface unit

START / STOP
control

Arbitration detection Ack

Spike suppression

Address/data shift
register (TWDR)

SCL frequency
CPU Clock frequency

16 2(TWBR) 4
TWPS⋅+

---=

218

7593L–AVR–09/12

AT90USB64/128

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than 10, the
Master may produce an incorrect output on SDA and SCL for the reminder of the byte. The prob-
lem occurs when operating the TWI in Master mode, sending Start + SLA + R/W to a Slave (a
Slave does not need to be connected to the bus for the condition to happen).

21.5.3 Bus Interface unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and

Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,

or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also

contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-

ter is not directly accessible by the application software. However, when receiving, it can be set

or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the

value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED

START, and STOP conditions. The START/STOP controller is able to detect START and STOP

conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up

if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-

ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost

an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate

status codes generated.

21.5.4 Address Match unit

The Address Match unit checks if received address bytes match the seven-bit address in the

TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the

TWAR is written to one, all incoming address bits will also be compared against the General Call

address. Upon an address match, the Control Unit is informed, allowing correct action to be

taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.

The Address Match unit is able to compare addresses even when the AVR MCU is in sleep

mode, enabling the MCU to wake up if addressed by a Master. If another interrupt (e.g., INT0)

occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts opera-

tion and return to it’s idle state. If this cause any problems, ensure that TWI Address Match is the

only enabled interrupt when entering Power-down.

21.5.5 Control unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the

TWI Control Register (TWCR). When an event requiring the attention of the application occurs

on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-

tus Register (TWSR) is updated with a status code identifying the event. The TWSR only

contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,

the TWSR contains a special status code indicating that no relevant status information is avail-

able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application

software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition

• After the TWI has transmitted SLA+R/W

• After the TWI has transmitted an address byte

• After the TWI has lost arbitration

219

7593L–AVR–09/12

AT90USB64/128

• After the TWI has been addressed by own slave address or general call

• After the TWI has received a data byte

• After a STOP or REPEATED START has been received while still addressed as a Slave

• When a bus error has occurred due to an illegal START or STOP condition

21.6 TWI register description

21.6.1 TWBR – TWI Bit Rate Register

• Bits 7..0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency

divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator

unit” on page 217 for calculating bit rates.

21.6.2 TWCR – TWI Control Register

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a

Master access by applying a START condition to the bus, to generate a Receiver acknowledge,

to generate a stop condition, and to control halting of the bus while the data to be written to the

bus are written to the TWDR. It also indicates a write collision if data is attempted written to

TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application

software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the

TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT

Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-

cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag

starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-

tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this

flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to

one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial

Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one

again.

Bit 7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE TWCR

Read/write R/W R/W R/W R/W R R/W R R/W

Initial value 0 0 0 0 0 0 0 0

220

7593L–AVR–09/12

AT90USB64/128

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire

Serial Bus. The TWI hardware checks if the bus is available, and generates a START condition

on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition is

detected, and then generates a new START condition to claim the bus Master status. TWSTA

must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire

Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-

matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.

This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed

Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is

low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to

one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the

slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI

transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-

vated for as long as the TWINT Flag is high.

21.6.3 TWSR – TWI Status Register

• Bits 7..3 – TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different status

codes are described later in this section. Note that the value read from TWSR contains both the

5-bit status value and the 2-bit prescaler value. The application designer should mask the pres-

caler bits to zero when checking the Status bits. This makes status checking independent of

prescaler setting. This approach is used in this datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit

This bit is reserved and will always read as zero.

• Bits 1..0 – TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler.

Bit 7 6 5 4 3 2 1 0

TWS7 TWS6 TWS5 TWS4 TWS3 � TWPS1 TWPS0 TWSR

Read/write R R R R R R R/W R/W

Initial value 1 1 1 1 1 0 0 0

221

7593L–AVR–09/12

AT90USB64/128

To calculate bit rates, see “Bit Rate Generator unit” on page 217. The value of TWPS1..0 is used

in the equation.

21.6.4 TWDR – TWI Data Register

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR

contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.

This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Regis-

ter cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains

stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously

shifted in. TWDR always contains the last byte present on the bus, except after a wake up from

a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case

of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the

ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7..0 – TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte received

on the 2-wire Serial Bus.

21.6.5 TWAR – TWI (Slave) Address Register

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of

TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,

and not needed in the Master modes. In multimaster systems, TWAR must be set in masters

which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an

associated address comparator that looks for the slave address (or general call address if

enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit.

Table 21-2. TWI bit rate prescaler.

TWPS1 TWPS0 Prescaler value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 1 1 1 1 1 1 1 0

222

7593L–AVR–09/12

AT90USB64/128

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

21.6.6 TWAMR – TWI (Slave) Address Mask Register

• Bits 7..1 – TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in TWAMR can

mask (disable) the corresponding address bit in the TWI Address Register (TWAR). If the mask

bit is set to one then the address match logic ignores the compare between the incoming

address bit and the corresponding bit in TWAR. Figure 21-10 shows the address match logic in

detail.

Figure 21-10. TWI address match logic, block diagram.

• Bit 0 – Res: Reserved Bit

This bit is reserved and will always read as zero.

21.7 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like

reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,

the application software is free to carry on other operations during a TWI byte transfer. Note that

the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in

SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-

ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in

order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application

response. In this case, the TWI Status Register (TWSR) contains a value indicating the current

state of the TWI bus. The application software can then decide how the TWI should behave in

the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 21-11 on page 223 is a simple example of how the application can interface to the TWI

hardware. In this example, a Master wishes to transmit a single data byte to a Slave. This

description is quite abstract, a more detailed explanation follows later in this section. A simple

code example implementing the desired behavior is also presented.

Bit 7 6 5 4 3 2 1 0

TWAM[6:0] � TWAMR

Read/write R/W R/W R/W R/W R/W R/W R/W R

Initial value 0 0 0 0 0 0 0 0

Address
match

Address bit comparator 0

Address bit comparator 6..1

TWAR0

TWAMR0

Address
bit 0

223

7593L–AVR–09/12

AT90USB64/128

Figure 21-11. Interfacing the application to the TWI in a typical transmission.

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the appli-
cation software might take some special action, like calling an error routine. Assuming
that the status code is as expected, the application must load SLA+W into TWDR.
Remember that TWDR is used both for address and data. After TWDR has been
loaded with the desired SLA+W, a specific value must be written to TWCR, instructing
the TWI hardware to transmit the SLA+W present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written.
Writing a one to TWINT clears the flag. The TWI will not start any operation as long as
the TWINT bit in TWCR is set. Immediately after the application has cleared TWINT,
the TWI will initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has success-
fully been sent. The status code will also reflect whether a Slave acknowledged the
packet or not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must load a data packet into TWDR. Subsequently, a specific value
must be written to TWCR, instructing the TWI hardware to transmit the data packet
present in TWDR. Which value to write is described later on. However, it is important
that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag.

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates

START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA+W into

TWDR, and loads appropriate control
signals into TWCR, makin sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA+W was

sent and ACK received.
Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates

TWINT set

A
p

p
lic

a
ti
o

n
A

c
ti
o

n
T

W
I

H
a

rd
w

a
re

A
c
ti
o

n

224

7593L–AVR–09/12

AT90USB64/128

The TWI will not start any operation as long as the TWINT bit in TWCR is set. Immedi-
ately after the application has cleared TWINT, the TWI will initiate transmission of the
data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the data packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet
or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must write a specific value to TWCR, instructing the TWI hardware to
transmit a STOP condition. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission
of the STOP condition. Note that TWINT is NOT set after a STOP condition has been
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.

These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag

is set. The SCL line is pulled low until TWINT is cleared

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant

for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be

transmitted in the next bus cycle

• After all TWI Register updates and other pending application software tasks have been

completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a

one to TWINT clears the flag. The TWI will then commence executing whatever operation

was specified by the TWCR setting

In the following an assembly and C implementation of the example is given. Note that the code

below assumes that several definitions have been made, for example by using include-files.

Assembly code example C example Comments

1

ldi r16,
(1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
Send START condition

2

wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT Flag set. This
indicates that the START
condition has been transmitted

225

7593L–AVR–09/12

AT90USB64/128

21.8 Transmission modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),

Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these

modes can be used in the same application. As an example, the TWI can use MT mode to write

data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters

are present in the system, some of these might transmit data to the TWI, and then SR mode

would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described

along with figures detailing data transmission in each of the modes. These figures contain the

following abbreviations:

3

in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();
Check value of TWI Status
Register. Mask prescaler bits. If
status different from START go to
ERROR

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT) |
(1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) |
(1<<TWEN);

Load SLA_W into TWDR
Register. Clear TWINT bit in
TWCR to start transmission of
address

4

wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.

5

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_SLA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT) |
(1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) |
(1<<TWEN);

Load DATA into TWDR Register.
Clear TWINT bit in TWCR to
start transmission of data

6

wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This
indicates that the DATA has been
transmitted, and ACK/NACK has
been received.

7

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_DATA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

ldi r16,
(1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);
Transmit STOP condition

 (Continued)

Assembly code example C example Comments

226

7593L–AVR–09/12

AT90USB64/128

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 21-13 on page 229 to Figure 21-19 on page 238, circles are used to indicate that the

TWINT Flag is set. The numbers in the circles show the status code held in TWSR, with the

prescaler bits masked to zero. At these points, actions must be taken by the application to con-

tinue or complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is

cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-

ware action. For each status code, the required software action and details of the following serial

transfer are given in Table 21-3 on page 227 to Table 21-6 on page 237. Note that the prescaler

bits are masked to zero in these tables.

21.8.1 Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver

(see Figure 21-12). In order to enter a Master mode, a START condition must be transmitted.

The format of the following address packet determines whether Master Transmitter or Master

Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-

mitted, MR mode is entered. All the status codes mentioned in this section assume that the

prescaler bits are zero or are masked to zero.

Figure 21-12. Data transfer in master transmitter mode.

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 1 0 X 1 0 X

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER

Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

227

7593L–AVR–09/12

AT90USB64/128

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to trans-

mit a START condition and TWINT must be written to one to clear the TWINT Flag. The TWI will

then test the 2-wire Serial Bus and generate a START condition as soon as the bus becomes

free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and the

status code in TWSR will be 0x08 (see Table 21-3). In order to enter MT mode, SLA+W must be

transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit should be

cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-

ing value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is

set again and a number of status codes in TWSR are possible. Possible status codes in Master

mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes

is detailed in Table 21-3.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is

done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,

the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-

ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the

transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-

ing a STOP condition or a repeated START condition. A STOP condition is generated by writing

the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same

Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables

the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-

out losing control of the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 1 0 X 1 0 X

Table 21-3. Status codes for Master Transmitter mode.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire serial bus and
2-wire serial interface hardware

Application software response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0x08 A START condition has been
transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START condition has
been transmitted

Load SLA+W
or
Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte
or
No TWDR action or
No TWDR action
or
No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK
will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will
be transmitted and TWSTO Flag will be reset

228

7593L–AVR–09/12

AT90USB64/128

0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte
or
No TWDR action or
No TWDR action
or
No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK
will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will
be transmitted and TWSTO Flag will be reset

0x28 Data byte has been transmitted;
ACK has been received

Load data byte
or
No TWDR action or
No TWDR action
or
No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK
will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will
be transmitted and TWSTO Flag will be reset

0x30 Data byte has been transmitted;
NOT ACK has been received

Load data byte
or
No TWDR action or
No TWDR action
or
No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK
will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will
be transmitted and TWSTO Flag will be reset

0x38 Arbitration lost in SLA+W or data
bytes

No TWDR action
or
No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus
becomes free

Table 21-3. Status codes for Master Transmitter mode. (Continued)

229

7593L–AVR–09/12

AT90USB64/128

Figure 21-13. Formats and states in the Master Transmitter mode.

21.8.2 Master Receiver mode

In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter

(Slave see Figure 21-14 on page 230). In order to enter a Master mode, a START condition

must be transmitted. The format of the following address packet determines whether Master

Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is

entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this

section assume that the prescaler bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes

and their associated acknowledge bits

This number (contained in TWSR) corresponds

to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

S

230

7593L–AVR–09/12

AT90USB64/128

Figure 21-14. Data transfer in Master Receiver mode.

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to

one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI

will then test the 2-wire Serial Bus and generate a START condition as soon as the bus

becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-

ware, and the status code in TWSR will be 0x08 (see Table 21-3 on page 227). In order to enter

MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the

TWINT bit should be cleared (by writing it to one) to continue the transfer. This is accomplished

by writing the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is

set again and a number of status codes in TWSR are possible. Possible status codes in Master

mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes

is detailed in Table 21-4 on page 231. Received data can be read from the TWDR Register

when the TWINT Flag is set high by hardware. This scheme is repeated until the last byte has

been received. After the last byte has been received, the MR should inform the ST by sending a

NACK after the last received data byte. The transfer is ended by generating a STOP condition or

a repeated START condition. A STOP condition is generated by writing the following value to

TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same

Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables

the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-

out losing control over the bus

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER

Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

231

7593L–AVR–09/12

AT90USB64/128

Table 21-4. Status codes for Master Receiver mode.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0x08 A START condition has been
transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+R
or
Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to Master Transmitter mode

0x38 Arbitration lost in SLA+R or
NOT ACK bit

No TWDR action
or
No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus be-
comes free

0x40 SLA+R has been transmitted;
ACK has been received

No TWDR action
or
No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be returned

Data byte will be received and ACK will be returne

0x48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action
or
No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will
be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x50 Data byte has been received;
ACK has been returned

Read data byte
or
Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be returned

Data byte will be received and ACK will be returned

0x58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte
or
Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will
be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

232

7593L–AVR–09/12

AT90USB64/128

Figure 21-15. Formats and states in the Master Receiver mode.

21.8.3 Slave Receiver mode

In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter

(see Figure 21-16). All the status codes mentioned in this section assume that the prescaler bits

are zero or are masked to zero.

Figure 21-16. Data transfer in Slave Receiver mode.

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes

and their associated acknowledge bits

This number (contained in TWSR) corresponds

to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device�s Own Slave Address

Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER

233

7593L–AVR–09/12

AT90USB64/128

The upper seven bits are the address to which the 2-wire Serial Interface will respond when

addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),

otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable

the acknowledgement of the device’s own slave address or the general call address. TWSTA

and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own

slave address (or the general call address if enabled) followed by the data direction bit. If the

direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After

its own slave address and the write bit have been received, the TWINT Flag is set and a valid

status code can be read from TWSR. The status code is used to determine the appropriate soft-

ware action. The appropriate action to be taken for each status code is detailed in Table 21-5 on

page 234. The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in

the Master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA

after the next received data byte. This can be used to indicate that the Slave is not able to

receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave

address. However, the 2-wire Serial Bus is still monitored and address recognition may resume

at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate

the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA

bit is set, the interface can still acknowledge its own slave address or the general call address by

using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and

the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is cleared (by

writing it to one). Further data reception will be carried out as normal, with the AVR clocks run-

ning as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be

held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present

on the bus when waking up from these Sleep modes.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 0 1 0 0 0 1 0 X

234

7593L–AVR–09/12

AT90USB64/128

Table 21-5. Status codes for Slave Receiver mode.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire serial bus
and 2-wire serial interface hard-
ware

Application software response

Next action taken by TWI hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action
or
No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be re-
turned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as
Master; own SLA+W has been
received; ACK has been returned

No TWDR action
or
No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be re-
turned
Data byte will be received and ACK will be returned

0x70 General call address has been
received; ACK has been returned

No TWDR action
or
No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be re-
turned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as
Master; General call address has
been received; ACK has been re-
turned

No TWDR action
or
No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be re-
turned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte
or
Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be re-
turned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte
or
Read data byte
or

Read data byte
or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�;
a START condition will be transmitted when the bus
becomes free

0x90 Previously addressed with gener-
al call; data has been received;
ACK has been returned

Read data byte
or
Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be re-
turned
Data byte will be received and ACK will be returned

0x98 Previously addressed with gener-
al call; data has been received;
NOT ACK has been returned

Read data byte
or
Read data byte
or

Read data byte
or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�;
a START condition will be transmitted when the bus
becomes free

0xA0 A STOP condition or repeated
START condition has been re-
ceived while still addressed as
Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�;
a START condition will be transmitted when the bus
becomes free

235

7593L–AVR–09/12

AT90USB64/128

Figure 21-17. Formats and states in the Slave Receiver mode.

21.8.4 Slave Transmitter mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver

(see Figure 21-18). All the status codes mentioned in this section assume that the prescaler bits

are zero or are masked to zero.

Figure 21-18. Data transfer in Slave Transmitter mode.

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes

and their associated acknowledge bits

This number (contained in TWSR) corresponds

to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER

236

7593L–AVR–09/12

AT90USB64/128

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire Serial Interface will respond when

addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),

otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable

the acknowledgement of the device’s own slave address or the general call address. TWSTA

and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own

slave address (or the general call address if enabled) followed by the data direction bit. If the

direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After

its own slave address and the write bit have been received, the TWINT Flag is set and a valid

status code can be read from TWSR. The status code is used to determine the appropriate soft-

ware action. The appropriate action to be taken for each status code is detailed in Table 21-6 on

page 237. The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is

in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-

fer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master Receiver

transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave

mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver receives

all “1” as serial data. State 0xC8 is entered if the Master demands additional data bytes (by

transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero and expect-

ing NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire

Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.

This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial

Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA

bit is set, the interface can still acknowledge its own slave address or the general call address by

using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and

the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is cleared

(by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks

running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may

be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present

on the bus when waking up from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device�s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN � TWIE

Value 0 1 0 0 0 1 0 X

237

7593L–AVR–09/12

AT90USB64/128

Table 21-6. Status codes for Slave Transmitter mode.

Status code
(TWSR) pr-
escaler bits
are 0

Status of the 2-wire serial bus and
2-wire serial interface hardware

Application software response

Next action taken by TWI hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte
or
Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been re-
ceived; ACK has been returned

Load data byte
or
Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been
transmitted; ACK has been re-
ceived

Load data byte
or
Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xC0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action
or
No TWDR action
or

No TWDR action
or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus be-
comes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�;
a START condition will be transmitted when the bus be-
comes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = �0�); ACK
has been received

No TWDR action
or
No TWDR action
or

No TWDR action
or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus be-
comes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = �1�;
a START condition will be transmitted when the bus be-
comes free

238

7593L–AVR–09/12

AT90USB64/128

Figure 21-19. Formats and states in the Slave Transmitter mode.

21.8.5 Miscellaneous states

There are two status codes that do not correspond to a defined TWI state, see Table 21-7.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not

set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A bus

error occurs when a START or STOP condition occurs at an illegal position in the format frame.

Examples of such illegal positions are during the serial transfer of an address byte, a data byte,

or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the

TWSTO Flag must set and TWINT must be cleared by writing a logic one to it. This causes the

TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no other bits in

TWCR are affected). The SDA and SCL lines are released, and no STOP condition is

transmitted.

21.8.6 Combining several TWI modes

In some cases, several TWI modes must be combined in order to complete the desired action.

Consider for example reading data from a serial EEPROM. Typically, such a transfer involves

the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes

and their associated acknowledge bits

This number (contained in TWSR) corresponds

to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 21-7. Miscellaneous states.

Status code
(TWSR)
prescaler bits
are 0

Status of the 2-wire serial bus
and 2-wire serial interface
hardware

Application software response

Next action taken by TWI hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0xF8 No relevant state information
available; TWINT = �0�

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP con-
dition is sent on the bus. In all cases, the bus is re-
leased and TWSTO is cleared.

239

7593L–AVR–09/12

AT90USB64/128

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct

the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data

must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must

be changed. The Master must keep control of the bus during all these steps, and the steps

should be carried out as an atomical operation. If this principle is violated in a multimaster sys-

tem, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and the

Master will read the wrong data location. Such a change in transfer direction is accomplished by

transmitting a REPEATED START between the transmission of the address byte and reception

of the data. After a REPEATED START, the Master keeps ownership of the bus. The following

figure shows the flow in this transfer.

Figure 21-20. Combining several TWI modes to access a serial EEPROM.

21.9 Multi-master systems and arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultane-

ously by one or more of them. The TWI standard ensures that such situations are handled in

such a way that one of the masters will be allowed to proceed with the transfer, and that no data

will be lost in the process. An example of an arbitration situation is depicted below, where two

masters are trying to transmit data to a Slave Receiver.

Figure 21-21. An arbitration example.

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave. In this

case, neither the Slave nor any of the masters will know about the bus contention

• Two or more masters are accessing the same Slave with different data or direction bit. In this

case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters

trying to output a one on SDA while another Master outputs a zero will lose the arbitration.

Losing masters will switch to not addressed Slave mode or wait until the bus is free and

transmit a new START condition, depending on application software action

Master transmitter Master receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER

Device n

SDA

SCL

........ R1 R2

V
CC

240

7593L–AVR–09/12

AT90USB64/128

• Two or more masters are accessing different slaves. In this case, arbitration will occur in the

SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will lose

the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are

being addressed by the winning Master. If addressed, they will switch to SR or ST mode,

depending on the value of the READ/WRITE bit. If they are not being addressed, they will

switch to not addressed Slave mode or wait until the bus is free and transmit a new START

condition, depending on application software action

This is summarized in Figure 21-22. Possible status values are given in circles.

Figure 21-22. Possible status codes caused by arbitration.

Own
Address / General call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

241

7593L–AVR–09/12

AT90USB64/128

22. USB controller

22.1 Features
• Support full-speed and low-speed

• Support ping-pong mode (dual bank)

• 832 bytes of DPRAM:

– One endpoint 64 bytes maximum (default control endpoint)

– One endpoint of 256 bytes maximum (one or two banks)

– Five endpoints of 64 bytes maximum (one or two banks)

22.2 Block diagram

The USB controller provides the hardware to interface a USB link to a data flow stored in a dou-

ble port memory (DPRAM).

The USB controller requires a 48MHz ±0.25% reference clock (for Full-Speed operation), which

is the output of an internal PLL. The PLL generates the internal high frequency (48MHz) clock

for USB interface, the PLL input is generated from an external lower frequency (the crystal oscil-

lator or external clock input pin from XTAL1; to satisfy the USB frequency accuracy and jitter,

only this clock source allows proper functionnality of the USB controller).

The 48MHz clock is used to generate a 12MHz Full-speed (or 1.5MHz Low-Speed) bit clock

from the received USB differential data and to transmit data according to full or low speed USB

device tolerance. Clock recovery is done by a Digital Phase Locked Loop (DPLL) block, which is

compliant with the jitter specification of the USB bus.

To comply with the USB Electrical specification, USB Pads (D+ or D-) should be powered within

the 3.0 to 3.6V range. As Atmel AT90USB64/128 can be powered up to 5.5V, an internal regula-

tor provides the USB pads power supply.

Figure 22-1. USB controller block diagram overview.

 CPU

USB regulator

USB
interface

PLL
24x

clk
2MHz

clk
48MHz

PLL clock
prescaler

On-Chip
USB DPRAM

DPLL
clock

recovery

UCAP

 D-

 D+

VBUS

 UID

UVCC AVCC XTAL1

242

7593L–AVR–09/12

AT90USB64/128

22.3 Typical application implementation

Depending on the USB operating mode (Device only, Reduced Host or OTG mode) and on the

target application power supply, the Atmel AT90USB64/128 require different hardware typical

implementations.

Figure 22-2. Operating modes versus frequency and power-supply.

22.3.1 Device mode

22.3.1.1 Bus powered device

Figure 22-3. Typical bus powered application with 5V I/O.

VCC (V)

VCC min

0

3.0

3.4

5.5

USB not operational

USB compliant,

without internal regulator

USB compliant,

with internal regulator

4.5

2.7

Maximum

operating frequency [MHz]

8MHz

16MHz

2MHz

3.6

1µF

UDP

UDM

VBUS

UVSS

UID

UCAP

 D-

 D+

VBUS

 UID

UGND

UVCC AVCC VCC

XTAL1 XTAL2 GND GND

Rs = 22

Rs = 22

243

7593L–AVR–09/12

AT90USB64/128

Figure 22-4. Typical bus powered application with 3V I/O.

22.3.1.2 Self powered device

Figure 22-5. Typical self powered application with 3.4V to 5.5V I/O.

1µF

UVSS

External

3V regulator

UDP

UDM

VBUS

UVSS

UID

UCAP

 D-

 D+

VBUS

 UID

UGND

UVCC AVCC VCC

XTAL1 XTAL2 GND GND

Rs = 22

Rs = 22

1µF

External 3.4V - 5.5V

power supply

UDP

UDM

VBUS

UVSS

UID

UCAP

 D-

 D+

VBUS

 UID

UGND

UVCC AVCC VCC

XTAL1 XTAL2 GND GND

Rs = 22

Rs = 22

244

7593L–AVR–09/12

AT90USB64/128

Figure 22-6. Typical self powered application with 3.0V to 3.6 I/O.

22.3.2 Host / OTG mode

Figure 22-7. Host/OTG application with 3.0V to 3.6 I/O.

1µF

External 3.0V - 3.6V

power supply

UDP

UDM

VBUS

UVSS

UID

UCAP

 D-

 D+

VBUS

 UID

UGND

UVCC AVCC VCC

XTAL1 XTAL2 GND GND

Rs = 22

Rs = 22

UDM

UDP

VBUS

UVSS

UID

 D-

 D+

VBUS

 UID

UGND

1µF

External 3.0V - 3.4V

power supply

UCAP

UVCC AVCC VCC

XTAL1 XTAL2 GND GND

UVCON

5V DC/DC

generator

5V

Rs = 22

Rs = 22

245

7593L–AVR–09/12

AT90USB64/128

Figure 22-8. Host/OTG application with 5V I/O.

22.3.3 Design guidelines

• Serial resistors on USB Data lines must have 22Ω value (±5%)

• Traces from the input USB receptable (or from the cable connection in the case of a tethered

device) to the USB microcontroller pads should be as short as possible, and follow differential

traces routing rules (same length, as near as possible, avoid vias accumulation)

• Voltage transient / ESD suppressors may also be used to prevent USB pads to be damaged

by external disturbances

• Ucap capacitor should be 1µF (±10%) for correct operation

• A 10µF capacitor is highly recommended on VBUS line

UDP

UDM

VBUS

UVSS

UID

 D-

 D+

VBUS

 UID

UGND

1µF

External 5.0V

power supply

UCAP

UVCC AVCC VCC

XTAL1 XTAL2 GND GND

UVCON

5V

Rs = 22

Rs = 22

246

7593L–AVR–09/12

AT90USB64/128

22.4 General operating modes

22.4.1 Introduction

After a hardware reset, the USB controller is disabled. When enabled, the USB controller has to

run the Device Controller or the Host Controller. This is performed using the USB ID detection.

• If the ID pin is not connected to ground, the USB ID bit is set by hardware (internal pull up on

the UID pad) and the USB Device controller is selected

• The ID bit is cleared by hardware when a low level has been detected on the ID pin. The

Device controller is then disabled and the Host controller enabled

The software anyway has to select the mode (Host, Device) in order to access to the Device

controller registers or to the Host controller registers, which are multiplexed. For example, even

if the USB controller has detected a Device mode (pin ID high), the software shall select the

device mode (bit HOST cleared), otherwise it will access to the host registers. This is also true

for the Host mode.

Note: For the Atmel AT90USB646/1286 products the Host mode is not included in the USB controller,
and the ID pin is not used and should be configured and used as a general I/O.

22.4.2 Power-on and reset

The next diagram explains the USB controller main states on power-on:

Figure 22-9. USB controller states after reset.

USB Controller state after an hardware reset is ‘Reset’. In this state:

• USBE is not set

• the USB controller clock is stopped in order to minimize the power consumption (FRZCLK=1)

• the USB controller is disabled

• the USB pad is in the suspend mode

• the Host and Device USB controllers internal states are reset

After setting USBE, the USB Controller enters in the Host or in the Device state (according to the

USB ID pin). The selected controller is ‘Idle’.

The USB Controller can at any time be ‘stopped’ by clearing USBE. In fact, clearing USBE acts

as an hardware reset.

Device

Reset

USBE=0
<any other

state>

USBE=1

ID=1

Clock stopped

FRZCLK=1

Macro off

USBE=0

USBE=0

Host

USBE=0

 HW

RESET

USBE=1

ID=0

AT90USB647/1287 only

AT90USB646/1286 forced mode

247

7593L–AVR–09/12

AT90USB64/128

22.4.3 Interrupts

Two interrupts vectors are assigned to USB interface.

Figure 22-10. USB interrupt system.

See Section 23.17, page 272 and Section 24.15, page 291 for more details on the Host and

Device interrupts.

USB general

& OTG interrupt

USB device

 interrupt

USB host

 interrupt

USB general

 interrupt vector

Endpoint

interrupt

Pipe

interrupt

USB endpoint/pipe

 interrupt vector

248

7593L–AVR–09/12

AT90USB64/128

Figure 22-11. USB general interrupt vector sources.

IDTE

USBCON.1

IDTI

USBINT.1

VBUSTI

USBINT.0
VBUSTE

USBCON.0

STOI

OTGINT.5
STOE

OTGIEN.5

HNPERRI

OTGINT.4
HNPERRE

OTGIEN.4

ROLEEXI

OTGINT.3
ROLEEXE

OTGIEN.3

BCERRI

OTGINT.2
BCERRE

OTGIEN.2

VBERRI

OTGINT.1
VBERRE

OTGIEN.1

SRPI

OTGINT.0
SRPE

OTGIEN.0

USB general

 interrupt vector

UPRSMI

UDINT.6
UPRSME

UDIEN.6

EORSMI

UDINT.5
EORSME

UDIEN.5

WAKEUPI

UDINT.4
WAKEUPE

UDIEN.4

EORSTI

UDINT.3
EORSTE

UDIEN.3

SOFI

UDINT.2
SOFE

UDIEN.2

SUSPI

UDINT.0
SUSPE

UDIEN.0

HWUPE

UHIEN.6

HWUPI

UHINT.6

HSOFI

UHINT.5
HSOFE

UHIEN.5

RXRSMI

UHINT.4
RXRSME

UHIEN.4

RSMEDI

UHINT.3
RSMEDE

UHIEN.3

RSTI

UHINT.2
RSTE

UHIEN.2

DDISCI

UHINT.1
DDISCE

UHIEN.1

DCONNI

UHINT.0
DCONNE

UHIEN.0

USB device

 interrupt

USB host

 interrupt

USB general

 interrupt vector

Asynchronous interrupt source

(allows the CPU to wake up from power down mode)

249

7593L–AVR–09/12

AT90USB64/128

Figure 22-12. USB endpoint/pipe Interrupt vector sources.

FLERRE

UEIENX.7

OVERFI

UESTAX.6

UNDERFI

UESTAX.5

NAKINI

UEINTX.6
NAKINE

UEIENX.6

NAKOUTI

UEINTX.4
TXSTPE

UEIENX.4

RXSTPI

UEINTX.3
RXSTPE

UEIENX.3

RXOUTI

UEINTX.2
RXOUTE

UEIENX.2

STALLEDI

UEINTX.1
STALLEDE

UEIENX.1

EPINT

UEINT.X

Endpoint 0

Endpoint 1

Endpoint 2

Endpoint 3

Endpoint 4

Endpoint 5

Endpoint interrupt

TXINI

UEINTX.0
TXINE

UEIENX.0

FLERRE

UPIEN.7

UNDERFI

UPSTAX.5

OVERFI

UPSTAX.6

NAKEDI

UPINTX.6
NAKEDE

UPIEN.6

PERRI

UPINTX.4
PERRE

UPIEN.4

TXSTPI

UPINTX.3
TXSTPE

UPIEN.3

TXOUTI

UPINTX.2
TXOUTE

UPIEN.2

RXSTALLI

UPINTX.1
RXSTALLE

UPIEN.1

RXINI

UPINTX.0
RXINE

UPIEN.0

FLERRE

UPIEN.X

PIPE 0

PIPE 1

PIPE 2

PIPE 3

PIPE 4

PIPE 5

Pipe interrupt

USB endpoint/pipe

 interrupt vector

Endpoint 6

PIPE 6

250

7593L–AVR–09/12

AT90USB64/128

Figure 22-13. USB general and OTG controller interrupt system.

There are two kinds of interrupts: processing (that is, their generation are part of the normal pro-

cessing) and exception (errors).

Processing interrupts are generated when such events occur:

• USB ID Pad change detection (insert, remove)(IDTI)

• VBUS plug-in detection (insert, remove) (VBUSTI)

• SRP detected(SRPI)

• Role Exchanged(ROLEEXI)

Exception Interrupts are generated with the following events:

• Drop on VBus Detected(VBERRI)

• Error during the B-Connection(BCERRI)

• HNP Error(HNPERRI)

• Time-out detected during Suspend mode(STOII)

22.5 Power modes

22.5.1 Idle mode

In this mode, the CPU core is halted (CPU clock stopped). The Idle mode is taken wether the

USB controller is running or not. The CPU “wakes up” on any USB interrupts.

22.5.2 Power down

In this mode, the oscillator is stopped and halts all the clocks (CPU and peripherals). The USB

controller “wakes up” when:

• the WAKEUPI interrupt is triggered in the Peripheral mode (HOST cleared)

IDTE

USBCON.1

IDTI

USBINT.1

VBUSTI

USBINT.0
VBUSTE

USBCON.0

STOI

OTGINT.5
STOE

OTGIEN.5

HNPERRI

OTGINT.4
HNPERRE

OTGIEN.4

ROLEEXI

OTGINT.3
ROLEEXE

OTGIEN.3

BCERRI

OTGINT.2
BCERRE

OTGIEN.2

VBERRI

OTGINT.1
VBERRE

OTGIEN.1

SRPI

OTGINT.0
SRPE

OTGIEN.0

USB general & OTG

 interrupt vector

Asynchronous interrupt source

(allows the CPU to wake up from power down mode

251

7593L–AVR–09/12

AT90USB64/128

• the HWUPI interrupt is triggered in the Host mode (HOST set)

• the IDTI interrupt is triggered

• the VBUSTI interrupt is triggered

22.5.3 Freeze clock

The firmware has the ability to reduce the power consumption by setting the FRZCLK bit, which

freeze the clock of USB controller. When FRZCLK is set, it is still possible to access to the fol-

lowing registers:

• USBCON, USBSTA, USBINT

• UDCON (detach, ...)

• UDINT

• UDIEN

• UHCON

• UHINT

• UHIEN

Moreover, when FRZCLK is set, only the following interrupts may be triggered:

• WAKEUPI

• IDTI

• VBUSTI

• HWUPI

22.6 Speed control

22.6.1 Device mode

When the USB interface is configured in device mode, the speed selection (Full Speed or Low

Speed) depends on the UDP/UDM pull-up. The LSM bit in UDCON register allows to select an

internal pull up on UDM (Low Speed mode) or UDP (Full Speed mode) data lines.

Figure 22-14. Device mode speed selection.

R
P

U

DETACH
UDCON.0

UDP

UDM

R
P

U

LSM
UDCON.2

UCAP USB
regulator

252

7593L–AVR–09/12

AT90USB64/128

22.6.2 Host mode

When the USB interface is configured in host mode, internal Pull Down resistors are activated on

both UDP UDM lines and the interface detects the type of connected device.

22.7 Memory management

The controller does only support the following memory allocation management.

The reservation of a Pipe or an Endpoint can only be made in the increasing order (Pipe/End-

point 0 to the last Pipe/Endpoint). The firmware shall thus configure them in the same order.

The reservation of a Pipe or an Endpoint “ki” is done when its ALLOC bit is set. Then, the hard-

ware allocates the memory and inserts it between the Pipe/Endpoints “ki-1” and “ki+1”. The “ki+1”

Pipe/Endpoint memory “slides” up and its data is lost. Note that the “ki+2” and upper Pipe/End-

point memory does not slide.

Clearing a Pipe enable (PEN) or an Endpoint enable (EPEN) does not clear either its ALLOC bit,

or its configuration (EPSIZE/PSIZE, EPBK/PBK). To free its memory, the firmware should clear

ALLOC. Then, the “ki+1” Pipe/Endpoint memory automatically “slides” down. Note that the “ki+2”

and upper Pipe/Endpoint memory does not slide.

The following figure illustrates the allocation and reorganization of the USB memory in a typical

example:

Table 22-1. Allocation and reorganization USB memory flow.

• First, Pipe/Endpoint 0 to Pipe/Endpoint 5 are configured, in the growing order. The memory

of each is reserved in the DPRAM

• Then, the Pipe/Endpoint 3 is disabled (EPEN=0), but its memory reservation is internally kept

by the controller

• Its ALLOC bit is cleared: the Pipe/Endpoint 4 “slides” down, but the Pipe/Endpoint 5 does not

“slide”

• Finally, if the firmware chooses to reconfigure the Pipe/Endpoint 3, with a bigger size. The

controller reserved the memory after the endpoint 2 memory and automatically “slide” the

Pipe/Endpoint 4. The Pipe/Endpoint 5 does not move and a memory conflict appear, in that

Free memory

0

1

2

3

4

5

EPEN=1

ALLOC=1

Free memory

0

1

2

4

5

EPEN=0

(ALLOC=1)

Free memory

0

1

2

4

5

Pipe/Endpoints

activation

Pipe/Endpoint

Disable

Free its memory

(ALLOC=0)

Free memory

0

1

2

3 (bigger size)

5

Pipe/Endpoint

Activatation

Lost memory
4 Conflict

253

7593L–AVR–09/12

AT90USB64/128

both Pipe/Endpoint 4 and 5 use a common area. The data of those endpoints are potentially

lost

Note that:

• the data of Pipe/Endpoint 0 are never lost whatever the activation or deactivation of the

higher Pipe/Endpoint. Its data is lost if it is deactivated

• Deactivate and reactivate the same Pipe/Endpoint with the same parameters does not lead

to a “slide” of the higher endpoints. For those endpoints, the data are preserved

• CFGOK is set by hardware even in the case where there is a “conflict” in the memory

allocation

22.8 PAD suspend

The next figures illustrates the pad behaviour:

• In the “idle” mode, the pad is put in low power consumption mode

• In the “active” mode, the pad is working

Figure 22-15. Pad behaviour.

The SUSPI flag indicated that a suspend state has been detected on the USB bus. This flag

automatically put the USB pad in Idle. The detection of a non-idle event sets the WAKEUPI flag

and wakes-up the USB pad.

Moreover, the pad can also be put in the “idle” mode if the DETACH bit is set. It come back in

the active mode when the DETACH bit is cleared.

Idle mode

Active mode

 USBE=1

& DETACH=0

& suspend

 USBE=0

| DETACH=1

| suspend

SUSPI
Suspend detected = USB pad power down Clear suspend by software

Resume = USB pad wake-up

Clear resume by softwareWAKEUPI

PAD status
ActivePower DownActive

254

7593L–AVR–09/12

AT90USB64/128

22.9 OTG timers customizing

It is possible to refine some OTG timers thanks to the OTGTCON register that contains the

PAGE bits to select the timer and the VALUE bits to adjust the value. User should refer to lastest

releases of the OTG specification to select compliant timings.

• PAGE=00b: AWaitVrise time-out. [OTG]. In Host mode, once VBUSREQ has been set to “1”,

if no VBUS is detected on VBUS pin after this AWaitVrise delay then the VBERRI error flag is

set.

– VALUE=00bTime-out is set to 20ms

– VALUE=01bTime-out is set to 50ms

– VALUE=10bTime-out is set to 70ms

– VALUE=11bTime-out is set to 100ms

• PAGE=01b: VbBusPulsing. [OTG]. In Device mode, this delay corresponds to the pulse

duration on Vbus during a SRP.

– VALUE=00bTime-out is set to 15ms

– VALUE=01bTime-out is set to 23ms

– VALUE=10bTime-out is set to 31ms

– VALUE=11bTime-out is set to 40ms

• PAGE=10b: PdTmOutCnt. [OTG]. In Device mode, when a SRP has been requested to be

sent by the firmware, this delay is waited by the hardware after VBUS has gone below the

“session_valid” threshold voltage and before initiating the first pulse. This delay should be

considered as an approximation of USB lines discharge (pull-down resistors vs. line

capacitance) in order to wait that VBUS has gone below the “b_session_end” threshold

voltae, as defined in the OTG specification.

– VALUE=00bTime-out is set to 93ms

– VALUE=01bTime-out is set to 105ms

– VALUE=10bTime-out is set to 118ms

– VALUE=11bTime-out is set to 131ms

• PAGE=11b: SRPDetTmOut. [OTG]. In Host mode, this delay is the minimum pulse duration

required to detect and accept a valid SRP from a Device.

– VALUE=00bTime-out is set to 1µs

– VALUE=01bTime-out is set to 100µs

– VALUE=10bTime-out is set to 1ms

– VALUE=11bTime-out is set to 11ms

255

7593L–AVR–09/12

AT90USB64/128

22.10 Plug-in detection

The USB connection is detected by the VBUS pad, thanks to the following architecture:

Figure 22-16. Plug-in detection input block diagram.

The control logic of the VBUS pad outputs a signal regarding the VBUS voltage level:

• The “Session_valid” signal is active high when the voltage on the VBUS pad is higher or

equal to 1.4V. If lower than 1.4V, the signal is not active

• The “Vbus_valid” signal is active high when the voltage on the VBUS pad is higher or equal to

4.4V. If lower than 4.4V, the signal is not active

• The VBUS status bit is set when VBUS is greater than “Vbus_valid”. The VBUS status bit is

cleared when VBUS falls below “Session_valid” (hysteresis behavior)

• The VBUSTI flag is set each time the VBUS bit state changes

22.10.1 Peripheral mode

The USB peripheral cannot attach to the bus while VBUS bit is not set.

22.10.2 Host mode

The Host must use the UVCON pin to drive an external power switch or regulator that powers

the Vbus line. The UVCON pin is automatically asserted and set high by hardware when

UVCONE and VBUSREQ bits are set by firmware.

If a device connects (pull-up on DP or DM) within 300ms of Vbus delivery, the DCONNI flag will

rise. But, once VBUSREQ bit has been set, if no peripheral connection is detected within 300ms,

the BCERRI flag (and interrupt) will rise and Vbus delivery will be stopped (UVCON cleared).

If that behavior represents a limitation for the Host application, the following work-around may be

used :

1. UVCONE and VBUSREQ must be cleared.

2. VBUSHWC must be set (to disable hardware control of UVCON pin).

3. PORTE,7 pin (alternate function of UVCON pin) must be set by firmware.

4. a device connection will be detected thanks to the SRPI flag (that may usually be used
to detect a DP/DM pulse sent by an OTG B-Device that requests a new session).

VBUSTI
USBINT.0

VBUS VBUS
USBSTA.0

VSS

VDD

Pad logic

Logic

Session_validR
P

U
R

P
U

VBus_pulsing

VBus_discharge

Vbus_valid

256

7593L–AVR–09/12

AT90USB64/128

22.11 ID detection

The ID pin transition is detected thanks to the following architecture:

Figure 22-17. ID detection input block diagram.

The ID pin can be used to detect the USB mode (Peripheral or Host) or software selected. This

allows the UID pin to be used has general purpose I/O even when USB interface is enable.

When the UID pin is selected, by default, (no A-plug or B-plug), the macro is in the Peripheral

mode (internal pull-up). The IDTI interrupt is triggered when a A-plug (Host) is plugged or

unplugged. The interrupt is not triggered when a B-plug (Periph) is plugged or unplugged.

ID detection is independent of USB global interface enable.

22.12 Registers description

22.12.1 USB general registers

• 7 – UIMOD: USB Mode bit

This bit has no effect when the UIDE bit is set (external UID pin activated). Set to enable the

USB device mode. Clear to enable the USB host mode

• 6 – UIDE: UID pin Enable

Set to enable the USB mode selection (peripheral/host) through the UID pin. Clear to enable the

USB mode selection (peripheral/host) with UIMOD bit register.

UIDE should be modified only when the USB interface is disabled (USBE bit cleared).

• 5 – Reserved

The value read from this bit is always 0. Do not set this bit.

• 4 – UVCONE: UVCON pin Enable

Set to enable the UVCON pin control. Clear to disable the UVCON pin control. This bit should be

set only when the USB interface is enable.

R
P

U

UIMOD
UHWCON.7

UID

ID
USBSTA.1

Internal pull up

VDD

UIDE
UHWCON.6

1

0

Bit 7 6 5 4 3 2 1 0

UIMOD UIDE UVCONE UVREGE UHWCON

Read/write R/W R/W R R/W R R R R/W

Initial value 1 0 0 0 0 0 0 0

257

7593L–AVR–09/12

AT90USB64/128

• 3-1 – Reserved

The value read from these bits is always 0. Do not set these bits.

• 0 – UVREGE: USB pad regulator Enable

Set to enable the USB pad regulator. Clear to disable the USB pad regulator.

• 7 – USBE: USB macro Enable bit

Set to enable the USB controller. Clear to disable and reset the USB controller, to disable the

USB transceiver and to disable the USB controller clock inputs.

• 6 – HOST: HOST bit

Set to enable the Host mode. Clear to enable the device mode.

• 5 – FRZCLK: Freeze USB Clock bit

Set to disable the clock inputs (the ”Resume Detection” is still active). This reduces the power

consumption. Clear to enable the clock inputs.

• 4 – OTGPADE: OTG Pad Enable

Set to enable the OTG pad. Clear to disable the OTG pad. The OTG pad is actually the VBUS

pad.

Note that this bit can be set/cleared even if USBE=0. That allows the VBUS detection even if the

USB macro is disabled. This pad must be enabled in both Host and Device modes in order to

allow USB operation (attaching, transmitting...).

• 3-2 – Reserved

The value read from these bits is always 0. Do not set these bits.

• 1 – IDTE: ID Transition Interrupt Enable bit

Set this bit to enable the ID Transition interrupt generation. Clear this bit to disable the ID Transi-

tion interrupt generation.

• 0 – VBUSTE: VBUS Transition Interrupt Enable bit

Set this bit to enable the VBUS Transition interrupt generation.

Clear this bit to disable the VBUS Transition interrupt generation.

• 7-4 - Reserved

The value read from these bits is always 0. Do not set these bits.

Bit 7 6 5 4 3 2 1 0

USBE HOST FRZCLK OTGPADE - - IDTE VBUSTE USBCON

Read/write R/W R/W R/W R/W R R R/W R/W

Initial value 0 0 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - - - SPEED ID VBUS USBSTA

Read/write R R R R R R R R

Initial value 0 0 0 0 1 0 1 0

258

7593L–AVR–09/12

AT90USB64/128

• 3 – SPEED: Speed Status Flag

This should be read only when the USB controller operates in host mode, in device mode the

value read from this bit is undeterminated.

Set by hardware when the controller is in FULL-SPEED mode. Cleared by hardware when the

controller is in LOW-SPEED mode.

• 2 – Reserved

The value read from this bit is always 0. Do not set this bit.

• 1 – ID: IUD pin flag

The value read from this bit indicates the state of the UID pin.

• 0 – VBUS: VBus flag

The value read from this bit indicates the state of the VBUS pin. This bit can be used in device

mode to monitor the USB bus connection state of the application. See Section 22.10, page 255

for more details.

7-2 - Reserved

The value read from these bits is always 0. Do not set these bits.

1 – IDTI: D Transition Interrupt flag

Set by hardware when a transition (high to low, low to high) has been detected on the UID pin.

Shall be cleared by software.

• 0 – VBUSTI: IVBUS Transition Interrupt flag

Set by hardware when a transition (high to low, low to high) has been detected on the VBUS

pad.

Shall be cleared by software.

• 7-6 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 5 – HNPREQ: HNP Request bit

Set to initiate the HNP when the controller is in the Device mode (B). Set to accept the HNP

when the controller is in the Host mode (A).

Clear otherwise.

Bit 7 6 5 4 3 2 1 0

- - - - - - IDTI VBUSTI USBINT

Read/write R R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - HNPREQ SRPREQ SRPSEL VBUSHWC VBUSREQ VBUSRQC OTGCON

Read/write R R R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

259

7593L–AVR–09/12

AT90USB64/128

• 4 – SRPREQ: SRP Request bit

Set to initiate the SRP when the controller is in Device mode. Cleared by hardware when the

controller is initiating a SRP.

• 3 – SRPSEL: SRP Selection bit

Set to choose VBUS pulsing as SRP method.

Clear to choose data line pulsing as SRP method.

• 2 – VBUSHWC: VBus Hardware Control bit

Set to disable the hardware control over the UVCON pin.

Clear to enable the hardware control over the UVCON pin.

See for more details

• 1 – VBUSREQ: VBUS Request bit

Set to assert the UVCON pin in order to enable the VBUS power supply generation. This bit

shall be used when the controller is in the Host mode.

Cleared by hardware when VBUSRQC is set.

• 0 – VBUSRQC: VBUS Request Clear bit

Set to deassert the UVCON pin in order to enable the VBUS power supply generation. This bit

shall be used when the controller is in the Host mode.

Cleared by hardware immediately after the set.

• 7 – Reserved

This bit is reserved and always set.

• 6-5 – PAGE: Timer page access bit

Set/clear to access a special timer register. See Section 22.9, page 254 for more details.

• 4-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 1-0 – VALUE: Value bit

Set to initialize the new value of the timer. See Section 22.9, page 254 for more details.

Bit 7 6 5 4 3 2 1 0

- PAGE - - - VALUE OTGTCON

Read/write R R/W R/W R R R/W R/W R/W

Initial value 1 0 0 0 0 0 0 0

260

7593L–AVR–09/12

AT90USB64/128

• 7-6 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 5 – STOE: Suspend Time-out Error Interrupt Enable bit

Set to enable the STOI interrupt. Clear to disable the STOI interrupt.

• 4 – HNPERRE: HNP Error Interrupt Enable bit

Set to enable the HNPERRI interrupt. Clear to disable the HNPERRI interrupt.

• 3 – ROLEEXE: Role Exchange Interrupt Enable bit

Set to enable the ROLEEXI interrupt. Clear to disable the ROLEEXI interrupt.

• 2 – BCERRE: B-Connection Error Interrupt Enable bit

Set to enable the BCERRI interrupt. Clear to disable the BCERRI interrupt.

• 1 – VBERRE: VBus Error Interrupt Enable bit

Set to enable the VBERRI interrupt. Clear to disable the VBERRI interrupt.

• 0 – SRPE: SRP Interrupt Enable bit

Set to enable the SRPI interrupt. Clear to disable the SRPI interrupt.

• 7-6 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 5 – STOI: Suspend Time-out Error Interrupt flag

Set by hardware when a time-out error (more than 150ms) has been detected after a suspend.

Shall be cleared by software.

• 4 – HNPERRI: HNP Error Interrupt flag

Set by hardware when an error has been detected during the protocol. Shall be cleared by

software.

• 3 – ROLEEXI: Role Exchange Interrupt flag

Set by hardware when the USB controller has successfully swapped its mode, due to an HNP

negotiation: Host to Device or Device to Host. However the mode selection bit (Host/Device) is

unchanged and must be changed by firmware in order to reach the correct RAM locations and

events bits. Shall be cleared by software.

Bit 7 6 5 4 3 2 1 0

- - STOE HNPERRE ROLEEXE BCERRE VBERRE SRPE OTGIEN

Read/write R R R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - STOI HNPERRI ROLEEXI BCERRI VBERRI SRPI OTGINT

Read/write R R R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

261

7593L–AVR–09/12

AT90USB64/128

• 2 – BCERRI: B-Connection Error Interrupt flag

Set by hardware when an error occur during the B-Connection (that is, if Peripheral has not con-

nected after 300ms of Vbus delivery request). Shall be cleared by software.

• 1 – VBERRI: V-Bus Error Interrupt flag

Set by hardware when a drop on VBus has been detected. Shall be cleared by software.

• 0 – SRPI: SRP Interrupt flag

Set by hardware when a SRP has been detected. Shall be used in the Host mode only. Shall be

cleared by software.

22.13 USB Software Operating modes

Depending on the USB operating mode, the software should perform some the following

operations:

Power On the USB interface

• Power-On USB pads regulator

• Configure PLL interface

• Enable PLL and wait PLL lock

• Enable USB interface

• Configure USB interface (USB speed, Endpoints configuration...)

• Wait for USB VBUS information connection

• Attach USB device

Power Off the USB interface

• Detach USB interface

• Disable USB interface

• Disable PLL

• Disable USB pad regulator

Suspending the USB interface

• Clear Suspend Bit

• Freeze USB clock

• Disable PLL

• Be sure to have interrupts enable to exit sleep mode

• Make the MCU enter sleep mode

Resuming the USB interface

• Enable PLL

• Wait PLL lock

• Unfreeze USB clock

• Clear Resume information

262

7593L–AVR–09/12

AT90USB64/128

23. USB device operating modes

23.1 Introduction

The USB device controller supports full speed and low speed data transfers. In addition to the

default control endpoint, it provides six other endpoints, which can be configured in control, bulk,

interrupt or isochronous modes:

• Endpoint 0:programmable size FIFO up to 64 bytes, default control endpoint

• Endpoints 1 programmable size FIFO up to 256 bytes in ping-pong mode

• Endpoints 2 to 6: programmable size FIFO up to 64 bytes in ping-pong mode

The controller starts in the “idle” mode. In this mode, the pad consumption is reduced to the

minimum.

23.2 Power-on and reset

The next diagram explains the USB device controller main states on power-on:

Figure 23-1. USB device controller states after reset.

The reset state of the Device controller is:

• the macro clock is stopped in order to minimize the power consumption (FRZCLK set)

• the USB device controller internal state is reset (all the registers are reset to their default

value. Note that DETACH is set.)

• the endpoint banks are reset

• the D+ or D- pull up are not activated (mode Detach)

The D+ or D- pull-up will be activated as soon as the DETACH bit is cleared and VBUS is

present.

The macro is in the ‘Idle’ state after reset with a minimum power consumption and does not

need to have the PLL activated to enter in this state.

The USB device controller can at any time be reset by clearing USBE (disable USB interface).

23.3 Endpoint reset

An endpoint can be reset at any time by setting in the UERST register the bit corresponding to

the endpoint (EPRSTx). This resets:

• the internal state machine on that endpoint

• the Rx and Tx banks are cleared and their internal pointers are restored

Reset

Idle

 HW

RESET

USBE=0

<any

other

state>

USBE=0

USBE=1

UID=1

263

7593L–AVR–09/12

AT90USB64/128

• the UEINTX, UESTA0X and UESTA1X are restored to their reset value

The data toggle field remains unchanged.

The other registers remain unchanged.

The endpoint configuration remains active and the endpoint is still enabled.

The endpoint reset may be associated with a clear of the data toggle command (RSTDT bit) as

an answer to the CLEAR_FEATURE USB command.

23.4 USB reset

When an USB reset is detected on the USB line, the next operations are performed by the

controller:

• all the endpoints are disabled

• the default control endpoint remains configured (see Section 23.3, page 262 for more details)

23.5 Endpoint selection

Prior to any operation performed by the CPU, the endpoint must first be selected. This is done

by setting the EPNUM2:0 bits (UENUM register) with the endpoint number which will be man-

aged by the CPU.

The CPU can then access to the various endpoint registers and data.

23.6 Endpoint activation

The endpoint is maintained under reset as long as the EPEN bit is not set.

The following flow must be respected in order to activate an endpoint:

264

7593L–AVR–09/12

AT90USB64/128

Figure 23-2. Endpoint activation flow.

As long as the endpoint is not correctly configured (CFGOK cleared), the hardware does not

acknowledge the packets sent by the host.

CFGOK is will not be sent if the Endpoint size parameter is bigger than the DPRAM size.

A clear of EPEN acts as an endpoint reset (see Section 23.3, page 262 for more details). It also

performs the next operation:

• The configuration of the endpoint is kept (EPSIZE, EPBK, ALLOC kept)

• It resets the data toggle field

• The DPRAM memory associated to the endpoint is still reserved

See Section 22.7, page 252 for more details about the memory allocation/reorganization.

23.7 Address setup

The USB device address is set up according to the USB protocol:

• the USB device, after power-up, responds at address 0

• the host sends a SETUP command (SET_ADDRESS(addr))

• the firmware records that address in UADD, but keep ADDEN cleared

• the USB device sends an IN command of 0 bytes (IN 0 Zero Length Packet)

• then, the firmware can enable the USB device address by setting ADDEN. The only accepted

address by the controller is the one stored in UADD

ADDEN and UADD shall not be written at the same time.

UADD contains the default address 00h after a power-up or USB reset.

Endpoint

Activation

CFGOK=1

ERROR

No
Yes

Endpoint activated

Activate the endpoint

Select the endpoint

EPEN=1

UENUM
EPNUM=x

Test the correct endpoint

configuration

UECFG1X
ALLOC

EPSIZE

EPBK

Configure:

- the endpoint size

- the bank parametrization

Allocation and reorganization of

the memory is made on-the-fly

UECFG0X
EPDIR

EPTYPE

...

Configure:

- the endpoint direction

- the endpoint type

265

7593L–AVR–09/12

AT90USB64/128

ADDEN is cleared by hardware:

• after a power-up reset

• when an USB reset is received

• or when the macro is disabled (USBE cleared)

When this bit is cleared, the default device address 00h is used.

23.8 Suspend, wake-up and resume

After a period of 3ms during which the USB line was inactive, the controller switches to the full-

speed mode and triggers (if enabled) the SUSPI (suspend) interrupt. The firmware may then set

the FRZCLK bit.

The CPU can also, depending on software architecture, enter in the idle mode to lower again the

power consumption.

There are two ways to recover from the “Suspend” mode:

• First one is to clear the FRZCLK bit. This is possible if the CPU is not in the Idle mode

• Second way, if the CPU is “idle”, is to enable the WAKEUPI interrupt (WAKEUPE set). Then,

as soon as an non-idle signal is seen by the controller, the WAKEUPI interrupt is triggered.

The firmware shall then clear the FRZCLK bit to restart the transfer

There are no relationship between the SUSPI interrupt and the WAKEUPI interrupt: the WAKE-

UPI interrupt is triggered as soon as there are non-idle patterns on the data lines. Thus, the

WAKEUPI interrupt can occurs even if the controller is not in the “suspend” mode.

When the WAKEUPI interrupt is triggered, if the SUSPI interrupt bit was already set, it is cleared

by hardware.

When the SUSPI interrupt is triggered, if the WAKEUPI interrupt bit was already set, it is cleared

by hardware.

23.9 Detach

The reset value of the DETACH bit is 1.

It is possible to re-enumerate a device, simply by setting and clearing the DETACH bit.

• Setting DETACH will disconnect the pull-up on the D+ or D- pad (depending on full or low

speed mode selected). Then, clearing DETACH will connect the pull-up on the D+ or D- pad

Figure 23-3. Detach a device in full-speed.

EN=1

D +

UVREF

D -

Detach, then

Attach EN=1

D +

UVREF

D -

266

7593L–AVR–09/12

AT90USB64/128

23.10 Remote Wake-up

The “Remote Wake-up” (or “upstream resume”) request is the only operation allowed to be sent

by the device on its own initiative. Anyway, to do that, the device should first have received a

DEVICE_REMOTE_WAKEUP request from the host.

• First, the USB controller must have detected the “suspend” state of the line: the remote wake-

up can only be sent when a SUSPI flag is set

• The firmware has then the ability to set RMWKUP to send the “upstream resume” stream.

This will automatically be done by the controller after 5ms of inactivity on the USB line

• When the controller starts to send the “upstream resume”, the UPRSMI interrupt is triggered

(if enabled). SUSPI is cleared by hardware

• RMWKUP is cleared by hardware at the end of the “upstream resume”

• If the controller detects a good “End Of Resume” signal from the host, an EORSMI interrupt

is triggered (if enabled)

23.11 STALL request

For each endpoint, the STALL management is performed using two bits:

– STALLRQ (enable stall request)

– STALLRQC (disable stall request)

– STALLEDI (stall sent interrupt)

To send a STALL handshake at the next request, the STALLRQ request bit has to be set. All fol-

lowing requests will be handshak’ed with a STALL until the STALLRQC bit is set.

Setting STALLRQC automatically clears the STALLRQ bit. The STALLRQC bit is also immedi-

ately cleared by hardware after being set by software. Thus, the firmware will never read this bit

as set.

Each time the STALL handshake is sent, the STALLEDI flag is set by the USB controller and the

EPINTx interrupt will be triggered (if enabled).

The incoming packets will be discarded (RXOUTI and RWAL will not be set).

The host will then send a command to reset the STALL: the firmware just has to set the STALL-

RQC bit and to reset the endpoint.

23.11.1 Special consideration for control endpoints

A SETUP request is always ACK’ed.

If a STALL request is set for a Control Endpoint and if a SETUP request occurs, the SETUP

request has to be ACK’ed and the STALLRQ request and STALLEDI sent flags are automati-

cally reset (RXSETUPI set, TXIN cleared, STALLED cleared, TXINI cleared...).

This management simplifies the enumeration process management. If a command is not sup-

ported or contains an error, the firmware set the STALL request flag and can return to the main

task, waiting for the next SETUP request.

This function is compliant w i th the Chapter 8 test that may send extra status for a

GET_DESCRIPTOR. The firmware sets the STALL request just after receiving the status. All

extra status will be automatically STALL’ed until the next SETUP request.

267

7593L–AVR–09/12

AT90USB64/128

23.11.2 STALL handshake and retry mechanism

The Retry mechanism has priority over the STALL handshake. A STALL handshake is sent if the

STALLRQ request bit is set and if there is no retry required.

23.12 CONTROL endpoint management

A SETUP request is always ACK’ed. When a new setup packet is received, the RXSTPI inter-

rupt is triggered (if enabled). The RXOUTI interrupt is not triggered.

The FIFOCON and RWAL fields are irrelevant with CONTROL endpoints. The firmware shall

thus never use them on that endpoints. When read, their value is always 0.

CONTROL endpoints are managed by the following bits:

• RXSTPI is set when a new SETUP is received. It shall be cleared by firmware to

acknowledge the packet and to clear the endpoint bank

• RXOUTI is set when a new OUT data is received. It shall be cleared by firmware to

acknowledge the packet and to clear the endpoint bank

• TXINI is set when the bank is ready to accept a new IN packet. It shall be cleared by firmware

to send the packet and to clear the endpoint bank

23.12.1 Control write

Figure 23-4 shows a control write transaction. During the status stage, the controller will not nec-

essary send a NAK at the first IN token:

• If the firmware knows the exact number of descriptor bytes that must be read, it can then

anticipate on the status stage and send a ZLP for the next IN token

• or it can read the bytes and poll NAKINI, which tells that all the bytes have been sent by the

host, and the transaction is now in the status stage

Figure 23-4. Control write transaction.

23.12.2 Control read

Figure 23-5 on page 268 shows a control read transaction. The USB controller has to manage

the simultaneous write requests from the CPU and the USB host.

SETUP

RXSTPI

RXOUTI

TXINI

USB line

HW SW

OUT

HW SW

OUT

HW SW

IN IN

NAK

SW

DATASETUP STATUS

268

7593L–AVR–09/12

AT90USB64/128

Figure 23-5. Control read transaction.

A NAK handshake is always generated at the first status stage command.

When the controller detect the status stage, all the data writen by the CPU are erased, and

clearing TXINI has no effects.

The firmware checks if the transmission is complete or if the reception is complete.

The OUT retry is always ack’ed. This reception:

- set the RXOUTI flag (received OUT data)

- set the TXINI flag (data sent, ready to accept new data)

software algorithm:

set transmit ready

wait (transmit complete OR Receive complete)

if receive complete, clear flag and return

if transmit complete, continue

Once the OUT status stage has been received, the USB controller waits for a SETUP request.

The SETUP request have priority over any other request and has to be ACK’ed. This means that

any other flag should be cleared and the fifo reset when a SETUP is received.

WARNING: the byte counter is reset when the OUT Zero Length Packet is received. The firm-

ware has to take care of this.

23.13 OUT endpoint management

OUT packets are sent by the host. All the data can be read by the CPU, which acknowledges or

not the bank when it is empty.

23.13.1 Overview

The Endpoint must be configured first.

Each time the current bank is full, the RXOUTI and the FIFOCON bits are set. This triggers an

interrupt if the RXOUTE bit is set. The firmware can acknowledge the USB interrupt by clearing

the RXOUTI bit. The Firmware read the data and clear the FIFOCON bit in order to free the cur-

rent bank. If the OUT Endpoint is composed of multiple banks, clearing the FIFOCON bit will

switch to the next bank. The RXOUTI and FIFOCON bits are then updated by hardware in accor-

dance with the status of the new bank.

SETUP

RXSTPI

RXOUTI

TXINI

USB line

HW SW

IN

HW SW

IN OUT OUT

NAK

SW

SW

HW

Wr Enable

HOST

Wr Enable

CPU

DATASETUP STATUS

269

7593L–AVR–09/12

AT90USB64/128

RXOUTI shall always be cleared before clearing FIFOCON.

The RWAL bit always reflects the state of the current bank. This bit is set if the firmware can

read data from the bank, and cleared by hardware when the bank is empty.

Figure 23-6. Example with 1 and 2 OUT data bank.

23.13.2 Detailed description

The data are read by the CPU, following the next flow:

• When the bank is filled by the host, an endpoint interrupt (EPINTx) is triggered, if enabled

(RXOUTE set) and RXOUTI is set. The CPU can also poll RXOUTI or FIFOCON, depending

on the software architecture

• The CPU acknowledges the interrupt by clearing RXOUTI

• The CPU can read the number of byte (N) in the current bank (N=BYCT)

• The CPU can read the data from the current bank (“N” read of UEDATX)

• The CPU can free the bank by clearing FIFOCON when all the data is read, that is:

– after “N” read of UEDATX

– as soon as RWAL is cleared by hardware

If the endpoint uses two banks, the second one can be filled by the HOST while the current one

is being read by the CPU. Then, when the CPU clear FIFOCON, the next bank may be already

ready and RXOUTI is set immediately.

23.14 IN endpoint management

IN packets are sent by the USB device controller, upon an IN request from the host. All the data

can be written by the CPU, which acknowledge or not the bank when it is full.

OUT
DATA

(to bank 0)
ACK

RXOUTI

FIFOCON

HW

OUT
DATA

(to bank 0)
ACK

HW

SW

SW

SW

read data from CPU

BANK 0

OUT
DATA

(to bank 0)
ACK

RXOUTI

FIFOCON

HW

OUT
DATA

(to bank 1)
ACK

SW

SW

Example with 2 OUT data banks

read data from CPU

BANK 0

HW

SW

read data from CPU

BANK 0

read data from CPU

BANK 1

NAK

270

7593L–AVR–09/12

AT90USB64/128

23.14.1 Overview

The Endpoint must be configured first.

The TXINI bit is set by hardware when the current bank becomes free. This triggers an interrupt

if the TXINE bit is set. The FIFOCON bit is set at the same time. The CPU writes into the FIFO

and clears the FIFOCON bit to allow the USB controller to send the data. If the IN Endpoint is

composed of multiple banks, this also switches to the next data bank. The TXINI and FIFOCON

bits are automatically updated by hardware regarding the status of the next bank.

TXINI shall always be cleared before clearing FIFOCON.

The RWAL bit always reflects the state of the current bank. This bit is set if the firmware can

write data to the bank, and cleared by hardware when the bank is full.

Figure 23-7. Example with 1 and 2 IN data bank.

23.14.2 Detailed description

The data are written by the CPU, following the next flow:

• When the bank is empty, an endpoint interrupt (EPINTx) is triggered, if enabled (TXINE set)

and TXINI is set. The CPU can also poll TXINI or FIFOCON, depending the software

architecture choice

• The CPU acknowledges the interrupt by clearing TXINI

• The CPU can write the data into the current bank (write in UEDATX)

• The CPU can free the bank by clearing FIFOCON when all the data are written, that is:

– after “N” write into UEDATX

– as soon as RWAL is cleared by hardware

IN
DATA

(bank 0)
ACK

TXINI

FIFOCON

HW

write data from CPU

BANK 0

Example with 2 IN data banks

SW

SW SW

SW

IN

IN
DATA

(bank 0)
ACK

TXINI

FIFOCON write data from CPU

BANK 0
SW

SW SW

SW

IN
DATA

(bank 1)
ACK

write data from CPU

BANK 0

write data from CPU

BANK 1

SW

HW

write data from CPU

BANK0

NAK

271

7593L–AVR–09/12

AT90USB64/128

If the endpoint uses two banks, the second one can be read by the HOST while the current is

being written by the CPU. Then, when the CPU clears FIFOCON, the next bank may be already

ready (free) and TXINI is set immediately.

23.14.2.1 Abort

An “abort” stage can be produced by the host in some situations:

• In a control transaction: ZLP data OUT received during a IN stage

• In an isochronous IN transaction: ZLP data OUT received on the OUT endpoint during a IN

stage on the IN endpoint

• ...

The KILLBK bit is used to kill the last “written” bank. The best way to manage this abort is to per-

form the following operations:

Table 23-1. Abort flow.

23.15 Isochronous mode

23.15.1 Underflow

An underflow can occur during IN stage if the host attempts to read a bank which is empty. In

this situation, the UNDERFI interrupt is triggered.

An underflow can also occur during OUT stage if the host send a packet while the banks are

already full. Typically, he CPU is not fast enough. The packet is lost.

It is not possible to have underflow error during OUT stage, in the CPU side, since the CPU

should read only if the bank is ready to give data (RXOUTI=1 or RWAL=1)

23.15.2 CRC error

A CRC error can occur during OUT stage if the USB controller detects a bad received packet. In

this situation, the STALLEDI interrupt is triggered. This does not prevent the RXOUTI interrupt

from being triggered.

Endpoint

Abort

Abort done

Abort is based on the fact

that no banks are busy,

meaning that nothing has to

be sent.

Disable the TXINI interrupt.

Endpoint

reset

NBUSYBK

=0

Yes

Clear

UEIENX.

TXINE

No

KILLBK=1

KILLBK=1Yes

Kill the last written

bank.

Wait for the end of the

procedure.

No

272

7593L–AVR–09/12

AT90USB64/128

23.16 Overflow

In Control, Isochronous, Bulk or Interrupt Endpoint, an overflow can occur during OUT stage, if

the host attempts to write in a bank that is too small for the packet. In this situation, the OVERFI

interrupt is triggered (if enabled). The packet is acknowledged and the RXOUTI interrupt is also

triggered (if enabled). The bank is filled with the first bytes of the packet.

It is not possible to have overflow error during IN stage, in the CPU side, since the CPU should

write only if the bank is ready to access data (TXINI=1 or RWAL=1).

23.17 Interrupts

Figure 23-8 shows all the interrupts sources.

Figure 23-8. USB device controller interrupt system.

There are two kinds of interrupts: processing (that is, their generation are part of the normal pro-

cessing) and exception (errors).

Processing interrupts are generated when:

• VBUS plug-in detection (insert, remove)(VBUSTI)

• Upstream resume(UPRSMI)

• End of resume(EORSMI)

• Wake up(WAKEUPI)

• End of reset (Speed Initialization)(EORSTI)

• Start of frame(SOFI, if FNCERR=0)

• Suspend detected after 3ms of inactivity(SUSPI)

Exception Interrupts are generated when:

• CRC error in frame number of SOF(SOFI, FNCERR=1)

UPRSMI

UDINT.6
UPRSME

UDIEN.6

EORSMI

UDINT.5
EORSME

UDIEN.5

WAKEUPI

UDINT.4
WAKEUPE

UDIEN.4

EORSTI

UDINT.3
EORSTE

UDIEN.3

SOFI

UDINT.2
SOFE

UDIEN.2

SUSPI

UDINT.0
SUSPE

UDIEN.0

USB device

 interrupt

273

7593L–AVR–09/12

AT90USB64/128

Figure 23-9. USB device controller endpoint interrupt system.

Processing interrupts are generated when:

• Ready to accept IN data(EPINTx, TXINI=1)

• Received OUT data(EPINTx, RXOUTI=1)

• Received SETUP(EPINTx, RXSTPI=1)

Exception Interrupts are generated when:

• Stalled packet(EPINTx, STALLEDI=1)

• CRC error on OUT in isochronous mode(EPINTx, STALLEDI=1)

• Overflow in isochronous mode(EPINTx, OVERFI=1)

• Underflow in isochronous mode(EPINTx, UNDERFI=1)

• NAK IN sent(EPINTx, NAKINI=1)

• NAK OUT sent(EPINTx, NAKOUTI=1)

23.18 Registers

23.18.1 USB device general registers

EPINT

UEINT.X

Endpoint 0

Endpoint 1

Endpoint 2

Endpoint 3

Endpoint 4

Endpoint 5

Endpoint interrupt

Endpoint 6

FLERRE

UEIENX.7

OVERFI

UESTAX.6

UNDERFI

UESTAX.5

NAKINI

UEINTX.6
NAKINE

UEIENX.6

NAKOUTI

UEINTX.4
TXSTPE

UEIENX.4

RXSTPI

UEINTX.3
TXOUTE

UEIENX.3

RXOUTI

UEINTX.2
RXOUTE

UEIENX.2

STALLEDI

UEINTX.1
STALLEDE

UEIENX.1

TXINI

UEINTX.0
TXINE

UEIENX.0

Bit 7 6 5 4 3 2 1 0

- - - - - LSM RMWKUP DETACH UDCON

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 1

274

7593L–AVR–09/12

AT90USB64/128

• 7-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 2 - LSM - USB Device Low Speed Mode selection

When configured USB is configured in device mode, this bit allows to select the USB the USB

Low Speed or Full Speed Mod.

Clear to select full speed mode (D+ internal pull-up will be activate with the ATTACH bit will be

set) .

Set to select low speed mode (D- internal pull-up will be activate with the ATTACH bit will be

set). This bit has no effect when the USB interface is configured in HOST mode.

• 1- RMWKUP - Remote Wake-up bit

Set to send an “upstream-resume” to the host for a remote wake-up (the SUSPI bit must be set).

Cleared by hardware when signalling finished. Clearing by software has no effect.

See Section 23.10, page 266 for more details.

• 0 - DETACH - Detach bit

Set to physically detach de device (disconnect internal pull-up on D+ or D-).

Clear to reconnect the device. See Section 23.9, page 265 for more details.

• 7 - Reserved

The value read from this bits is always 0. Do not set this bit.

• 6 - UPRSMI - Upstream Resume Interrupt flag

Set by hardware when the USB controller is sending a resume signal called “Upstream

Resume”. This triggers an USB interrupt if UPRSME is set.

Shall be cleared by software (USB clocks must be enabled before). Setting by software has no

effect.

• 5 - EORSMI - End Of Resume Interrupt flag

Set by hardware when the USB controller detects a good “End Of Resume” signal initiated by

the host. This triggers an USB interrupt if EORSME is set.

Shall be cleared by software. Setting by software has no effect.

• 4 - WAKEUPI - Wake-up CPU Interrupt flag

Set by hardware when the USB controller is re-activated by a filtered non-idle signal from the

lines (not by an upstream resume). This triggers an interrupt if WAKEUPE is set. This interrupt

should be enable only to wake up the CPU core from power down mode.

Shall be cleared by software (USB clock inputs must be enabled before). Setting by software

has no effect.

See Section 23.8, page 265 for more details.

Bit 7 6 5 4 3 2 1 0

- UPRSMI EORSMI WAKEUPI EORSTI SOFI - SUSPI UDINT

Read/write

Initial value 0 0 0 0 0 0 0 0

275

7593L–AVR–09/12

AT90USB64/128

• 3 - EORSTI - End Of Reset Interrupt flag

Set by hardware when an “End Of Reset” has been detected by the USB controller. This triggers

an USB interrupt if EORSTE is set.

Shall be cleared by software. Setting by software has no effect.

• 2 - SOFI - Start Of Frame Interrupt flag

Set by hardware when an USB “Start Of Frame” PID (SOF) has been detected (every 1ms). This

triggers an USB interrupt if SOFE is set.

• 1 - Reserved

The value read from this bits is always 0. Do not set this bit

• 0 - SUSPI - Suspend Interrupt flag

Set by hardware when an USB “Suspend” ‘idle bus for three frame periods: a J state for 3ms) is
detected. This triggers an USB interrupt if SUSPE is set.

Shall be cleared by software. Setting by software has no effect.

See Section 23.8, page 265 for more details.

The interrupt bits are set even if their corresponding ‘Enable’ bits is not set.

• 7 - Reserved

The value read from this bits is always 0. Do not set this bit.

• 6 - UPRSME - Upstream Resume Interrupt Enable bit

Set to enable the UPRSMI interrupt.

Clear to disable the UPRSMI interrupt.

• 5 - EORSME - End Of Resume Interrupt Enable bit

Set to enable the EORSMI interrupt.

Clear to disable the EORSMI interrupt.

• 4 - WAKEUPE - Wake-up CPU Interrupt Enable bit

Set to enable the WAKEUPI interrupt. For correct interrupt handle execution, this interrupt

should be enable only before entering power-down mode.

Clear to disable the WAKEUPI interrupt.

• 3 - EORSTE - End Of Reset Interrupt Enable bit

Set to enable the EORSTI interrupt. This bit is set after a reset.

Clear to disable the EORSTI interrupt.

• 2 - SOFE - Start Of Frame Interrupt Enable bit

Set to enable the SOFI interrupt.

Clear to disable the SOFI interrupt.

Bit 7 6 5 4 3 2 1 0

- UPRSME EORSME WAKEUPE EORSTE SOFE - SUSPE UDIEN

Read/write

Initial value 0 0 0 0 0 0 0 0

276

7593L–AVR–09/12

AT90USB64/128

• 1 - Reserved

The value read from this bits is always 0. Do not set this bit

• 0 - SUSPE - Suspend Interrupt Enable Bit

Set to enable the SUSPI interrupt.

Clear to disable the SUSPI interrupt.

• 7 - ADDEN - Address Enable Bit

Set to activate the UADD (USB address).

Cleared by hardware. Clearing by software has no effect.

See Section 23.7, page 264 for more details.

• 6-0 - UADD6:0 - USB Address Bits

Load by software to configure the device address.

• 7-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 2-0 - FNUM10:8 - Frame Number Upper Value

Set by hardware. These bits are the three MSB of the 11-bits Frame Number information. They

are provided in the last received SOF packet. FNUM is updated if a corrupted SOF is received.

• Frame Number Lower Value

Set by hardware. These bits are the eight LSB of the 11-bits Frame Number information.

• 7-5 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 4 - FNCERR -Frame Number CRC Error flag

Set by hardware when a corrupted Frame Number in start of frame packet is received.

This bit and the SOFI interrupt are updated at the same time.

Bit 7 6 5 4 3 2 1 0

ADDEN UADD6:0 UDADDR

Read/write W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - - - - FNUM10:8 UDFNUMH

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

FNUM7:0 UDFNUML

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - - FNCERR - - - - UDMFN

Read/write R

Initial value 0 0 0 0 0 0 0 0

277

7593L–AVR–09/12

AT90USB64/128

• 3-0 - Reserved

The value read from these bits is always 0. Do not set these bits.

23.18.2 USB device endpoint registers

• 7-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 2-0 - EPNUM2:0 Endpoint Number bits

Load by software to select the number of the endpoint which shall be accessed by the CPU. See

Section 23.5, page 263 for more details.

EPNUM = 111b is forbidden.

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 6-0 - EPRST6:0 - Endpoint FIFO Reset bits

Set to reset the selected endpoint FIFO prior to any other operation, upon hardware reset or

when an USB bus reset has been received. See Section 23.3, page 262 for more information

Then, clear by software to complete the reset operation and start using the endpoint.

• 7-6 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 5 - STALLRQ - STALL Request Handshake bit

Set to request a STALL answer to the host for the next handshake.

Cleared by hardware when a new SETUP is received. Clearing by software has no effect.

See Section 23.11, page 266 for more details.

• 4 - STALLRQC - STALL Request Clear Handshake bit

Set to disable the STALL handshake mechanism.

Cleared by hardware immediately after the set. Clearing by software has no effect.

See Section 23.11, page 266 for more details.

Bit 7 6 5 4 3 2 1 0

- - - - - EPNUM2:0 UENUM

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- EPRST6 EPRST5 EPRST4 EPRST3 EPRST2 EPRST1 EPRST0 UERST

Read/write R R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - STALLRQ STALLRQC RSTDT - - EPEN UECONX

Read/write R R W W W R R R/W

Initial value 0 0 0 0 0 0 0 0

278

7593L–AVR–09/12

AT90USB64/128

• RSTDT - Reset Data Toggle bit

Set to automatically clear the data toggle sequence:

For OUT endpoint: the next received packet will have the data toggle 0.

For IN endpoint: the next packet to be sent will have the data toggle 0.

Cleared by hardware instantaneously. The firmware does not have to wait that the bit is cleared.

Clearing by software has no effect.

• 2 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 1 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 0 - EPEN - Endpoint Enable bit

Set to enable the endpoint according to the device configuration. Endpoint 0 shall always be

enabled after a hardware or USB reset and participate in the device configuration.

Clear this bit to disable the endpoint. See Section 23.6, page 263 for more details.

• 7-6 - EPTYPE1:0 - Endpoint Type bits

Set this bit according to the endpoint configuration:

00b: Control10b: Bulk

01b: Isochronous11b: Interrupt

• 5-4 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 3-2 - Reserved for test purpose

The value read from these bits is always 0. Do not set these bits.

• 1 - Reserved

The value read from this bits is always 0. Do not set this bit.

• 0 - EPDIR - Endpoint Direction bit

Set to configure an IN direction for bulk, interrupt or isochronous endpoints.

Clear to configure an OUT direction for bulk, interrupt, isochronous or control endpoints.

Bit 7 6 5 4 3 2 1 0

EPTYPE1:0 - - - - - EPDIR UECFG0X

Read/write R/W R/W R R R R R R/W

Initial value 0 0 0 0 0 0 0 0

279

7593L–AVR–09/12

AT90USB64/128

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 6-4 - EPSIZE2:0 - Endpoint Size bits

Set this bit according to the endpoint size:

000b: 8 bytes 100b: 128 bytes (only for endpoint 1)

001b: 16 bytes 101b: 256 bytes (only for endpoint 1)

010b: 32 bytes 110b: Reserved. Do not use this configuration

011b: 64 bytes 111b: Reserved. Do not use this configuration

• 3-2 - EPBK1:0 - Endpoint Bank bits

Set this field according to the endpoint size:

00b: One bank

01b: Double bank

1xb: Reserved. Do not use this configuration

• 1 - ALLOC - Endpoint Allocation bit

Set this bit to allocate the endpoint memory.

Clear to free the endpoint memory.

See Section 23.6, page 263 for more details.

• 0 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 7 - CFGOK - Configuration Status flag

Set by hardware when the endpoint X size parameter (EPSIZE) and the bank parametrization

(EPBK) are correct compared to the max FIFO capacity and the max number of allowed bank.

This bit is updated when the bit ALLOC is set.

If this bit is cleared, the user should reprogram the UECFG1X register with correct EPSIZE and

EPBK values.

Bit 7 6 5 4 3 2 1 0

- EPSIZE2:0 EPBK1:0 ALLOC - UECFG1X

Read/write R R/W R/W R/W R/W R/W R/W R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

CFGOK OVERFI UNDERFI - DTSEQ1:0 NBUSYBK1:0 UESTA0X

Read/write R R/W R/W R/W R R R R

Initial value 0 0 0 0 0 0 0 0

280

7593L–AVR–09/12

AT90USB64/128

• 6 - OVERFI - Overflow Error Interrupt flag

Set by hardware when an overflow error occurs in an isochronous endpoint. An interrupt

(EPINTx) is triggered (if enabled).

See Section 23.15, page 271 for more details.

Shall be cleared by software. Setting by software has no effect.

• 5 - UNDERFI - Flow Error Interrupt flag

Set by hardware when an underflow error occurs in an isochronous endpoint. An interrupt

(EPINTx) is triggered (if enabled).

See Section 23.15, page 271 for more details.

Shall be cleared by software. Setting by software has no effect.

• 4 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 3-2 - DTSEQ1:0 - Data Toggle Sequencing flag

Set by hardware to indicate the PID data of the current bank:

00b Data0

01b Data1

1xb Reserved

For OUT transfer, this value indicates the last data toggle received on the current bank.

For IN transfer, it indicates the Toggle that will be used for the next packet to be sent. This is not

relative to the current bank.

• 1-0 - NBUSYBK1:0 - Busy Bank flag

Set by hardware to indicate the number of busy bank.

For IN endpoint, it indicates the number of busy bank(s), filled by the user, ready for IN transfer.

For OUT endpoint, it indicates the number of busy bank(s) filled by OUT transaction from the

host.

00b All banks are free

01b One busy bank

10b Two busy banks

11b Reserved

• 7-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

Bit 7 6 5 4 3 2 1 0

- - - - - CTRLDIR CURRBK1:0 UESTA1X

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

281

7593L–AVR–09/12

AT90USB64/128

• 2 - CTRLDIR - Control Direction (flag, and bit for debug purpose)

Set by hardware after a SETUP packet, and gives the direction of the following packet:

- 1 for IN endpoint

- 0 for OUT endpoint

Can not be set or cleared by software.

• 1-0 - CURRBK1:0 - Current Bank (all endpoints except Control endpoint) flag

Set by hardware to indicate the number of the current bank:

00b Bank0

01b Bank1

1xb Reserved

Can not be set or cleared by software.

• 7 - FIFOCON - FIFO Control bit

For OUT and SETUP Endpoint:

Set by hardware when a new OUT message is stored in the current bank, at the same time than

RXOUT or RXSTP.

Clear to free the current bank and to switch to the following bank. Setting by software has no

effect.

For IN Endpoint:

Set by hardware when the current bank is free, at the same time than TXIN.

Clear to send the FIFO data and to switch the bank. Setting by software has no effect.

• 6 - NAKINI - NAK IN Received Interrupt flag

Set by hardware when a NAK handshake has been sent in response of a IN request from the

host. This triggers an USB interrupt if NAKINE is sent.

Shall be cleared by software. Setting by software has no effect.

• 5 - RWAL - Read/Write Allowed flag

Set by hardware to signal:

- for an IN endpoint: the current bank is not full, that is, the firmware can push data into the FIFO,

- for an OUT endpoint: the current bank is not empty, that is, the firmware can read data from the

FIFO.

The bit is never set if STALLRQ is set, or in case of error.

Cleared by hardware otherwise.

This bit shall not be used for the control endpoint.

Bit 7 6 5 4 3 2 1 0

FIFOCON NAKINI RWAL NAKOUTI RXSTPI RXOUTI STALLEDI TXINI UEINTX

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

282

7593L–AVR–09/12

AT90USB64/128

• 4 - NAKOUTI - NAK OUT Received Interrupt flag

Set by hardware when a NAK handshake has been sent in response of a OUT/PING request

from the host. This triggers an USB interrupt if NAKOUTE is sent.

Shall be cleared by software. Setting by software has no effect.

• 3 - RXSTPI - Received SETUP Interrupt flag

Set by hardware to signal that the current bank contains a new valid SETUP packet. An inter-

rupt (EPINTx) is triggered (if enabled).

Shall be cleared by software to handshake the interrupt. Setting by software has no effect.

This bit is inactive (cleared) if the endpoint is an IN endpoint.

• 2 - RXOUTI / KILLBK - Received OUT Data Interrupt flag

Set by hardware to signal that the current bank contains a new packet. An interrupt (EPINTx) is

triggered (if enabled).

Shall be cleared by software to handshake the interrupt. Setting by software has no effect.

Kill Bank IN bit

Set this bit to kill the last written bank.

Cleared by hardware when the bank is killed. Clearing by software has no effect.

See page 271 for more details on the Abort.

• 1 - STALLEDI - STALLEDI Interrupt flag

Set by hardware to signal that a STALL handshake has been sent, or that a CRC error has been

detected in a OUT isochronous endpoint.

Shall be cleared by software. Setting by software has no effect.

• 0 - TXINI - Transmitter Ready Interrupt flag

Set by hardware to signal that the current bank is free and can be filled. An interrupt (EPINTx) is

triggered (if enabled).

Shall be cleared by software to handshake the interrupt. Setting by software has no effect.

This bit is inactive (cleared) if the endpoint is an OUT endpoint.

• 7 - FLERRE - Flow Error Interrupt Enable flag

Set to enable an endpoint interrupt (EPINTx) when OVERFI or UNDERFI are sent.

Clear to disable an endpoint interrupt (EPINTx) when OVERFI or UNDERFI are sent.

• 6 - NAKINE - NAK IN Interrupt Enable bit

Set to enable an endpoint interrupt (EPINTx) when NAKINI is set.

Clear to disable an endpoint interrupt (EPINTx) when NAKINI is set.

Bit 7 6 5 4 3 2 1 0

FLERRE NAKINE - NAKOUTE RXSTPE RXOUTE STALLEDE TXINE UEIENX

Read/write R/W R/W R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

283

7593L–AVR–09/12

AT90USB64/128

• 5 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 4 - NAKOUTE - NAK OUT Interrupt Enable bit

Set to enable an endpoint interrupt (EPINTx) when NAKOUTI is set.

Clear to disable an endpoint interrupt (EPINTx) when NAKOUTI is set.

• 3 - RXSTPE - Received SETUP Interrupt Enable flag

Set to enable an endpoint interrupt (EPINTx) when RXSTPI is sent.

Clear to disable an endpoint interrupt (EPINTx) when RXSTPI is sent.

• 2 - RXOUTE - Received OUT Data Interrupt Enable flag

Set to enable an endpoint interrupt (EPINTx) when RXOUTI is sent.

Clear to disable an endpoint interrupt (EPINTx) when RXOUTI is sent.

• 1 - STALLEDE - Stalled Interrupt Enable flag

Set to enable an endpoint interrupt (EPINTx) when STALLEDI is sent.

Clear to disable an endpoint interrupt (EPINTx) when STALLEDI is sent.

• 0 - TXINE - Transmitter Ready Interrupt Enable flag

Set to enable an endpoint interrupt (EPINTx) when TXINI is sent.

Clear to disable an endpoint interrupt (EPINTx) when TXINI is sent.

• 7-0 - DAT7:0 -Data bits

Set by the software to read/write a byte from/to the endpoint FIFO selected by EPNUM.

• 7-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 2-0 - BYCT10:8 - Byte count (high) bits

Set by hardware. This field is the MSB of the byte count of the FIFO endpoint. The LSB part is

provided by the UEBCLX register.

Bit 7 6 5 4 3 2 1 0

DAT D7 DAT D6 DAT D5 DAT D4 DAT D3 DAT D2 DAT D1 DAT D0 UEDATX

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - - - - BYCT D10 BYCT D9 BYCT D8 UEBCHX

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

284

7593L–AVR–09/12

AT90USB64/128

• 7-0 - BYCT7:0 - Byte Count (low) bits

Set by the hardware. BYCT10:0 is:

- (for IN endpoint) increased after each writing into the endpoint and decremented after each

byte sent,

- (for OUT endpoint) increased after each byte sent by the host, and decremented after each

byte read by the software.

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 6-0 - EPINT6:0 - Endpoint Interrupts bits

Set by hardware when an interrupt is triggered by the UEINTX register and if the corresponding

endpoint interrupt enable bit is set.

Cleared by hardware when the interrupt source is served.

Bit 7 6 5 4 3 2 1 0

BYCT D7 BYCT D6 BYCT D5 BYCT D4 BYCT D3 BYCT D2 BYCT D1 BYCT D0 UEBCLX

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- EPINT D6 EPINT D5 EPINT D4 EPINT D3 EPINT D2 EPINT D1 EPINT D0 UEINT

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

285

7593L–AVR–09/12

AT90USB64/128

24. USB host operating modes
This mode is available only on Atmel AT90USB647/1287 products.

24.1 Pipe description

For the USB Host controller, the term of Pipe is used instead of Endpoint for the USB Device

controller. A Host Pipe corresponds to a Device Endpoint, as described in the USB specification.

Figure 24-1. Pipes and endpoints in a USB system.

In the USB Host controller, a Pipe will be associated to a Device Endpoint, considering the

Device Configuration Descriptors.

24.2 Detach

The reset value of the DETACH bit is 1. Thus, the firmware has the responsibility of clearing this

bit before switching to the Host mode (HOST set).

24.3 Power-on and reset

Figure 24-2 explains the USB host controller main states on power-on.

Figure 24-2. USB host controller states after reset.

Host

Ready

Host

Idle

Device

disconnection

<any

other

state>

Device

connection

Clock stopped

Macro off

Device

disconnection

Host

Suspend
SOFE=1

SOFE=0

286

7593L–AVR–09/12

AT90USB64/128

USB host controller state after an hardware reset is ‘Reset’. When the USB controller is enabled

and the USB Host controller is selected, the USB controller is in ‘Idle’ state. In this state, the

USB Host controller waits for the Device connection, with a minimum power consumption.

The USB Pad should be in Idle mode. The macro does not need to have the PLL activated to

enter in ‘Host Ready’ state.

The Host controller enters in Suspend state when the USB bus is in Suspend state, that is, when

the Host controller doesn’t generate the Start of Frame. In this state, the USB consumption is

minimum. The Host controller exits to the Suspend state when starting to generate the SOF over

the USB line.

24.4 Device detection

A Device is detected by the USB controller when the USB bus if different from D+ and D- low. In

other words, when the USB Host Controller detects the Device pull-up on the D+ line. To enable

this detection, the Host Controller has to provide the Vbus power supply to the Device.

The Device Disconnection is detected by the USB Host controller when the USB Idle correspond

to D+ and D- low on the USB line.

24.5 Pipe selection

Prior to any operation performed by the CPU, the Pipe must first be selected. This is done by

setting PNUM2:0 bits (UPNUM register) with the Pipe number which will be managed by the

CPU.

The CPU can then access to the various Pipe registers and data.

24.6 Pipe configuration

The following flow (see Figure 24-3 on page 287) must be respected in order to activate a Pipe.

287

7593L–AVR–09/12

AT90USB64/128

Figure 24-3. Pipe activation flow.

Once the Pipe is activated (EPEN set) and, the hardware is ready to send requests to the

Device.

When configured (CFGOK = 1), only the Pipe Token (PTOKEN) and the polling interval for Inter-

rupt pipe can be modified.

A Control type pipe supports only one bank. Any other value will lead to a configuration error

(CFGOK = 0).

A clear of PEN will reset the configuration of the Pipe. All the corresponding Pipe registers are

reset to there reset values. Please refer to “Memory management” on page 252 for more details.

Note: The firmware has to configure the Default Control Pipe with the following parameters:

• Type: Control

• Token: SETUP

• Data bank: 1

• Size: 64 Bytes

The firmware asks for eight bytes of the Device Descriptor sending a GET_DESCRIPTOR

request. These bytes contains the MaxPacketSize of the Device default control endpoint and the

firmware re-configures the size of the Default Control Pipe with this size parameter.

Pipe

Activ ation

UPCONX
PENABLE=1

UPCFG0X
PTYPE

PTOKEN

PEPNUM

CFGOK=1

ERROR

No

Yes

UPCFG2X
INTFRQ

(interrupt only)

Pipe activ ated

and f reezed

UPCFG1X
PSIZE
PBK

CFGMEM

Enable the pipe

Select the Pipe type:
* Type (Control, Bulk, Interrupt)
* Token (IN, OUT, SETUP)
* Endpoint number

Configure the Pipe memory:
* Pipe size
* Number of banks

Configure the polling interval
for Interrupt pipe

288

7593L–AVR–09/12

AT90USB64/128

24.7 USB reset

The USB controller sends a USB Reset when the firmware set the RESET bit. The RSTI bit is

set by hardware when the USB Reset has been sent. This triggers an interrupt if the RSTE has

been set.

When a USB Reset has been sent, all the Pipe configuration and the memory allocation are

reset. The General Host interrupt enable register is left unchanged.

If the bus was previously in suspend mode (SOFEN = 0), the USB controller automatically

switches to the resume mode (HWUPI is set) and the SOFEN bit is set by hardware in order to

generate SOF immediately after the USB Reset.

24.8 Address setup

Once the Device has answer to the first Host requests with the default address (0), the Host

assigns a new address to the device. The Host controller has to send a USB reset to the device

and perform a SET ADDRESS control request, with the new address to be used by the Device.

This control request ended, the firmware write the new address into the UHADDR register. All

following requests, on every Pipes, will be performed using this new address.

When the Host controller send a USB reset, the UHADDR register is reset by hardware and the

following Host requests will be performed using the default address (0).

24.9 Remote wake-up detection

The Host Controller enters in Suspend mode when clearing the SOFEN bit. No more Start Of

Frame is sent on the USB bus and the USB Device enters in Suspend mode 3ms later.

The Device awakes the Host Controller by sending an Upstream Resume (Remote Wake-Up

feature). The Host Controller detects a non-idle state on the USB bus and set the HWUPI bit. If

the non-Idle correspond to an Upstream Resume (K state), the RXRSMI bit is set by hardware.

The firmware has to generate a downstream resume within 1ms and for at least 20ms by setting

the RESUME bit.

Once the downstream Resume has been generated, the SOFEN bit is automatically set by hard-

ware in order to generate SOF immediately after the USB resume.

24.10 USB pipe reset

The firmware can reset a Pipe using the pipe reset register. The configuration of the pipe and

the data toggle remains unchanged. Only the bank management and the status bits are reset to

their initial values.

To completely reset a Pipe, the firmware has to disable and then enable the pipe.

24.11 Pipe data access

In order to read or to write into the Pipe Fifo, the CPU selects the Pipe number with the UPNUM

register and performs read or write action on the UPDATX register.

Host

Ready

Host

Suspend

SOFE=1

or HWUP=1

SOFE=0

289

7593L–AVR–09/12

AT90USB64/128

24.12 Control pipe management

A Control transaction is composed of three phases:

• SETUP

• Data (IN or OUT)

• Status (OUT or IN)

The firmware has to change the Token for each phase.

The initial data toggle is set for the corresponding token (ONLY for Control Pipe):

• SETUP: Data0

• OUT: Data1

• IN: Data1 (expected data toggle)

24.13 OUT pipe management

The Pipe must be configured and not frozen first.

Note: if the firmware decides to switch to suspend mode (clear SOFEN) even if a bank is ready

to be sent, the USB controller will automatically exit from Suspend mode and the bank will be

sent.

The TXOUT bit is set by hardware when the current bank becomes free. This triggers an inter-

rupt if the TXOUTE bit is set. The FIFOCON bit is set at the same time. The CPU writes into the

FIFO and clears the FIFOCON bit to allow the USB controller to send the data.

If the OUT Pipe is composed of multiple banks, this also switches to the next data bank. The

TXOUT and FIFOCON bits are automatically updated by hardware regarding the status of the

next bank.

290

7593L–AVR–09/12

AT90USB64/128

Figure 24-4. Example with OUT data banks.

24.14 IN Pipe management

The Pipe must be configured first.

When the Host requires data from the device, the firmware has to determine first the IN mode to

use using the INMODE bit:

• INMODE = 0. The INRQX register is taken in account. The Host controller will perform

(INRQX+1) IN requests on the selected Pipe before freezing the Pipe. This mode avoids to

have extra IN requests on a Pipe

• INMODE = 1. The USB controller will perform infinite IN request until the firmware freezes the

Pipe

The IN request generation will start when the firmware clear the PFREEZE bit.

Each time the current bank is full, the RXIN and the FIFOCON bits are set. This triggers an inter-

rupt if the RXINE bit is set. The firmware can acknowledge the USB interrupt by clearing the

RXIN bit. The Firmware read the data and clear the FIFOCON bit in order to free the current

OUT
DATA

(bank 0)
ACK

TXOUT

FIFOCON

HW

Example with 1 OUT data bank

write data from CPU

BANK 0

Example with 2 OUT data banks

SW

SW SW

SW

OUT

OUT
DATA

(bank 0)
ACK

TXOUT

FIFOCON

write data from CPU

BANK 0

SW

SW SW

SW

OUT
DATA

(bank 1)
ACK

write data from CPU

BANK 0

write data from CPU

BANK 1

SW

HW

write data from CPU

BANK0

Example with 2 OUT data banks

OUT
DATA

(bank 0)
ACK

TXOUT

FIFOCON
write data from CPU

BANK 0

SW

SW SW

SWwrite data from CPU

BANK 1

SW

HW

write data from CPU

BANK0

OUT
DATA

(bank 1)
ACK

291

7593L–AVR–09/12

AT90USB64/128

bank. If the IN Pipe is composed of multiple banks, clearing the FIFOCON bit will switch to the

next bank. The RXIN and FIFOCON bits are then updated by hardware in accordance with the

status of the new bank.

Figure 24-5. Example with IN data banks.

24.14.1 CRC error (isochronous only)

A CRC error can occur during IN stage if the USB controller detects a bad received packet. In

this situation, the STALLEDI/CRCERRI interrupt is triggered. This does not prevent the RXINI

interrupt from being triggered.

24.15 Interrupt system

Figure 24-6. USB host controller interrupt system.

IN
DATA

(to bank 0)
ACK

RXIN

FIFOCON

HW

IN
DATA

(to bank 0)
ACK

HW

SW

SW

SW

Example with 1 IN data bank

read data from CPU

BANK 0

IN
DATA

(to bank 0)
ACK

RXIN

FIFOCON

HW

IN
DATA

(to bank 1)
ACK

SW

SW

Example with 2 IN data banks

read data from CPU

BANK 0

HW

SW

read data from CPU

BANK 0

read data from CPU

BANK 1

HWUPE

UHIEN.6

HWUPI

UHINT.6

HSOFI

UHINT.5
HSOFE

UHIEN.5

RXRSMI

UHINT.4
RXRSME

UHIEN.4

RSMEDI

UHINT.3
RSMEDE

UHIEN.3

RSTI

UHINT.2
RSTE

UHIEN.2

DDISCI

UHINT.1
DDISCE

UHIEN.1

DCONNI

UHINT.0
DCONNE

UHIEN.0

USB host

 interrupt

292

7593L–AVR–09/12

AT90USB64/128

Figure 24-7. USB device controller pipe interrupt system.

24.16 Registers

24.16.1 General USB host registers

• 7-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 2 - RESUME - Send USB Resume

Set this bit to generate a USB Resume on the USB bus.

Cleared by hardware when the USB Resume has been sent. Clearing by software has no effect.

This bit should be set only when the start of frame generation is enable (SOFEN bit set).

• 1 - RESET - Send USB Reset

Set this bit to generate a USB Reset on the USB bus.

Cleared by hardware when the USB Reset has been sent. Clearing by software has no effect.

Refer to the USB reset section for more details.

• 0 - SOFEN - Start Of Frame Generation Enable

Set this bit to generate SOF on the USB bus in full speed mode and keep-alive in low speed

mode.

Clear this bit to disable the SOF generation and to leave the USB bus in Idle state.

FLERRE

UPIEN.7

UNDERFI

UPSTAX.5

OVERFI

UPSTAX.6

NAKEDI

UPINTX.6
NAKEDE

UPIEN.6

PERRI

UPINTX.4
PERRE

UPIEN.4

TXSTPI

UPINTX.3
TXSTPE

UPIEN.3

TXOUTI

UPINTX.2
TXOUTE

UPIEN.2

RXSTALLI

UPINTX.1
RXSTALLE

UPIEN.1

RXINI

UPINTX.0
RXINE

UPIEN.0

FLERRE

UPIEN.7

PIPE 0

PIPE 1

PIPE 2

PIPE 3

PIPE 4

PIPE 5

Pipe interrupt

PIPE 6

Bit 7 6 5 4 3 2 1 0

- - - - - RESUME RESET SOFEN UHCON

Read/write R R R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

293

7593L–AVR–09/12

AT90USB64/128

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 6 - HWUPI - Host Wake-Up Interrupt

Set by hardware when a non-idle state is detected on the USB bus.This interrupt should be

enable only to wake up the CPU core from power down mode.

Shall be clear by software to acknowledge the interrupt. Setting by software has no effect.

• 5 - HSOFI - Host Start Of Frame Interrupt

Set by hardware when a SOF is issued by the Host controller. This triggers a USB interrupt

when HSOFE is set. When using the host controller in low speed mode, this bit is also set when

a keep-alive is sent.

Shall be cleared by software to acknowledge the interrupt. Setting by software has no effect.

• 4 - RXRSMI - Upstream Resume Received Interrupt

Set by hardware when an Upstream Resume has been received from the Device.

Shall be cleared by software. Setting by software has no effect.

• 3 - RSMEDI - Downstream Resume Sent Interrupt

Set by hardware when a Downstream Resume has been sent to the Device.

Shall be cleared by software. Setting by software has no effect.

• 2 - RSTI - USB Reset Sent Interrupt

Set by hardware when a USB Reset has been sent to the Device.

Shall be cleared by software. Setting by software has no effect.

• 1 - DDISCI - Device Disconnection Interrupt

Set by hardware when the device has been removed from the USB bus.

Shall be cleared by software. Setting by software has no effect.

• 0 - DCONNI - Device Connection Interrupt

Set by hardware when a new device has been connected to the USB bus.

Shall be cleared by software. Setting by software has no effect.

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

Bit 7 6 5 4 3 2 1 0

- HWUPI HSOFI RXRSMI RSMEDI RSTI DDISCI DCONNI UHINT

Read/write R R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

HWUPE HSOFE RXRSME RSMEDE RSTE DDISCE DCONNE UHIEN

Read/write R R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

294

7593L–AVR–09/12

AT90USB64/128

• 6 - HWUPE - Host Wake-Up Interrupt Enable

Set this bit to enable HWUP interrupt.For correct interrupt handle execution, this interrupt should

be enable only before entering power-down mode.

Clear this bit to disable HWUP interrupt.

• 5 - HSOFE - Host Start Of frame Interrupt Enable

Set this bit to enable HSOF interrupt.

Clear this bit to disable HSOF interrupt.

• 4 - RXRSME -Upstream Resume Received Interrupt Enable

Set this bit to enable the RXRSMI interrupt.

Clear this bit to disable the RXRSMI interrupt.

• 3 - RSMEDE - Downstream Resume Sent Interrupt Enable

Set this bit to enable the RSMEDI interrupt.

Clear this bit to disable the RSMEDI interrupt.

• 2 - RSTE - USB Reset Sent Interrupt Enable

Set this bit to enable the RSTI interrupt.

Clear this bit to disable the RSTI interrupt.

• 1 - DDISCE - Device Disconnection Interrupt Enable

Set this bit to enable the DDISCI interrupt.

Clear this bit to disable the DDISCI interrupt.

• 0 - DCONNE - Device Connection Interrupt Enable

Set this bit to enable the DCONNI interrupt.

Clear this bit to disable the DCONNI interrupt.

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 6-0 - HADDR6:0 - USB Host Address

These bits contain the address of the USB Device.

Bit 7 6 5 4 3 2 1 0

HADDR6 HADDR5 HADDR4 HADDR3 HADDR2 HADDR1 HADDR0 HADDR6 UHADDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

295

7593L–AVR–09/12

AT90USB64/128

• 7-4 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 3-0 - FNUM10:8 - Frame Number

The value contained in this register is the current SOF number.

This value can be modified by software.

• 7-0 - FNUM7:0 - Frame Number

The value contained in this register is the current SOF number.

This value can be modified by software.

• 7-0 - FLEN7:0 - Frame Length

The value contained the data frame length transmited.

24.16.2 USB Host Pipe registers

• 7-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 2-0 - PNUM2:0 - Pipe Number

Select the pipe using this register. The USB Host registers ended by a X correspond then to this

number.

This number is used for the USB controller following the value of the PNUMD bit.

Bit 7 6 5 4 3 2 1 0

- - - - - FNUM10 FNUM9 FNUM8 UHFNUMH

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

FNUM7 FNUM6 FNUM5 FNUM4 FNUM3 FNUM2 FNUM1 FNUM0 UHFNUML

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

FLEN7 FLEN6 FLEN5 FLEN4 FLEN3 FLEN2 FLEN1 FLEN0 UHFLEN

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PNUM2 PNUM1 PNUM0 UPNUM

Read/write RW RW RW

Initial value 0 0 0 0 0 0 0 0

296

7593L–AVR–09/12

AT90USB64/128

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 6 - P6RST - Pipe 6 Reset

Set this bit to 1 and reset this bit to 0 to reset the Pipe 6.

• 5 - P5RST - Pipe 5 Reset

Set this bit to 1 and reset this bit to 0 to reset the Pipe 5.

• 4 - P4RST - Pipe 4 Reset

Set this bit to 1 and reset this bit to 0 to reset the Pipe 4.

• 3 - P3RST - Pipe 3 Reset

Set this bit to 1 and reset this bit to 0 to reset the Pipe 3.

• 2 - P2RST - Pipe 2 Reset

Set this bit to 1 and reset this bit to 0 to reset the Pipe 2.

• 1 - P1RST - Pipe 1 Reset

Set this bit to 1 and reset this bit to 0 to reset the Pipe 1.

• 0 - P0RST - Pipe 0 Reset

Set this bit to 1 and reset this bit to 0 to reset the Pipe 0.

• 7 - Reserved

The value read from this bit is always 0. Do not set this bit.

• 6 - PFREEZE - Pipe Freeze

Set this bit to Freeze the Pipe requests generation.

Clear this bit to enable the Pipe request generation.

This bit is set by hardware when:

- the pipe is not configured

- a STALL handshake has been received on this Pipe

- An error occurs on the Pipe (UPINTX.PERRI = 1)

- (INRQ+1) In requests have been processed

This bit is set at 1 by hardware after a Pipe reset or a Pipe enable.

Bit 7 6 5 4 3 2 1 0

- P6RST P5RST P4RST P3RST P2RST P1RST P0RST UPRST

Read/write RW RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- PFREEZE INMODE - RSTDT - - PEN UPCONX

Read/write RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

297

7593L–AVR–09/12

AT90USB64/128

• 5 - INMODE - IN Request mode

Set this bit to allow the USB controller to perform infinite IN requests when the Pipe is not frozen.

Clear this bit to perform a pre-defined number of IN requests. This number is stored in the UIN-

RQX register.

• 4 - Reserved

The value read from this bit is always 0. Do not set this bit.

• 3 - RSTDT - Reset Data Toggle

Set this bit to reset the Data Toggle to its initial value for the current Pipe.

Cleared by hardware when proceed. Clearing by software has no effect.

• 2 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 1 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 0 - PEN - Pipe Enable

Set to enable the Pipe.

Clear to disable and set the pipe.

• 7-6 - PTYPE1:0 - Pipe Type

Select the type of the Pipe:

- 00: Control

- 01: Isochronous

- 10: Bulk

- 11: Interrupt

• 5-4 - PTOKEN1:0 - Pipe Token

Select the Token to associate to the Pipe

- 00: SETUP

- 01: IN

- 10: OUT

- 11: reserved

• 3-0 - PEPNUM3:0 - Pipe Endpoint Number

Set this field according to the Pipe configuration. Set the number of the Endpoint targeted by the

Pipe. This value is from 0 and 15.

Bit 7 6 5 4 3 2 1 0

PTYPE1 PTYPE0 PTOKEN1 PTOKEN0 PEPNUM3 PEPNUM2 PEPNUM1 PEPNUM0 UPCFG0X

Read/write RW RW RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

298

7593L–AVR–09/12

AT90USB64/128

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 6-4 - PSIZE2:0 - Pipe Size

Select the size of the Pipe:

- 000: 8 - 100: 128 (only for endpoint 1)

- 001: 16 - 101: 256 (only for endpoint 1)

- 010: 32 - 110: Reserved. Do not use this configuration.

- 011: 64 - 111: Reserved. Do not use this configuration.

• 3-2 - PBK1:0 - Pipe Bank

Select the number of bank to declare for the current Pipe.

- 00: 1 bank

- 01: 2 banks

- 10: invalid

- 11: invalid

• ALLOC - Configure Pipe Memory

Set to configure the pipe memory with the characteristics.

Clear to update the memory allocation. Refer to the Memory Management chapter for more

details.

7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 7 - INTFRQ7:0 - Interrupt Pipe Request Frequency

These bits are the maximum value in millisecond of the polling period for an Interrupt Pipe.

This value has no effect for a non-Interrupt Pipe.

Bit 7 6 5 4 3 2 1 0

- PSIZE2:0 PBK1:0 ALLOC - UPCFG1X

Read/write R RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

INTFRQ7 INTFRQ6 INTFRQ5 INTFRQ4 INTFRQ3 INTFRQ2 INTFRQ1 INTFRQ0 UPCFG2X

Read/write RW RW RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

299

7593L–AVR–09/12

AT90USB64/128

• 7 - CFGOK - Configure Pipe Memory OK

Set by hardware if the required memory configuration has been successfully performed.

Cleared by hardware when the pipe is disabled. The USB reset and the reset pipe have no effect

on the configuration of the pipe.

• 6 - OVERFI - Overflow

Set by hardware when a the current Pipe has received more data than the maximum length of

the current Pipe. An interrupt is triggered if the FLERRE bit is set.

Shall be cleared by software. Setting by software has no effect.

• 5 - UNDERFI - Underflow

Set by hardware when a transaction underflow occurs in the current isochronous or interrupt

Pipe. The Pipe can’t send the data flow required by the device. A ZLP will be sent instead. An

interrupt is triggered if the FLERRE bit is set.

Shall be cleared by software. Setting by software has no effect.

Note: the Host controller has to send a OUT packet, but the bank is empty. A ZLP will be sent

and the UNDERFI bit is set.

• 4 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 3-2 - DTSEQ1:0 - Toggle Sequencing flag

Set by hardware to indicate the PID data of the current bank:

00b Data0

01b Data1

1xb Reserved.

For OUT Pipe, this value indicates the next data toggle that will be sent. This is not relative to the

current bank.

For IN Pipe, this value indicates the last data toggle received on the current bank.

• 1-0 - NBUSYBK1:0 - Busy Bank flag

Set by hardware to indicate the number of busy bank.

For OUT Pipe, it indicates the number of busy bank(s), filled by the user, ready for OUT transfer.

For IN Pipe, it indicates the number of busy bank(s) filled by IN transaction from the Device.

00b All banks are free

01b 1 busy bank

10b 2 busy banks

11b Reserved.

Bit 7 6 5 4 3 2 1 0

CFGOK OVERFI UNDERFI - DTSEQ1:0 NBUSYBK UPSTAX

Read/write R RW RW R R R R

Initial value 0 0 0 0 0 0 0 0

300

7593L–AVR–09/12

AT90USB64/128

• 7-0 - INRQ7:0 - IN Request Number Before Freeze

Enter the number of IN transactions before the USB controller freezes the pipe. The USB con-

troller will perform (INRQ+1) IN requests before to freeze the Pipe. This counter is automatically

decreased by 1 each time a IN request has been successfully performed.

This register has no effect when the INMODE bit is set (infinite IN requests generation till the

pipe is not frozen).

• 7-6 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 5 - COUNTER1:0 - Error counter

This counter is increased by the USB controller each time an error occurs on the Pipe. When this

value reaches 3, the Pipe is automatically frozen.

Clear these bits by software.

• 4 - CRC16 - CRC16 Error

Set by hardware when a CRC16 error has been detected.

Shall be cleared by software. Setting by software has no effect.

• 3 - TIMEOUT - Time-out Error

Set by hardware when a time-out error has been detected.

Shall be cleared by software. Setting by software has no effect.

• 2 - PID - PID Error

Set by hardware when a PID error has been detected.

Shall be cleared by software. Setting by software has no effect.

• 1 - DATAPID - Data PID Error

Set by hardware when a data PID error has been detected.

Shall be cleared by software. Setting by software has no effect.

• 0 - DATATGL - Bad Data Toggle

Set by hardware when a data toggle error has been detected.

Shall be cleared by software. Setting by software has no effect.

Bit 7 6 5 4 3 2 1 0

INRQ7 INRQ6 INRQ5 INRQ4 INRQ3 INRQ2 INRQ1 INRQ0 UPINRQX

Read/write RW RW RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- COUNTER1:0 CRC16 TIMEOUT PID DATAPID DATATGL UPERRX

Read/write RW RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

301

7593L–AVR–09/12

AT90USB64/128

• 7 - FIFOCON - FIFO Control

For OUT and SETUP Pipe:

Set by hardware when the current bank is free, at the same time than TXOUT or TXSTP.

Clear to send the FIFO data and to switch the bank. Setting by software has no effect.

For IN Pipe:

Set by hardware when a new IN message is stored in the current bank, at the same time than

RXIN.

Clear to free the current bank and to switch to the following bank. Setting by software has no

effect.

• 6 - NAKEDI - NAK Handshake received

Set by hardware when a NAK has been received on the current bank of the Pipe. This triggers

an interrupt if the NAKEDE bit is set in the UPIENX register.

Shall be clear to handshake the interrupt. Setting by software has no effect.

• 5 - RWAL - Read/Write Allowed

OUT Pipe:

Set by hardware when the firmware can write a new data into the Pipe FIFO.

Cleared by hardware when the current Pipe FIFO is full.

IN Pipe:

Set by hardware when the firmware can read a new data into the Pipe FIFO.

Cleared by hardware when the current Pipe FIFO is empty.

This bit is also cleared by hardware when the RXSTALL or the PERR bit is set

• 4 - PERRI -PIPE Error

Set by hardware when an error occurs on the current bank of the Pipe. This triggers an interrupt

if the PERRE bit is set in the UPIENX register. Refers to the UPERRX register to determine the

source of the error.

Automatically cleared by hardware when the error source bit is cleared.

• 3 - TXSTPI - SETUP Bank ready

Set by hardware when the current SETUP bank is free and can be filled. This triggers an inter-

rupt if the TXSTPE bit is set in the UPIENX register.

Shall be cleared to handshake the interrupt. Setting by software has no effect.

• 2 - TXOUTI -OUT Bank ready

Set by hardware when the current OUT bank is free and can be filled. This triggers an interrupt if

the TXOUTE bit is set in the UPIENX register.

Shall be cleared to handshake the interrupt. Setting by software has no effect.

Bit 7 6 5 4 3 2 1 0

FIFOCON NAKEDI RWAL PERRI TXSTPI TXOUTI RXSTALLI RXINI UPINTX

Read/write RW RW RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

302

7593L–AVR–09/12

AT90USB64/128

• 1 - RXSTALLI / CRCERR - STALL Received / Isochronous CRC Error

Set by hardware when a STALL handshake has been received on the current bank of the Pipe.

The Pipe is automatically frozen. This triggers an interrupt if the RXSTALLE bit is set in the UPI-

ENX register.

Shall be cleared to handshake the interrupt. Setting by software has no effect.

For Isochronous Pipe:

Set by hardware when a CRC error occurs on the current bank of the Pipe. This triggers an inter-

rupt if the TXSTPE bit is set in the UPIENX register.

Shall be cleared to handshake the interrupt. Setting by software has no effect.

• 0 - RXINI - IN Data received

Set by hardware when a new USB message is stored in the current bank of the Pipe. This trig-

gers an interrupt if the RXINE bit is set in the UPIENX register.

Shall be cleared to handshake the interrupt. Setting by software has no effect.

• 7 - FLERRE - Flow Error Interrupt enable

Set to enable the OVERFI and UNDERFI interrupts.

Clear to disable the OVERFI and UNDERFI interrupts.

• 6 - NAKEDE -NAK Handshake Received Interrupt Enable

Set to enable the NAKEDI interrupt.

Clear to disable the NAKEDI interrupt.

• 5 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 4 - PERRE -PIPE Error Interrupt Enable

Set to enable the PERRI interrupt.

Clear to disable the PERRI interrupt.

• 3 - TXSTPE - SETUP Bank ready Interrupt Enable

Set to enable the TXSTPI interrupt.

Clear to disable the TXSTPI interrupt.

• 2 - TXOUTE - OUT Bank ready Interrupt Enable

Set to enable the TXOUTI interrupt.

Clear to disable the TXOUTI interrupt.

• 1 - RXSTALLE - STALL Received Interrupt Enable

Set to enable the RXSTALLI interrupt.

Clear to disable the RXSTALLI interrupt.

Bit 7 6 5 4 3 2 1 0

FLERRE NAKEDE - PERRE TXSTPE TXOUTE RXSTALLE RXINE UPIENX

Read/write RW RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

303

7593L–AVR–09/12

AT90USB64/128

• 0 - RXINE - IN Data received Interrupt Enable

Set to enable the RXINI interrupt.

Clear to disable the RXINI interrupt.

• 7-0 - PDAT7:0 - Pipe Data bits

Set by the software to read/write a byte from/to the Pipe FIFO selected by PNUM.

• 7-3 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 2-0 - PBYCT10:8 - Byte count (high) bits

Set by hardware. This field is the MSB of the byte count of the FIFO endpoint. The LSB part is

provided by the UPBCLX register.

• 7-0 - PBYCT7:0 - Byte Count (low) bits

Set by the hardware. PBYCT10:0 is:

- (for OUT Pipe) increased after each writing into the Pipe and decremented after each byte

sent,

- (for IN Pipe) increased after each byte received by the host, and decremented after each byte

read by the software.

• 7 - Reserved

The value read from these bits is always 0. Do not set these bits.

• 6-0 - PINT6:0 - Pipe Interrupts bits

Set by hardware when an interrupt is triggered by the UPINTX register and if the corresponding

endpoint interrupt enable bit is set.

Cleared by hardware when the interrupt source is served.

Bit 7 6 5 4 3 2 1 0

PDAT7 PDAT6 PDAT5 PDAT4 PDAT3 PDAT2 PDAT1 PDAT0 UPDATX

Read/write RW RW RW RW RW RW RW RW

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- - - - - PBYCT10 PBYCT9 PBYCT8 UPBCHX

Read/write R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PBYCT7 PBYCT6 PBYCT5 PBYCT4 PBYCT3 PBYCT2 PBYCT1 PBYCT0 UPBCLX

Read/write R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

- PINT6 PINT5 PINT4 PINT3 PINT2 PINT1 PINT0 UPINT

Read/write

Initial value 0 0 0 0 0 0 0 0

304

7593L–AVR–09/12

AT90USB64/128

25. Analog Comparator
The Analog Comparator compares the input values on the positive pin AIN0 and negative pin

AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin

AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger

the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate

interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-

parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is

shown in Figure 25-1.

The Power Reduction ADC bit, PRADC, in “PRR0 – Power Reduction Register 0” on page 54

must be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 25-1. Analog Comparator block diagram (2).

Notes: 1. See Table 25-2 on page 306.

2. Refer to Figure 1-1 on page 3 and Table 11-6 on page 79 for Analog Comparator pin
placement.

25.0.1 ADCSRB – ADC Control and Status Register B

• Bit 6 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the

ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written

logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed

description of this bit, see “Analog Comparator multiplexed input” on page 306.

25.0.2 ACSR – Analog Comparator Control and Status Register

ACBG

BANDGAP

REFERENCE

ADC MULTIPLEXER

OUTPUT

ACME

ADEN

(1)

Bit 7 6 5 4 3 2 1 0

– ACME – – - ADTS2 ADTS1 ADTS0 ADCSRB

Read/write R R/W R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/write R/W R/W R R/W R/W R/W R/W R/W

Initial value 0 0 N/A 0 0 0 0 0

305

7593L–AVR–09/12

AT90USB64/128

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit

can be set at any time to turn off the Analog Comparator. This will reduce power consumption in

Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be

disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is

changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog

Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-

ator. See “Internal voltage reference” on page 62.

• Bit 5 – ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to ACO. The

synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined

by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set

and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-

rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-

parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-

gered by the Analog Comparator. The comparator output is in this case directly connected to the

input capture front-end logic, making the comparator utilize the noise canceler and edge select

features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection

between the Analog Comparator and the input capture function exists. To make the comparator

trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask

Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The

different settings are shown in Table 25-1.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by

clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the

bits are changed.

Table 25-1. ACIS1/ACIS0 settings.

ACIS1 ACIS0 Interrupt mode

0 0 Comparator Interrupt on Output Toggle

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge

1 1 Comparator Interrupt on Rising Output Edge

306

7593L–AVR–09/12

AT90USB64/128

25.1 Analog Comparator multiplexed input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-

parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be

switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in

ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), and MUX2..0 in

ADMUX select the input pin to replace the negative input to the Analog Comparator, as shown in

Table 25-2. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Ana-

log Comparator.

25.1.1 DIDR1 – Digital Input Disable Register 1

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-

sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is

applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-

ten logic one to reduce power consumption in the digital input buffer.

Table 25-2. Analog Comparator multiplexed input.

ACME ADEN MUX2..0 Analog Comparator negative input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

– – – – – – AIN1D AIN0D DIDR1

Read/write R R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

307

7593L–AVR–09/12

AT90USB64/128

26. ADC – Analog to Digital Converter

26.1 Features
• 10-bit resolution

• 0.5 LSB integral non-linearity

• ±2 LSB absolute accuracy

• 65 - 260µs conversion time

• Up to 15ksps at maximum resolution

• Eight multiplexed single ended input channels

• Seven differential input channels

• Optional left adjustment for ADC result readout

• 0 - VCC ADC input voltage range

• Selectable 2.56V ADC reference voltage

• Free running or single conversion mode

• ADC start conversion by auto triggering on interrupt sources

• Interrupt on ADC conversion complete

• Sleep mode noise canceler

26.2 Overview

The Atmel AT90USB64/128 features a 10-bit successive approximation ADC. The ADC is con-

nected to an 8-channel Analog Multiplexer which allows eight single-ended voltage inputs

constructed from the pins of Port F. The single-ended voltage inputs refer to 0V (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs

(ADC1, ADC0 and ADC3, ADC2) are equipped with a programmable gain stage, providing

amplification steps of 0 dB (1×), 20 dB (10×), or 46 dB (200×) on the differential input voltage

before the A/D conversion. Seven differential analog input channels share a common negative

terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1×

or 10× gain is used, 8-bit resolution can be expected. If 200× gain is used, 7-bit resolution can

be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is

held at a constant level during conversion. A block diagram of the ADC is shown in Figure 26-1

on page 308.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than ±0.3V

from VCC. See the paragraph “ADC noise canceler” on page 314 on how to connect this pin.

Internal reference voltages of nominally 2.56V or AVCC are provided on-chip. The voltage refer-

ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

308

7593L–AVR–09/12

AT90USB64/128

Figure 26-1. Analog to digital converter block schematic.

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER

SELECT (ADMUX)

ADC CTRL. & STATUS

REGISTER (ADCSRA)

ADC DATA REGISTER

(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

A
T

E

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

M
U

X
3

CONVERSION LOGIC

10-BIT DAC

+

-

SAMPLE & HOLD
COMPARATOR

INTERNAL

REFERENCE

MUX DECODER

M
U

X
4

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

F
S

0

R
E

F
S

1

A
D

L
A

R

+

-

C
H

A
N

N
E

L
 S

E
L
E

C
T

IO
N

G
A

IN
 S

E
L
E

C
T

IO
N

A
D

C
[9

:0
]

ADC MULTIPLEXER

OUTPUT

DIFFERENTIAL

AMPLIFIER

AREF

BANDGAP

REFERENCE

PRESCALER

SINGLE ENDED / DIFFERENTIAL SELECTION

GND

POS.

INPUT

MUX

NEG.

INPUT

MUX

TRIGGER

SELECT

ADTS[2:0]

INTERRUPT

FLAGS

ADHSM

START

309

7593L–AVR–09/12

AT90USB64/128

26.3 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-

mation. The minimum value represents GND and the maximum value represents the voltage on

the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V reference voltage may be con-

nected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal

voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve

noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in

ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can

be selected as single ended inputs to the ADC. A selection of ADC input pins can be selected as

positive and negative inputs to the differential amplifier.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and

input channel selections will not go into effect until ADEN is set. The ADC does not consume

power when ADEN is cleared, so it is recommended to switch off the ADC before entering power

saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and

ADCL. By default, the result is presented right adjusted, but can optionally be presented left

adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read

ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data

Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers

is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is

read, neither register is updated and the result from the conversion is lost. When ADCH is read,

ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. The ADC

access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt

will trigger even if the result is lost.

26.4 Starting a conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.

This bit stays high as long as the conversion is in progress and will be cleared by hardware

when the conversion is completed. If a different data channel is selected while a conversion is in

progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is

enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is

selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS

bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,

the ADC prescaler is reset and a conversion is started. This provides a method of starting con-

versions at fixed intervals. If the trigger signal is still set when the conversion completes, a new

conversion will not be started. If another positive edge occurs on the trigger signal during con-

version, the edge will be ignored. Note that an interrupt flag will be set even if the specific

interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus

be triggered without causing an interrupt. However, the interrupt flag must be cleared in order to

trigger a new conversion at the next interrupt event.

310

7593L–AVR–09/12

AT90USB64/128

Figure 26-2. ADC auto trigger logic.

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon

as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-

stantly sampling and updating the ADC Data Register. The first conversion must be started by

writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive

conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to

one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be

read as one during a conversion, independently of how the conversion was started.

26.5 Prescaling and conversion timing

Figure 26-3. ADC prescaler.

By default, the successive approximation circuitry requires an input clock frequency between

50kHz and 200kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the

input clock frequency to the ADC can be higher than 200kHz to get a higher sample rate. Alter-

natively, setting the ADHSM bit in ADCSRB allows an increased ADC clock frequency at the

expense of higher power consumption.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency

from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.

The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLK
ADC

.

.

.

. EDGE

DETECTOR

ADATE

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0

ADPS1

ADPS2

C
K

/1
2
8

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN

START

311

7593L–AVR–09/12

AT90USB64/128

in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously

reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion

starts at the following rising edge of the ADC clock cycle. See “Differential channels” on page

312 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched

on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-

sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is

complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion

mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new

conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures

a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold

takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-

tional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conversion com-

pletes, while ADSC remains high. For a summary of conversion times, see Table 26-1 on page

312.

Figure 26-4. ADC timing diagram, first conversion (single conversion mode).

Figure 26-5. ADC timing diagram, single conversion.

Sign and MSB of result

LSB of result

ADC clock

ADSC

Sample & hold

ADIF

ADCH

ADCL

Cycle number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First conversion
Next

conversion

3

MUX and REFS

update

MUX

and REFS

update

Conversion

complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of result

LSB of result

ADC clock

ADSC

ADIF

ADCH

ADCL

Cycle number 1 2

One conversion Next conversion

3

Sample & hold

MUX and REFS

update

Conversion

complete
MUX and REFS

update

312

7593L–AVR–09/12

AT90USB64/128

Figure 26-6. ADC timing diagram, auto triggered conversion.

Figure 26-7. ADC timing diagram, free running conversion.

26.5.1 Differential channels

When using differential channels, certain aspects of the conversion need to be taken into

consideration.

Differential conversions are synchronized to the internal clock CKADC2 equal to half the ADC

clock frequency. This synchronization is done automatically by the ADC interface in such a way

that the sample-and-hold occurs at a specific phase of CKADC2. A conversion initiated by the

user (that is, all single conversions, and the first free running conversion) when CKADC2 is low will

take the same amount of time as a single ended conversion (13 ADC clock cycles from the next

prescaled clock cycle). A conversion initiated by the user when CKADC2 is high will take 14 ADC

clock cycles due to the synchronization mechanism. In Free Running mode, a new conversion is

initiated immediately after the previous conversion completes, and since CKADC2 is high at this

time, all automatically started (that is, all but the first) Free Running conversions will take 14

ADC clock cycles.

Table 26-1. ADC conversion time.

Condition First conversion

Normal conversion,

single ended

Auto triggered

conversion

Sample & Hold
(Cycles from Start of Conversion)

14.5 1.5 2

Conversion Time
(Cycles)

25 13 13.5

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of result

LSB of result

ADC clock

Trigger

Source

ADIF

ADCH

ADCL

Cycle number 1 2

One conversion Next conversion

Conversion

complete
Prescaler

reset

ADATE

Prescaler

reset
Sample &

hold

MUX and REFS

update

11 12 13

Sign and MSB of result

LSB of result

ADC clock

ADSC

ADIF

ADCH

ADCL

Cycle number
1 2

One conversion Next conversion

3 4

Conversion

complete

Sample & hold

MUX and REFS

update

313

7593L–AVR–09/12

AT90USB64/128

If differential channels are used and conversions are started by Auto Triggering, the ADC must

be switched off between conversions. When Auto Triggering is used, the ADC prescaler is reset

before the conversion is started. Since the stage is dependent of a stable ADC clock prior to the

conversion, this conversion will not be valid. By disabling and then re-enabling the ADC between

each conversion (writing ADEN in ADCSRA to “0” then to “1”), only extended conversions are

performed. The result from the extended conversions will be valid. See “Prescaling and conver-

sion timing” on page 310 for timing details.

The gain stage is optimized for a bandwidth of 4kHz at all gain settings. Higher frequencies may

be subjected to non-linear amplification. An external low-pass filter should be used if the input

signal contains higher frequency components than the gain stage bandwidth. Note that the ADC

clock frequency is independent of the gain stage bandwidth limitation. For example, the ADC

clock period may be 6µs, allowing a channel to be sampled at 12ksps, regardless of the band-

width of this channel.

26.6 Changing channel or reference selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary

register to which the CPU has random access. This ensures that the channels and reference

selection only takes place at a safe point during the conversion. The channel and reference

selection is continuously updated until a conversion is started. Once the conversion starts, the

channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-

tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in

ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after

ADSC is written. The user is thus advised not to write new channel or reference selection values

to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special

care must be taken when updating the ADMUX Register, in order to control which conversion

will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the

ADMUX Register is changed in this period, the user cannot tell if the next conversion is based

on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.

b. During conversion, minimum one ADC clock cycle after the trigger event.

c. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC

conversion.

Special care should be taken when changing differential channels. Once a differential channel

has been selected, the stage may take as much as 125µs to stabilize to the new value. Thus

conversions should not be started within the first 125µs after selecting a new differential chan-

nel. Alternatively, conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing

ADC reference (by changing the REFS1:0 bits in ADMUX).

The settling time and gain stage bandwidth is independent of the ADHSM bit setting.

314

7593L–AVR–09/12

AT90USB64/128

26.6.1 ADC input channels

When changing channel selections, the user should observe the following guidelines to ensure

that the correct channel is selected:

• In Single Conversion mode, always select the channel before starting the conversion. The

channel selection may be changed one ADC clock cycle after writing one to ADSC. However,

the simplest method is to wait for the conversion to complete before changing the channel

selection

• In Free Running mode, always select the channel before starting the first conversion. The

channel selection may be changed one ADC clock cycle after writing one to ADSC. However,

the simplest method is to wait for the first conversion to complete, and then change the

channel selection. Since the next conversion has already started automatically, the next

result will reflect the previous channel selection. Subsequent conversions will reflect the new

channel selection

When switching to a differential gain channel, the first conversion result may have a poor accu-

racy due to the required settling time for the automatic offset cancellation circuitry. The user

should preferably disregard the first conversion result.

26.6.2 ADC voltage reference

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single

ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as

either AVCC, internal 2.56V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is gener-

ated from the internal bandgap reference (VBG) through an internal amplifier. In either case, the

external AREF pin is directly connected to the ADC, and the reference voltage can be made

more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can

also be measured at the AREF pin with a high impedant voltmeter. Note that VREF is a high

impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other

reference voltage options in the application, as they will be shorted to the external voltage. If no

external voltage is applied to the AREF pin, the user may switch between AVCC and 2.56V as

reference selection. The first ADC conversion result after switching reference voltage source

may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AVCC than indi-

cated in Table 31-5 on page 397.

26.7 ADC noise canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise

induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC

Noise Reduction and Idle mode. To make use of this feature, the following procedure should be

used:

315

7593L–AVR–09/12

AT90USB64/128

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be
enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC inter-
rupt will wake up the CPU and execute the ADC Conversion Complete interrupt
routine. If another interrupt wakes up the CPU before the ADC conversion is com-
plete, that interrupt will be executed, and an ADC Conversion Complete interrupt
request will be generated when the ADC conversion completes. The CPU will
remain in active mode until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle

mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-

ing such sleep modes to avoid excessive power consumption.

If the ADC is enabled in such sleep modes and the user wants to perform differential conver-

sions, the user is advised to switch the ADC off and on after waking up from sleep to prompt an

extended conversion to get a valid result.

26.7.1 Analog input circuitry

The analog input circuitry for single ended channels is illustrated in Figure 26-8. An analog

source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-

less of whether that channel is selected as input for the ADC. When the channel is selected, the

source must drive the S/H capacitor through the series resistance (combined resistance in the

input path).

The ADC is optimized for analog signals with an output impedance of approximately 10kΩ or

less. If such a source is used, the sampling time will be negligible. If a source with higher imped-

ance is used, the sampling time will depend on how long time the source needs to charge the

S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources

with slowly varying signals, since this minimizes the required charge transfer to the S/H

capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although

source impedances of a few hundred kΩ or less is recommended.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either

kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised

to remove high frequency components with a low-pass filter before applying the signals as

inputs to the ADC.

Figure 26-8. Analog input circuitry.

ADCn

IIH

1..100kΩ

CS/H= 14pF

VCC/2

IIL

316

7593L–AVR–09/12

AT90USB64/128

26.7.2 Analog noise canceling techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of

analog measurements. If conversion accuracy is critical, the noise level can be reduced by

applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over
the analog ground plane, and keep them well away from high-speed switching digi-
tal tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage
via an LC network as shown in Figure 26-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

Figure 26-9. ADC power connections.

26.7.3 Offset compensation schemes

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential mea-

surements as much as possible. The remaining offset in the analog path can be measured

directly by selecting the same channel for both differential inputs. This offset residue can be then

subtracted in software from the measurement results. Using this kind of software based offset

correction, offset on any channel can be reduced below one LSB.

26.7.4 ADC accuracy definitions

An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps

(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

VCC

GND

100nF

Analog ground plane

(ADC0) PF0

(ADC7) PF7

(ADC1) PF1

(ADC2) PF2

(ADC3) PF3

(ADC4) PF4

(ADC5) PF5

(ADC6) PF6

AREF

GND

AVCC

52

53

54

55

56

57

58

59

60

6161

6262

6363

6464

1

51

N
C

(AD0) PA0

10µH

317

7593L–AVR–09/12

AT90USB64/128

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition

(at 0.5 LSB). Ideal value: 0 LSB

Figure 26-10. Offset error.

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last

transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum).

Ideal value: 0 LSB

Figure 26-11. Gain error.

• Integral non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum

deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0

LSB

Output code

VREF Input voltage

Ideal ADC

Actual ADC

Offset
error

Output code

VREF Input voltage

Ideal ADC

Actual ADC

Gain
error

318

7593L–AVR–09/12

AT90USB64/128

Figure 26-12. Integral non-linearity (INL).

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval

between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB

Figure 26-13. Differential non-linearity (DNL).

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,

a range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to

an ideal transition for any code. This is the compound effect of offset, gain error, differential

error, non-linearity, and quantization error. Ideal value: ±0.5 LSB.

26.8 ADC conversion result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC

Result Registers (ADCL, ADCH).

Output code

VREF Input voltage

Ideal ADC

Actual ADC

IN
L

Output code

0x3FF

0x000

0 VREF Input voltage

DNL

1 LSB

319

7593L–AVR–09/12

AT90USB64/128

For single ended conversion, the result is:

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see

Table 26-3 on page 322 and Table 26-4 on page 322). 0x000 represents analog ground, and

0x3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is:

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin,

GAIN the selected gain factor and VREF the selected voltage reference. The result is presented

in two’s complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user

wants to perform a quick polarity check of the result, it is sufficient to read the MSB of the result

(ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is posi-

tive. Figure 26-14 shows the decoding of the differential input range.

Table 82 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is

selected with a reference voltage of VREF.

ADC
V
IN

1024⋅
V
REF

--------------------------=

ADC
V
POS

V
NEG

–() GAIN 512⋅ ⋅
V
REF

--=

320

7593L–AVR–09/12

AT90USB64/128

Figure 26-14. Differential measurement range.

0

Output code

0x1FF

0x000

V
REF

Differential input
voltage (volts)

0x3FF

0x200

- V
REF

321

7593L–AVR–09/12

AT90USB64/128

Example 1:

– ADMUX = 0xED (ADC3 - ADC2, 10× gain, 2.56V reference, left adjusted result)

– Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV.

– ADCR = 512 × 10 × (300 - 500) / 2560 = -400 = 0x270

– ADCL will thus read 0x00, and ADCH will read 0x9C.

Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02.

Example 2:

– ADMUX = 0xFB (ADC3 - ADC2, 1× gain, 2.56V reference, left adjusted result)

– Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV.

– ADCR = 512 × 1 × (300 - 500) / 2560 = -41 = 0x029.

– ADCL will thus read 0x40, and ADCH will read 0x0A.

Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29.

26.9 ADC register description

26.9.1 ADMUX – ADC Multiplexer Selection Register

• Bit 7:6 – REFS1:0: Reference Selection bits

These bits select the voltage reference for the ADC, as shown in Table 26-3 on page 322. If

these bits are changed during a conversion, the change will not go in effect until this conversion

Table 26-2. Correlation between input voltage and output codes.

VADCn Read code Corresponding decimal value

 VADCm + VREF /GAIN 0x1FF 511

VADCm + 0.999 VREF /GAIN 0x1FF 511

VADCm + 0.998 VREF /GAIN 0x1FE 510

...

VADCm + 0.001 VREF /GAIN 0x001 1

VADCm 0x000 0

VADCm - 0.001 VREF /GAIN 0x3FF -1

...

VADCm - 0.999 VREF /GAIN 0x201 -511

VADCm - VREF /GAIN 0x200 -512

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

322

7593L–AVR–09/12

AT90USB64/128

is complete (ADIF in ADCSRA is set). The internal voltage reference options may not be used if

an external reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.

Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the

ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-

sions. For a complete description of this bit, see “ADCL and ADCH – The ADC data register” on

page 324.

• Bits 4:0 – MUX4:0: Analog Channel Selection bits

The value of these bits selects which combination of analog inputs are connected to the ADC.

These bits also select the gain for the differential channels. See Table 26-4 for details. If these

bits are changed during a conversion, the change will not go in effect until this conversion is

complete (ADIF in ADCSRA is set).

Table 26-3. Voltage reference selections for ADC.

REFS1 REFS0 Voltage reference selection

0 0 AREF, internal VREF turned off

0 1 AVCC with external capacitor on AREF pin

1 0 Reserved

1 1 Internal 2.56V Voltage Reference with external capacitor on AREF pin

Table 26-4. Input channel and gain selections.

MUX4..0 Single ended input Positive differential input Negative differential input Gain

00000 ADC0

N/A

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

323

7593L–AVR–09/12

AT90USB64/128

26.9.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the

ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,

write this bit to one to start the first conversion. The first conversion after ADSC has been written

after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,

01000

N/A

(ADC0 / ADC0 / 10x)

01001 ADC1 ADC0 10×

01010 (ADC0 / ADC0 / 200x)

01011 ADC1 ADC0 200×

01100 (Reserved - ADC2 / ADC2 / 10x)

01101 ADC3 ADC2 10×

01110 (ADC2 / ADC2 / 200x)

01111 ADC3 ADC2 200×

10000 ADC0 ADC1 1×

10001 (ADC1 / ADC1 / 1x)

10010 ADC2 ADC1 1×

10011 ADC3 ADC1 1×

10100 ADC4 ADC1 1×

10101 ADC5 ADC1 1×

10110 ADC6 ADC1 1×

10111 ADC7 ADC1 1×

11000 ADC0 ADC2 1×

11001 ADC1 ADC2 1×

11010 (ADC2 / ADC2 / 1x)

11011 ADC3 ADC2 1×

11100 ADC4 ADC2 1×

11101 ADC5 ADC2 1×

11110 1.1V (VBand Gap)
N/A

11111 0V (GND)

Table 26-4. Input channel and gain selections. (Continued)

MUX4..0 Single ended input Positive differential input Negative differential input Gain

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

324

7593L–AVR–09/12

AT90USB64/128

will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-

tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,

it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-

version on a positive edge of the selected trigger signal. The trigger source is selected by setting

the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The

ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.

ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-

natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-

Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI

instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-

rupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input clock to the

ADC.

26.9.3 ADCL and ADCH – The ADC data register

26.9.3.1 ADLAR = 0

Table 26-5. ADC prescaler selections.

ADPS2 ADPS1 ADPS0 Division factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

Bit 7 6 5 4 3 2 1 0

Read/write R R R R R R R R

R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

325

7593L–AVR–09/12

AT90USB64/128

26.9.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers. If differential

channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if

the result is left adjusted and no more than 8-bit precision (7 bit + sign bit for differential input

channels) is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then

ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from

the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result

is right adjusted.

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in “ADC conversion result” on

page 318.

26.9.4 ADCSRB – ADC Control and Status Register B

• Bit 7 – ADHSM: ADC High Speed Mode

Writing this bit to one enables the ADC High Speed mode. This mode enables higher conversion

rate at the expense of higher power consumption.

• Bit 2:0 – ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger

an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion

will be triggered by the rising edge of the selected interrupt flag. Note that switching from a trig-

ger source that is cleared to a trigger source that is set, will generate a positive edge on the

trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running

mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

Bit 7 6 5 4 3 2 1 0

Read/write R R R R R R R R

R R R R R R R R

Initial value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ADHSM ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/write R/W R/W R R R R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

Table 26-6. ADC auto trigger source selections.

ADTS2 ADTS1 ADTS0 Trigger source

0 0 0 Free running mode

0 0 1 Analog comparator

0 1 0 External interrupt request 0

0 1 1 Timer/Counter0 compare match

326

7593L–AVR–09/12

AT90USB64/128

26.9.5 DIDR0 – Digital Input Disable Register 0

• Bit 7:0 – ADC7D..ADC0D: ADC7:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-

abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an

analog signal is applied to the ADC7..0 pin and the digital input from this pin is not needed, this

bit should be written logic one to reduce power consumption in the digital input buffer.

1 0 0 Timer/Counter0 overflow

1 0 1 Timer/Counter1 compare match B

1 1 0 Timer/Counter1 overflow

1 1 1 Timer/Counter1 capture event

Table 26-6. ADC auto trigger source selections. (Continued)

ADTS2 ADTS1 ADTS0 Trigger source

Bit 7 6 5 4 3 2 1 0

ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

327

7593L–AVR–09/12

AT90USB64/128

27. JTAG interface and on-chip debug system

27.0.1 Features
• JTAG (IEEE std. 1149.1 compliant) interface

• Boundary-scan capabilities according to the IEEE std. 1149.1 (JTAG) standard

• Debugger access to:

– All internal peripheral units

– Internal and external RAM

– The internal register file

– Program counter

– EEPROM and flash memories

• Extensive on-chip debug support for break conditions, including

– AVR break instruction

– Break on change of program memory flow

– Single step break

– Program memory break points on single address or address range

– Data memory break points on single address or address range

• Programming of flash, EEPROM, fuses, and lock bits through the JTAG interface

• On-chip debugging supported by Atmel AVR Studio®

27.1 Overview

The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Programming via

the JTAG interface, and using the Boundary-scan Chain can be found in the sections “Program-

ming via the JTAG interface” on page 377 and “IEEE 1149.1 (JTAG) boundary-scan” on page

333, respectively. The On-chip Debug support is considered being private JTAG instructions,

and distributed within Atmel and to selected third party vendors only.

Figure 27-1 on page 328 shows a block diagram of the JTAG interface and the On-chip Debug

system. The TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP

Controller selects either the JTAG Instruction Register or one of several Data Registers as the

scan chain (Shift Register) between the TDI – input and TDO – output. The Instruction Register

holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used

for board-level testing. The JTAG Programming Interface (actually consisting of several physical

and virtual Data Registers) is used for serial programming via the JTAG interface. The Internal

Scan Chain and Break Point Scan Chain are used for On-chip debugging only.

27.2 TAP – Test Access Port

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins

constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller state

machine

• TCK: Test Clock. JTAG operation is synchronous to TCK

328

7593L–AVR–09/12

AT90USB64/128

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register

(Scan Chains)

• TDO: Test Data Out. Serial output data from Instruction Register or Data Register

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – which is not

provided.

When the JTAGEN Fuse is unprogrammed, these four TAP pins are normal port pins, and the

TAP controller is in reset. When programmed, the input TAP signals are internally pulled high

and the JTAG is enabled for Boundary-scan and programming. The device is shipped with this

fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-

tored by the debugger to be able to detect external reset sources. The debugger can also pull

the RESET pin low to reset the whole system, assuming only open collectors on the reset line

are used in the application.

Figure 27-1. Block diagram.

TAP

CONTROLLER

TDI

TDO

TCK

TMS

FLASH

MEMORY

AVR CPU

DIGITAL

PERIPHERAL

UNITS

JTAG / AVR CORE

COMMUNICATION

INTERFACE

BREAKPOINT

UNIT
FLOW CONTROL

UNIT

OCD STATUS

AND CONTROL

INTERNAL

SCAN

CHAIN

M

U

X

INSTRUCTION

REGISTER

ID

REGISTER

BYPASS

REGISTER

JTAG PROGRAMMING

INTERFACE

PC

Instruction

Address

Data

BREAKPOINT

SCAN CHAIN

ADDRESS

DECODER

ANALOG

PERIPHERIAL

UNITS

I/O PORT 0

I/O PORT n

BOUNDARY SCAN CHAIN

Analog inputs

Control & clock lines

DEVICE BOUNDARY

329

7593L–AVR–09/12

AT90USB64/128

Figure 27-2. TAP controller state diagram.

27.3 TAP Controller

The TAP Controller is a 16-state finite state machine that controls the operation of the Boundary-

scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions

depicted in Figure 27-2 depend on the signal present on TMS (shown adjacent to each state

transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-

Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift

Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG

instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.

The TMS input must be held low during input of the three LSBs in order to remain in the Shift-

IR state. The MSB of the instruction is shifted in when this state is left by setting TMS high.

While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on

the TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI

and TDO and controls the circuitry surrounding the selected Data Register

Test-logic-reset

Run-test/idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

330

7593L–AVR–09/12

AT90USB64/128

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched

onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR,

Pause-IR, and Exit2-IR states are only used for navigating the state machine

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift

Data Register – Shift-DR state. While in this state, upload the selected Data Register

(selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI input

at the rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must be

held low during input of all bits except the MSB. The MSB of the data is shifted in when this

state is left by setting TMS high. While the Data Register is shifted in from the TDI pin, the

parallel inputs to the Data Register captured in the Capture-DR state is shifted out on the

TDO pin

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data

Register has a latched parallel-output, the latching takes place in the Update-DR state. The

Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting

JTAG instruction and using Data Registers, and some JTAG instructions may select certain

functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography”

on page 332.

27.4 Using the Boundary-scan chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1

(JTAG) boundary-scan” on page 333.

27.5 Using the on-chip debug system

As shown in Figure 27-1 on page 328, the hardware support for on-chip debugging consists

mainly of

• A scan chain on the interface between the internal AVR CPU and the internal peripheral units

• Break Point unit

• Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by applying

AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O

memory mapped location which is part of the communication interface between the CPU and the

JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two

Program Memory Break Points, and two combined Break Points. Together, the four Break

Points can be configured as either:

• Four single program memory break points

• Three single program memory break point + one single data memory break point

• Two single program memory break points + two single data memory break points

• Two single program memory break points + one program memory break point with mask

(“range Break Point”)

331

7593L–AVR–09/12

AT90USB64/128

• Two single program memory break points + one data memory break point with mask (“range

Break Point”)

A debugger, like the Atmel AVR Studio, may however use one or more of these resources for its

internal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip debug specific JTAG

instructions” on page 331.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the

OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system

to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or

LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door

into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with

On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.

AVR Studio supports source level execution of Assembly programs assembled with Atmel Cor-

poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000 and Microsoft Windows NT.

For a full description of the Atmel AVR Studio, please refer to the AVR Studio User Guide. Only

highlights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on

disassembly level. The user can execute the program, single step through the code either by

tracing into or stepping over functions, step out of functions, place the cursor on a statement and

execute until the statement is reached, stop the execution, and reset the execution target. In

addition, the user can have an unlimited number of code Break Points (using the BREAK

instruction) and up to two data memory Break Points, alternatively combined as a mask (range)

Break Point.

27.6 On-chip debug specific JTAG instructions

The On-chip debug support is considered being private JTAG instructions, and distributed within

ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

27.6.1 PRIVATE0; 0x8

Private JTAG instruction for accessing On-chip debug system.

27.6.2 PRIVATE1; 0x9

Private JTAG instruction for accessing On-chip debug system.

27.6.3 PRIVATE2; 0xA

Private JTAG instruction for accessing On-chip debug system.

27.6.4 PRIVATE3; 0xB

Private JTAG instruction for accessing On-chip debug system.

332

7593L–AVR–09/12

AT90USB64/128

27.7 On-chip Debug related Register in I/O memory

27.7.1 OCDR – On-chip Debug Register

The OCDR Register provides a communication channel from the running program in the micro-

controller to the debugger. The CPU can transfer a byte to the debugger by writing to this

location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is set to indicate

to the debugger that the register has been written. When the CPU reads the OCDR Register the

seven LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears

the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR

Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables

access to the OCDR Register. In all other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

27.8 Using the JTAG programming capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and

TDO. These are the only pins that need to be controlled/observed to perform JTAG program-

ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse

must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the

JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying

• EEPROM programming and verifying

• Fuse programming and verifying

• Lock bit programming and verifying

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are

programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a

security feature that ensures no back-door exists for reading out the content of a secured

device.

The details on programming through the JTAG interface and programming specific JTAG

instructions are given in the section “Programming via the JTAG interface” on page 377.

27.9 Bibliography

For more information about general Boundary-scan, the following literature can be consulted:

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan

Architecture, IEEE, 1993.

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley,

1992.

Bit 7 6 5 4 3 2 1 0

MSB/IDRD LSB OCDR

Read/write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

333

7593L–AVR–09/12

AT90USB64/128

28. IEEE 1149.1 (JTAG) boundary-scan

28.1 Features
• JTAG (IEEE std. 1149.1 compliant) interface

• Boundary-scan capabilities according to the JTAG standard

• Full scan of all port functions as well as analog circuitry having off-chip connections

• Supports the optional IDCODE instruction

• Additional public AVR_RESET instruction to reset the AVR

28.2 System overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-

tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having

off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by

the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to

drive values at their output pins, and observe the input values received from other devices. The

controller compares the received data with the expected result. In this way, Boundary-scan pro-

vides a mechanism for testing interconnections and integrity of components on Printed Circuits

Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-

LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be

used for testing the Printed Circuit Board. Initial scanning of the Data Register path will show the

ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to

have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-

mined by the scan operations, and the internal software may be in an undetermined state when

exiting the test mode. Entering reset, the outputs of any port pin will instantly enter the high

impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction

can be issued to make the shortest possible scan chain through the device. The device can be

set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET

instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.

The data from the output latch will be driven out on the pins as soon as the EXTEST instruction

is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for

setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST

instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the

external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR must be

cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher

than the internal chip frequency is possible. The chip clock is not required to run.

28.3 Data registers

The Data Registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-scan Chain

334

7593L–AVR–09/12

AT90USB64/128

28.3.1 Bypass register

The Bypass register consists of a single Shift register stage. When the Bypass register is

selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR

controller state. The Bypass register can be used to shorten the scan chain on a system when

the other devices are to be tested.

28.3.2 Device Identification register

Figure 28-1 shows the structure of the Device Identification register.

Figure 28-1. The Format of the Device Identification register.

28.3.2.1 Version

Version is a 4-bit number identifying the revision of the component. The JTAG version number

follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

28.3.2.2 Part number

The part number is a 16-bit code identifying the component. The JTAG Part Number for Atmel

AT90USB64/128 is listed in Table 28-1.

28.3.2.3 Manufacturer ID

The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID

for ATMEL is listed in Table 28-2.

28.3.3 Reset register

The Reset Register is a test Data Register used to reset the part. Since the AVR tri-states Port

Pins when reset, the Reset Register can also replace the function of the un-implemented

optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is

reset as long as there is a high value present in the Reset Register. Depending on the fuse set-

tings for the clock options, the part will remain reset for a reset time-out period (refer to “Clock

sources” on page 41) after releasing the Reset Register. The output from this Data Register is

not latched, so the reset will take place immediately, as shown in Figure 28-2 on page 335.

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part number Manufacturer ID 1

4 bits 16 bits 11 bits 1-bit

Table 28-1. AVR JTAG part number.

Part number JTAG part number (hex)

AVR USB 0x9782

Table 28-2. Manufacturer ID.

Manufacturer JTAG manufacturer ID (hex)

ATMEL 0x01F

335

7593L–AVR–09/12

AT90USB64/128

Figure 28-2. Reset register.

28.3.4 Boundary-scan Chain

The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-

ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having

off-chip connections.

See “Boundary-scan chain” on page 337 for a complete description.

28.4 Boundary-scan specific JTAG instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are the

JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction

is not implemented, but all outputs with tri-state capability can be set in high-impedant state by

using the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text

describes which Data Register is selected as path between TDI and TDO for each instruction.

28.4.1 EXTEST; 0x0

Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing

circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output

Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip

connections, the interface between the analog and the digital logic is in the scan chain. The con-

tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-

Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain

• Shift-DR: The Internal Scan Chain is shifted by the TCK input

• Update-DR: Data from the scan chain is applied to output pins

28.4.2 IDCODE; 0x1

Optional JTAG instruction selecting the 32-bit ID-Register as Data Register. The ID-Register

consists of a version number, a device number and the manufacturer code chosen by JEDEC.

This is the default instruction after power-up.

D Q
From

TDI

ClockDR · AVR_RESET

To

TDO

From other internal and

external reset sources

Internal reset

336

7593L–AVR–09/12

AT90USB64/128

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain

• Shift-DR: The IDCODE scan chain is shifted by the TCK input

28.4.3 SAMPLE_PRELOAD; 0x2

Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the

input/output pins without affecting the system operation. However, the output latches are not

connected to the pins. The Boundary-scan Chain is selected as Data Register.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input

• Update-DR: Data from the Boundary-scan chain is applied to the output latches. However,

the output latches are not connected to the pins

28.4.4 AVR_RESET; 0xC

The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or

releasing the JTAG reset source. The TAP controller is not reset by this instruction. The one bit

Reset Register is selected as Data Register. Note that the reset will be active as long as there is

a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input

28.4.5 BYPASS; 0xF

Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted

28.5 Boundary-scan Related Register in I/O memory

28.5.1 MCUCR – MCU Control Register

The MCU Control Register contains control bits for general MCU functions.

• Bits 7 – JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this

bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of

the JTAG interface, a timed sequence must be followed when changing this bit: The application

software must write this bit to the desired value twice within four cycles to change its value. Note

that this bit must not be altered when using the On-chip Debug system.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/write R/W R R R/W R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

337

7593L–AVR–09/12

AT90USB64/128

28.5.2 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by

the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic

zero to the flag.

28.6 Boundary-scan chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-

tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having

off-chip connection.

28.6.1 Scanning the digital port pins

Figure 28-3 on page 338 shows the Boundary-scan Cell for a bi-directional port pin. The pull-up

function is disabled during Boundary-scan when the JTAG IC contains EXTEST or

SAMPLE_PRELOAD. The cell consists of a bi-directional pin cell that combines the three sig-

nals Output Control - OCxn, Output Data - ODxn, and Input Data - IDxn, into only a two-stage

Shift Register. The port and pin indexes are not used in the following description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 28-4 on page 339

shows a simple digital port pin as described in the section “I/O-ports” on page 71. The Boundary-

scan details from Figure 28-3 on page 338 replaces the dashed box in Figure 28-4 on page 339.

When no alternate port function is present, the Input Data - ID - corresponds to the PINxn Regis-

ter value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output

Control corresponds to the Data Direction - DD Register, and the Pull-up Enable - PUExn - cor-

responds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 28-4 on page 339

to make the scan chain read the actual pin value. For analog function, there is a direct connec-

tion from the external pin to the analog circuit. There is no scan chain on the interface between

the digital and the analog circuitry, but some digital control signal to analog circuitry are turned

off to avoid driving contention on the pads.

When JTAG IR contains EXTEST or SAMPLE_PRELOAD the clock is not sent out on the port

pins even if the CKOUT fuse is programmed. Even though the clock is output when the JTAG IR

contains SAMPLE_PRELOAD, the clock is not sampled by the boundary scan.

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/write R R R R/W R/W R/W R/W R/W

Initial value 0 0 0 See bit description

338

7593L–AVR–09/12

AT90USB64/128

Figure 28-3. Boundary-scan cell for bi-directional port pin with pull-up function.

D Q D Q

G

0

1
0

1

D Q D Q

G

0

1
0

1

0

1

P
o

rt
 P

in
 (

P
X

n
)

VccEXTESTTo next cellShiftDR

Output control (OC)

Output data (OD)

Input data (ID)

From last cell UpdateDRClockDR

FF1 LD1

LD0FF0

0

1

Pull-up enable (PUE)

339

7593L–AVR–09/12

AT90USB64/128

Figure 28-4. General port pin schematic diagram.

28.6.2 Scanning the RESET pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high

logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 28-5 is

inserted for the 5V reset signal.

Figure 28-5. Observe-only cell.

CLK

RPx

RRx

WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

CLK : I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
A
T
A

 B
U

S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

I/O

See Boundary-scan

description for details!

PUExn

OCxn

ODxn

IDxn

PUExn: PULLUP ENABLE for pin Pxn
OCxn: OUTPUT CONTROL for pin Pxn
ODxn: OUTPUT DATA to pin Pxn
IDxn: INPUT DATA from pin Pxn

0

1
D Q

From

previous

cell

ClockDR

ShiftDR

To

next

cell

From system pin To system logic

FF1

340

7593L–AVR–09/12

AT90USB64/128

28.7 Atmel AT90USB64/128 Boundary-scan order

Table 28-3 shows the Scan order between TDI and TDO when the Boundary-scan chain is

selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The

scan order follows the pin-out order as far as possible. Therefore, the bits of Port A and Port Fis

scanned in the opposite bit order of the other ports. Exceptions from the rules are the Scan

chains for the analog circuits, which constitute the most significant bits of the scan chain regard-

less of which physical pin they are connected to. In Figure 28-3 on page 338, PXn. Data

corresponds to FF0, PXn. Control corresponds to FF1, PXn. Bit 4, 5, 6 and 7 of Port F is not in

the scan chain, since these pins constitute the TAP pins when the JTAG is enabled. The USB

pads are not included in the boundary-scan.

Table 28-3. AT90USB64/128 Boundary-scan order.

Bit number Signal name Module

88 PE6.Data

Port E

87 PE6.Control

86 PE7.Data

85 PE7.Control

84 PE3.Data

83 PE3.Control

82 PB0.Data

Port B

81 PB0.Control

80 PB1.Data

79 PB1.Control

78 PB2.Data

77 PB2.Control

76 PB3.Data

75 PB3.Control

74 PB4.Data

73 PB4.Control

72 PB5.Data

71 PB5.Control

70 PB6.Data

69 PB6.Control

68 PB7.Data

67 PB7.Control

66 PE4.Data

PORTE
65 PE4.Control

64 PE5.Data

63 PE5.Control

62 RSTT Reset Logic (observe only)

341

7593L–AVR–09/12

AT90USB64/128

61 PD0.Data

Port D

60 PD0.Control

59 PD1.Data

58 PD1.Control

57 PD2.Data

56 PD2.Control

55 PD3.Data

54 PD3.Control

53 PD4.Data

52 PD4.Control

51 PD5.Data

50 PD5.Control

49 PD6.Data

48 PD6.Control

47 PD7.Data

46 PD7.Control

45 PE0.Data

Port E
44 PE0.Control

43 PE1.Data

42 PE1.Control

41 PC0.Data

Port C

40 PC0.Control

39 PC1.Data

38 PC1.Control

37 PC2.Data

36 PC2.Control

35 PC3.Data

34 PC3.Control

33 PC4.Data

32 PC4.Control

31 PC5.Data

30 PC5.Control

29 PC6.Data

28 PC6.Control

27 PC7.Data

26 PC7.Control

Table 28-3. AT90USB64/128 Boundary-scan order. (Continued)

Bit number Signal name Module

342

7593L–AVR–09/12

AT90USB64/128

28.8 Boundary-scan description language files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in

a standard format used by automated test-generation software. The order and function of bits in

the Boundary-scan Data Register are included in this description. BSDL files are available for

Atmel AT90USB64/128.

25 PE2.Data
Port E

24 PE2.Control

23 PA7.Data

Port A

22 PA7.Control

21 PA6.Data

20 PA6.Control

19 PA5.Data

18 PA5.Control

17 PA4.Data

16 PA4.Control

15 PA3.Data

14 PA3.Control

13 PA2.Data

12 PA2.Control

11 PA1.Data

10 PA1.Control

9 PA0.Data

8 PA0.Control

7 PF3.Data

Port F

6 PF3.Control

5 PF2.Data

4 PF2.Control

3 PF1.Data

2 PF1.Control

1 PF0.Data

0 PF0.Control

Table 28-3. AT90USB64/128 Boundary-scan order. (Continued)

Bit number Signal name Module

343

7593L–AVR–09/12

AT90USB64/128

29. Boot Loader support – read-while-write self-programming
The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for

downloading and uploading program code by the MCU itself. This feature allows flexible applica-

tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The

Boot Loader program can use any available data interface and associated protocol to read code

and write (program) that code into the Flash memory, or read the code from the program mem-

ory. The program code within the Boot Loader section has the capability to write into the entire

Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it

can also erase itself from the code if the feature is not needed anymore. The size of the Boot

Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot

Lock bits which can be set independently. This gives the user a unique flexibility to select differ-

ent levels of protection. General information on SPM and ELPM is provided in See “AVR CPU

core” on page 11.

29.1 Boot Loader features
• Read-while-write self-programming

• Flexible boot memory size

• High security (separate boot lock bits for a flexible protection)

• Separate fuse to select reset vector

• Optimized page (1) size

• Code efficient algorithm

• Efficient read-modify-write support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 30-11 on page 364)
used during programming. The page organization does not affect normal operation.

29.2 Application and Boot Loader flash sections

The Flash memory is organized in two main sections, the Application section and the Boot

Loader section (see Figure 29-2 on page 346). The size of the different sections is configured by

the BOOTSZ Fuses as shown in Table 29-8 on page 357 and Figure 29-2 on page 346. These

two sections can have different level of protection since they have different sets of Lock bits.

29.2.1 Application section

The Application section is the section of the Flash that is used for storing the application code.

The protection level for the Application section can be selected by the application Boot Lock bits

(Boot Lock bits 0), see Table 29-2 on page 347. The Application section can never store any

Boot Loader code since the SPM instruction is disabled when executed from the Application

section.

29.2.2 BLS – Boot Loader section

While the Application section is used for storing the application code, the The Boot Loader soft-

ware must be located in the BLS since the SPM instruction can initiate a programming when

executing from the BLS only. The SPM instruction can access the entire Flash, including the

BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader

Lock bits (Boot Lock bits 1), see Table 29-3 on page 347.

29.3 Read-while-write and no read-while-write flash sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-

ware update is dependent on which address that is being programmed. In addition to the two

344

7593L–AVR–09/12

AT90USB64/128

sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also

divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-

Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 29-

1 and Figure 29-1 on page 345. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be

read during the operation

• When erasing or writing a page located inside the NRWW section, the CPU is halted during

the entire operation

Note that the user software can never read any code that is located inside the RWW section dur-

ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which

section that is being programmed (erased or written), not which section that actually is being

read during a Boot Loader software update.

29.3.1 RWW – Read-While-Write section

If a Boot Loader software update is programming a page inside the RWW section, it is possible

to read code from the Flash, but only code that is located in the NRWW section. During an on-

going programming, the software must ensure that the RWW section never is being read. If the

user software is trying to read code that is located inside the RWW section (i.e., by load program

memory, call, or jump instructions or an interrupt) during programming, the software might end

up in an unknown state. To avoid this, the interrupts should either be disabled or moved to the

Boot Loader section. The Boot Loader section is always located in the NRWW section. The

RWW Section Busy bit (RWWSB) in the Store Program Memory Control and Status Register

(SPMCSR) will be read as logical one as long as the RWW section is blocked for reading. After

a programming is completed, the RWWSB must be cleared by software before reading code

located in the RWW section. See “SPMCSR – Store Program Memory Control and Status Reg-

ister” on page 349. for details on how to clear RWWSB.

29.3.2 NRWW – No Read-While-Write section

The code located in the NRWW section can be read when the Boot Loader software is updating

a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU

is halted during the entire Page Erase or Page Write operation.

Table 29-1. Read-While-Write features.

Which section does the Z-

pointer address during the

programming?

Which section can

be read during

programming?

Is the CPU

halted?

Read-While-Write

supported?

RWW section NRWW section No Yes

NRWW section None Yes No

345

7593L–AVR–09/12

AT90USB64/128

Figure 29-1. Read-While-Write vs. no Read-While-Write.

Read-While-Write

(RWW) section

No Read-While-Write

(NRWW) section

Z-pointer

Addresses RWW

section

Z-pointer

addresses NRWW

section

CPU is halted

during the operation
Code located in

NRWW section.

Can be read during

the operation

346

7593L–AVR–09/12

AT90USB64/128

Figure 29-2. Memory sections.

Note: 1. The parameters in the figure above are given in Table 29-8 on page 357.

29.4 Boot Loader lock bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The

Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives

the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU

• To protect only the Boot Loader Flash section from a software update by the MCU

• To protect only the Application Flash section from a software update by the MCU

• Allow software update in the entire Flash

See Table 29-2 on page 347 and Table 29-3 on page 347 for further details. The Boot Lock bits

can be set by software and in Serial or in Parallel Programming mode. They can only be cleared

by a Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the

programming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock

(Lock Bit mode 1) does not control reading nor writing by (E)LPM/SPM, if it is attempted.

0x0000

Flashend

Program memory

BOOTSZ = '11'

Application flash section

Boot loader flash section
Flashend

Program memory

BOOTSZ = '10'

0x0000

Program memory

BOOTSZ = '01'

Program memory

BOOTSZ = '00'

Application flash section

Boot loader flash section

0x0000

Flashend

Application flash section

Flashend

End RWW

Start NRWW

Application flash section

Boot loader flash section

Boot loader flash section

End RWW

Start NRWW

End RWW

Start NRWW

0x0000

End RWW, end application

Start NRWW, start boot loader

Application flash sectionApplication flash section

Application flash section

R
e

a
d

-W
h

ile
-W

ri
te

 s
e

c
ti
o

n
N

o
 R

e
a

d
-W

h
ile

-W
ri

te
 s

e
c
ti
o

n
R

e
a

d
-W

h
ile

-W
ri

te
 s

e
c
ti
o

n
N

o
 R

e
a

d
-W

h
ile

-W
ri

te
 s

e
c
ti
o

n

R
e

a
d

-W
h

ile
-W

ri
te

 s
e

c
ti
o

n
N

o
 R

e
a

d
-W

h
ile

-W
ri

te
 s

e
c
ti
o

n
R

e
a

d
-W

h
ile

-W
ri

te
 s

e
c
ti
o

n
N

o
 R

e
a

d
-W

h
ile

-W
ri

te
 s

e
c
ti
o

n

End application

Start boot loader

End application

Start boot loader

End application

Start boot loader

347

7593L–AVR–09/12

AT90USB64/128

Note: 1. “1” means unprogrammed, “0” means programmed.

Note: 1. “1” means unprogrammed, “0” means programmed.

29.5 Entering the Boot Loader program

The boot loader can be executed with three different conditions:

29.5.1 Regular application conditions.

A jump or call from the application program. This may be initiated by a trigger such as a com-

mand received via USART, SPI or USB.

29.5.2 Boot Reset fuse

The Boot Reset Fuse (BOOTRST) can be programmed so that the Reset Vector is pointing to

the Boot Flash start address after a reset. In this case, the Boot Loader is started after a reset.

After the application code is loaded, the program can start executing the application code. Note

that the fuses cannot be changed by the MCU itself. This means that once the Boot Reset Fuse

is programmed, the Reset Vector will always point to the Boot Loader Reset and the fuse can

only be changed through the serial or parallel programming interface.

Table 29-2. Boot Lock Bit0 protection modes (application section) (1).

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or (E)LPM accessing the
Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

4 0 1

(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

Table 29-3. Boot Lock Bit1 protection modes (boot loader section) (1).

BLB1 Mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or (E)LPM accessing the Boot
Loader section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section,
and (E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1

(E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

348

7593L–AVR–09/12

AT90USB64/128

Note: 1. “1” means unprogrammed, “0” means programmed.

29.5.3 External hardware conditions

The Hardware Boot Enable Fuse (HWBE) can be programmed (see Table 29-5) so that upon

special hardware conditions under reset, the boot loader execution is forced after reset.

Note: 1. “1” means unprogrammed, “0” means programmed.

When the HWBE fuse is enable the ALE/HWB pin is configured as input during reset and sam-

pled during reset rising edge. When ALE/HWB pin is ‘0’ during reset rising edge, the reset vector

will be set as the Boot Loader Reset address and the Boot Loader will be executed (see Figure

29-3).

Figure 29-3. Boot process description.

Table 29-4. Boot reset fuse (1).

BOOTRST Reset address

1 Reset Vector = Application reset (address 0x0000)

0 Reset Vector = Boot loader reset (see Table 29-8 on page 357)

Table 29-5. Hardware boot enable fuse (1).

HWBE Reset address

1 ALE/HWB pin can not be used to force boot loader execution after reset

0 ALE/HWB pin is used during reset to force boot loader execution after reset

HWBE

BOOTRST ?

Ext. hardware

conditions ?

Reset vector = Application reset Reset vector = Boot loader reset

?

RESET

ALE/HWB

tSHRH tHHRH

349

7593L–AVR–09/12

AT90USB64/128

29.5.4 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to con-

trol the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM

ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN

bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-

ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section

cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a

Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be

cleared if a page load operation is initiated.

• Bit 5 – SIGRD: Signature Row Read

If this bit is written to one at the same time as SPMEN, the next LPM instruction within three

clock cycles will read a byte from the signature row into the destination register. see “Reading

the Signature Row from software” on page 354 for details. An SPM instruction within four cycles

after SIGRD and SPMEN are set will have no effect. This operation is reserved for future use

and should not be used.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is

blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the

user software must wait until the programming is completed (SPMEN will be cleared). Then, if

the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within

four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while

the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-

ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will

be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock

cycles sets Boot Lock bits, according to the data in R0. The data in R1 and the address in the Z-

pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the Lock

bit set, or if no SPM instruction is executed within four clock cycles.

An (E)LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR

Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the

destination register. See “Reading the Fuse and Lock bits from software” on page 353 for

details.

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/write R/W R R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

350

7593L–AVR–09/12

AT90USB64/128

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock

cycles executes Page Write, with the data stored in the temporary buffer. The page address is

taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit

will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four

clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is

addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock

cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The

data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,

or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire

Page Write operation if the NRWW section is addressed.

• Bit 0 – SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with

either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-

cial meaning, see description above. If only SPMEN is written, the following SPM instruction will

store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of

the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,

or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,

the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower

five bits will have no effect.

Note: Only one SPM instruction should be active at any time.

29.6 Addressing the flash during self-programming

The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-registers

ZL and ZH in the register file, and RAMPZ in the I/O space. The number of bits actually used is

implementation dependent. Note that the RAMPZ register is only implemented when the pro-

gram space is larger than 64kBytes.

Since the Flash is organized in pages (see Table 30-11 on page 364), the Program Counter can

be treated as having two different sections. One section, consisting of the least significant bits, is

addressing the words within a page, while the most significant bits are addressing the pages.

This is shown in Figure 29-4 on page 351. Note that the Page Erase and Page Write operations

are addressed independently. Therefore it is of major importance that the Boot Loader software

addresses the same page in both the Page Erase and Page Write operation. Once a program-

ming operation is initiated, the address is latched and the Z-pointer can be used for other

operations.

The (E)LPM instruction use the Z-pointer to store the address. Since this instruction addresses

the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.

Bit 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

RAMPZ RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

351

7593L–AVR–09/12

AT90USB64/128

Figure 29-4. Addressing the flash during SPM (1).

Note: 1. The different variables used in Figure 29-4 are listed in Table 29-10 on page 358.

29.7 Self-programming the flash

The program memory is updated in a page by page fashion. Before programming a page with

the data stored in the temporary page buffer, the page must be erased. The temporary page buf-

fer is filled one word at a time using SPM and the buffer can be filled either before the Page

Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example

in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,

the Boot Loader provides an effective Read-Modify-Write feature which allows the user software

to first read the page, do the necessary changes, and then write back the modified data. If alter-

native 2 is used, it is not possible to read the old data while loading since the page is already

erased. The temporary page buffer can be accessed in a random sequence. It is essential that

the page address used in both the Page Erase and Page Write operation is addressing the same

PROGRAM MEMORY

0123

Z - POINTER

BIT

0

ZPAGEMSB

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB

PROGRAM COUNTER

352

7593L–AVR–09/12

AT90USB64/128

page. See “Simple Assembly Code example for a Boot Loader” on page 355 for an assembly

code example.

29.7.1 Performing page erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and

execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.

The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will

be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page Erase

• Page Erase to the NRWW section: The CPU is halted during the operation

29.7.2 Filling the Temporary Buffer (page loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write

“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The

content of PCWORD in the Z-register is used to address the data in the temporary buffer. The

temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in

SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than

one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be

lost.

29.7.3 Performing a Page Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and

execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.

The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to

zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write

• Page Write to the NRWW section: The CPU is halted during the operation

29.7.4 Using the SPM interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the

SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling

the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should

be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is

blocked for reading. How to move the interrupts is described in “Interrupts” on page 68.

29.7.5 Consideration while updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving

Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the

entire Boot Loader, and further software updates might be impossible. If it is not necessary to

change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to

protect the Boot Loader software from any internal software changes.

29.7.6 Prevent reading the RWW section during self-programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always

blocked for reading. The user software itself must prevent that this section is addressed during

the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW

section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS

353

7593L–AVR–09/12

AT90USB64/128

as described in “Interrupts” on page 68, or the interrupts must be disabled. Before addressing

the RWW section after the programming is completed, the user software must clear the

RWWSB by writing the RWWSRE. See “Simple Assembly Code example for a Boot Loader” on

page 355 for an example.

29.7.7 Setting the Boot Loader Lock bits by SPM

To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCSR

and execute SPM within four clock cycles after writing SPMCSR. The only accessible Lock bits

are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-

ware update by the MCU.

See Table 29-2 on page 347 and Table 29-3 on page 347 for how the different settings of the

Boot Loader bits affect the Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an

SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.

The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to

load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future compatibility it

is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the Lock bits. When pro-

gramming the Lock bits the entire Flash can be read during the operation.

29.7.8 EEPROM Write prevents writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the

Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It

is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies

that the bit is cleared before writing to the SPMCSR Register.

29.7.9 Reading the Fuse and Lock bits from software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the

Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM

instruction is executed within three CPU cycles after the BLBSET and SPMEN bits are set in

SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET and

SPMEN bits will auto-clear upon completion of reading the Lock bits or if no (E)LPM instruction

is executed within three CPU cycles or no SPM instruction is executed within four CPU cycles.

When BLBSET and SPMEN are cleared, (E)LPM will work as described in the Instruction set

Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading

the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET

and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed within three cycles after

the BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will

be loaded in the destination register as shown below. Refer to Table 30-5 on page 361 for a

detailed description and mapping of the Fuse Low byte.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

http://www.atmel.com/Images/doc0856.pdf
http://www.atmel.com/Images/doc0856.pdf

354

7593L–AVR–09/12

AT90USB64/128

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an (E)LPM

instruction is executed within three cycles after the BLBSET and SPMEN bits are set in the

SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as

shown below. Refer to Table 30-4 on page 361 for detailed description and mapping of the Fuse

High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an (E)LPM instruc-

tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,

the value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown

below. Refer to Table 30-3 on page 360 for detailed description and mapping of the Extended

Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are

unprogrammed, will be read as one.

29.7.10 Reading the Signature Row from software

To read the Signature Row from software, load the Z-pointer with the signature byte address

given in Table 29-6 on page 354 and set the SIGRD and SPMEN bits in SPMCSR. When an

LPM instruction is executed within three CPU cycles after the SIGRD and SPMEN bits are set in

SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD and

SPMEN bits will auto-clear upon completion of reading the Signature Row Lock bits or if no LPM

instruction is executed within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will

work as described in the Instruction set Manual.

AT90USB64/128 includes a unique 10-bytes serial number located in the signature row. This

unique serial number can be used as a USB serial number in the device enumeration process.

The pointer addresses to access this unique serial number are given in Table 29-6 on page 354.

Note: All other addresses are reserved for future use.

29.7.11 Preventing flash corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is

too low for the CPU and the Flash to operate properly. These issues are the same as for board

level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a

regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – – EFB2 EFB1 EFB0

Table 29-6. Signature Row addressing.

Signature byte Z-pointer address

Device Signature Byte 1 0x0000

Device Signature Byte 2 0x0002

Device Signature Byte 3 0x0004

RC Oscillator Calibration Byte 0x0001

Unique Serial Number From 0x000E to 0x0018

http://www.atmel.com/Images/doc0856.pdf

355

7593L–AVR–09/12

AT90USB64/128

the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions

is too low.

Flash corruption can easily be avoided by following these design recommendations (one is

sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader
Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating
voltage matches the detection level. If not, an external low VCC reset protection circuit
can be used. If a reset occurs while a write operation is in progress, the write operation
will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

29.7.12 Programming time for flash when using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 29-7 shows the typical pro-

gramming time for Flash accesses from the CPU.

29.7.13 Simple Assembly Code example for a Boot Loader
;- the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y-pointer
; the first data location in Flash is pointed to by the Z-pointer
;- error handling is not included
;- the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;- registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcsrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;- it is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART

Write_page:
; Page Erase
ldi spmcsrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable

Table 29-7. SPM programming time.

Symbol Minimum programming time Maximum programming time

Flash write (Page Erase, Page
Write, and write Lock bits by SPM)

3.7ms 4.5ms

356

7593L–AVR–09/12

AT90USB64/128

ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcsrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcsrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcsrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

357

7593L–AVR–09/12

AT90USB64/128

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcsrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

29.7.14 Atmel AT90USB64/128 Boot Loader parameters

In Table 29-8 through Table 29-10 on page 358, the parameters used in the description of the

self-programming are given.

Note: 1. The different BOOTSZ fuse configurations are shown in Figure 29-2 on page 346.

Note: 1. For details about these two section, see “NRWW – No Read-While-Write section” on page 344
and “RWW – Read-While-Write section” on page 344.

Table 29-8. Boot size configuration (word addresses) (1).

D
e
v
ic

e

B
O

O
T

S
Z

1

B
O

O
T

S
Z

0

B
o

o
t

s
iz

e

P
a
g

e
s

A
p

p
li
c

a
ti

o
n

fl
a

s
h

 s
e

c
ti

o
n

B
o

o
t

L
o

a
d

e
r

fl
a

s
h

 s
e

c
ti

o
n

E
n

d

a
p

p
li
c

a
ti

o
n

s
e
c

ti
o

n

B
o

o
t

re
s

e
t

a
d

d
re

s
s

(s
ta

rt
 B

o
o

t

L
o

a
d

e
r

s
e

c
ti
o

n
)

A
T

9
0
U

S
B

6
4 1 1 512 words 4 0x0000 - 0x7DFF 0x7E00 - 0x7FFF 0x7DFF 0x7E00

1 0 1024 words 8 0x0000 - 0x7BFF 0x7C00 - 0x7FFF 0x7BFF 0x7C00

0 1 2048 words 16 0x0000 - 0x77FF 0x7800 - 0x7FFF 0x77FF 0x7800

0 0 4096 words 32 0x0000 - 0x6FFF 0x7000 - 0x7FFF 0x6FFF 0x7000

A
T

9
0

U
S

B
1
2
8 1 1 512 words 4 0x0000 - 0xFDFF 0xFE00 - 0xFFFF 0xFDFF 0xFE00

1 0 1024 words 8 0x0000 - 0xFBFF 0xFC00 - 0xFFFF 0xFBFF 0xFC00

0 1 2048 words 16 0x0000 - 0xF7FF 0xF800 - 0xFFFF 0xF7FF 0xF800

0 0 4096 words 32 0x0000 - 0xEFFF 0xF000 - 0xFFFF 0xEFFF 0xF000

Table 29-9. Read-While-Write limit (word addresses) (1).

Device Section Pages Address

AT90USB64
Read-While-Write section (RWW) 224 0x0000 - 0x6FFF

No Read-While-Write section (NRWW) 32 0x7000 - 0x7FFF

AT90USB28
Read-While-Write section (RWW) 480 0x0000 - 0xEFFF

No Read-While-Write section (NRWW) 32 0xF000 - 0xFFFF

358

7593L–AVR–09/12

AT90USB64/128

Note: 1. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.

See “Addressing the flash during self-programming” on page 350 for details about the use of Z-

pointer during Self-Programming.

Table 29-10.

Explanation of different variables used in Figure 29-4 on page 351 and the map-
ping to the Z-pointer.

Variable

Corresponding

Z-value Description (1)

PCMSB 16
Most significant bit in the Program Counter. (The
Program Counter is 17 bits PC[16:0])

PAGEMSB 6
Most significant bit which is used to address the
words within one page (128 words in a page requires
seven bits PC [6:0]).

ZPCMSB Z17
Bit in Z-pointer that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z7
Bit in Z-pointer that is mapped to PCMSB. Because
Z0 is not used, the ZPAGEMSB equals PAGEMSB +
1.

PCPAGE PC[16:7] Z17:Z8
Program Counter page address: Page select, for
Page Erase and Page Write

PCWORD PC[6:0] Z7:Z1
Program Counter word address: Word select, for
filling temporary buffer (must be zero during Page
Write operation)

PCMSB 15
Most significant bit in the program counter. (The
program counter is 16 bits PC[15:0])

PAGEMSB 6
Most significant bit which is used to address the
words within one page (128 words in a page requires
7 bits PC [6:0]).

ZPCMSB Z16
Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z7
Bit in Z-register that is mapped to PAGEMSB.
Because Z0 is not used, the ZPAGEMSB equals
PAGEMSB + 1.

PCPAGE PC[15:7] Z16:Z7
Program counter page address: Page select, for
Page Erase and Page Write.

PCWORD PC[6:0] Z7:Z1
Program counter word address: Word select, for
filling temporary buffer (must be zero during PAGE
WRITE operation).

359

7593L–AVR–09/12

AT90USB64/128

30. Memory programming

30.1 Program and data memory lock bits

The Atmel AT90USB64/128 provides six Lock bits, which can be left unprogrammed (“1”) or can

be programmed (“0”) to obtain the additional features listed in Table 30-2. The Lock bits can only

be erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed.

Table 30-1. Lock Bit byte (1).

Lock bit byte Bit no. Description Default value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 0 (programmed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 0 (programmed)

LB1 0 Lock bit 0 (programmed)

Table 30-2. Lock bit protection modes (1)(2).

Memory lock bits Protection type

LB mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is
disabled in Parallel and Serial Programming mode. The
Fuse bits are locked in both Serial and Parallel
Programming mode. (1)

3 0 0

Further programming and verification of the Flash and
EEPROM is disabled in Parallel and Serial Programming
mode. The Boot Lock bits and Fuse bits are locked in both
Serial and Parallel Programming mode. (1)

BLB0 mode BLB02 BLB01

1 1 1
No restrictions for SPM or (E)LPM accessing the
Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

4 0 1

(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

360

7593L–AVR–09/12

AT90USB64/128

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed.

30.2 Fuse bits

The Atmel AT90USB64/128 has four Fuse bytes. Table 30-3 - Table 30-5 on page 361 describe

briefly the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that

the fuses are read as logical zero, “0”, if they are programmed.

Note: 1. See Table 9-2 on page 60 for BODLEVEL Fuse decoding.

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or (E)LPM accessing the Boot
Loader section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section,
and (E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1

(E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

Table 30-2. Lock bit protection modes (1)(2). (Continued)

Memory lock bits Protection type

Table 30-3. Extended Fuse Byte (0xF3).

Fuse low byte Bit no. Description Default value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

HWBE 3 Hardware Boot Enable 0 (programmed)

BODLEVEL2 (1) 2 Brown-out Detector trigger level 0 (programmed)

BODLEVEL1 (1) 1 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0 (1) 0 Brown-out Detector trigger level 1 (unprogrammed)

361

7593L–AVR–09/12

AT90USB64/128

Note: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. See Table 29-8 on page 357 for details.

3. See “WDTCSR – Watchdog Timer Control Register” on page 65 for details.

4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits
and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to
be running in all sleep modes. This may increase the power consumption.

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source
(258K CK + 4.1ms). See Table 9-1 on page 58 for details.

2. The default setting of CKSEL3..0 results in External Crystal Oscillator @ 8MHz. See Table 7-1
on page 41 for details.

3. The CKOUT Fuse allow the system clock to be output on PORTC7. See “Clock output buffer”
on page 47 for details.

4. See “System clock prescaler” on page 47 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if

Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

30.2.1 Latching of fuses

The fuse values are latched when the device enters programming mode and changes of the

fuse values will have no effect until the part leaves Programming mode. This does not apply to

Table 30-4. Fuse High Byte (AT90USB128: 0x99 - AT90USB64: 0x9B).

Fuse high byte Bit no. Description Default value

OCDEN (4) 7 Enable OCD 1 (unprogrammed, OCD disabled)

JTAGEN 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN (1) 5
Enable Serial Program and Data
Downloading

0 (programmed, SPI prog. enabled)

WDTON (3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed, EEPROM not
preserved)

BOOTSZ1 2
Select Boot Size (see Table 30-6
on page 363 for details)

0 (programmed) (2)

BOOTSZ0 1
Select Boot Size (see Table 30-6
on page 363 for details)

0 (programmed) (2) (AT90USB128)

1 (unprogrammed) (2) (AT90USB64)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 30-5. Fuse low byte (0x5E).

Fuse low byte Bit no. Description Default value

CKDIV8 (4) 7 Divide clock by 8 0 (programmed)

CKOUT (3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 0 (programmed) (1)

SUT0 4 Select start-up time 1 (unprogrammed) (1)

CKSEL3 3 Select Clock source 1 (unprogrammed) (2)

CKSEL2 2 Select Clock source 1 (unprogrammed) (2)

CKSEL1 1 Select Clock source 1 (unprogrammed) (2)

CKSEL0 0 Select Clock source 0 (programmed) (2)

362

7593L–AVR–09/12

AT90USB64/128

the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on

Power-up in Normal mode.

30.3 Signature bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This

code can be read in both serial and parallel mode, also when the device is locked. The three

bytes reside in a separate address space.

Atmel AT90USB128x Signature Bytes:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x97 (indicates 128KB Flash memory).

3. 0x002: 0x82 (indicates AT90USB128x device).

Atmel AT90USB64x Signature Bytes:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x96 (indicates 64KB Flash memory).

3. 0x002: 0x82 (indicates AT90USB64x device).

30.4 Calibration byte

The AT90USB64/128 has a byte calibration value for the internal RC Oscillator. This byte

resides in the high byte of address 0x000 in the signature address space. During reset, this byte

is automatically written into the OSCCAL Register to ensure correct frequency of the calibrated

RC Oscillator.

30.5 Parallel programming parameters, pin mapping, and commands

This section describes how to parallel program and verify Flash Program memory, EEPROM

Data memory, Memory Lock bits, and Fuse bits in the AT90USB64/128. Pulses are assumed to

be at least 250ns unless otherwise noted.

30.5.1 Signal names

In this section, some pins of the AT90USB64/128 are referenced by signal names describing

their functionality during parallel programming, see Figure 30-1 on page 363 and Table 30-6 on

page 363. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.

The bit coding is shown in Table 30-9 on page 364.

When pulsing WR or OE, the command loaded determines the action executed. The different

commands are shown in Table 30-10 on page 364.

363

7593L–AVR–09/12

AT90USB64/128

Figure 30-1. Parallel programming (1).

Note: 1. Unused pins should be left floating.

Table 30-6. Pin name mapping.

Signal name in

programming mode Pin name I/O Function

RDY/BSY PD1 O
0: Device is busy programming
1: Device is ready for new command

OE PD2 I Output Enable (active low)

WR PD3 I Write Pulse (active low)

BS1 PD4 I Byte Select 1

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory and EEPROM data Page Load

BS2 PA0 I Byte Select 2

DATA PB7-0 I/O Bi-directional Data bus (Output when OE is low)

Table 30-7. BS2 and BS1 encoding.

BS2 BS1

Flash/EEPROM

address

Flash data

loading/reading

Fuse

programming

Reading fuse and

lock bits

0 0 Low Byte Low Byte Low Byte Fuse Low Byte

0 1 High Byte High Byte High Byte Lock-bits

1 0
Extended High
Byte

Reserved Extended Byte
Extended Fuse
Byte

1 1 Reserved Reserved Reserved Fuse High Byte

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PB7 - PB0 DATA

RESET

PD7

+12V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2

AVCC

+5V

364

7593L–AVR–09/12

AT90USB64/128

Table 30-8. Pin values used to enter programming mode.

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 30-9. XA1 and XA0 enoding.

XA1 XA0 Action when XTAL1 is pulsed

0 0
Load Flash or EEPROM Address (High or low address byte
determined by BS2 and BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 30-10. Command byte bit encoding.

Command byte Command executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 30-11. No. of words in a page and no. of pages in the flash.

Flash size Page Size PCWORD

No. of

pages PCPAGE PCMSB

16K words (32kBytes) 64 words PC[6:0] 256 PC[13:7] 13

32K words (64kBytes) 128 words PC[6:0] 256 PC[14:7] 14

64K words (128kBytes) 128 words PC[6:0] 512 PC[15:7] 15

365

7593L–AVR–09/12

AT90USB64/128

30.6 Parallel programming

30.6.1 Enter programming mode

The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between VCC and GND.

2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 30-8 on page 364 to “0000” and wait at least
100ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100ns after +12V
has been applied to RESET, will cause the device to fail entering programming mode.

5. Wait at least 50µs before sending a new command.

30.6.2 Considerations for efficient programming

The loaded command and address are retained in the device during programming. For efficient

programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory locations

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the

EESAVE Fuse is programmed) and Flash after a Chip Erase

• Address high byte needs only be loaded before programming or reading a new 256 word

window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes

reading

30.6.3 Chip erase

The Chip Erase will erase the Flash and EEPROM (1) memories plus Lock bits. The Lock bits are

not reset until the program memory has been completely erased. The Fuse bits are not

changed. A Chip Erase must be performed before the Flash and/or EEPROM are

reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

Table 30-12. No. of words in a page and no. of pages in the EEPROM.

EEPROM size Page size PCWORD

No. of

pages PCPAGE EEAMSB

1kBytes 4 bytes EEA[2:0] 256 EEA[9:3] 9

2kBytes 8 bytes EEA[2:0] 256 EEA[10:3] 10

4kBytes 8 bytes EEA[2:0] 512 EEA[11:3] 11

366

7593L–AVR–09/12

AT90USB64/128

30.6.4 Programming the Flash

The Flash is organized in pages, see Table 30-11 on page 364. When programming the Flash,

the program data is latched into a page buffer. This allows one page of program data to be pro-

grammed simultaneously. The following procedure describes how to program the entire Flash

memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte (Address bits 7..0)

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS2, BS1 to “00”. This selects the address low byte.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 30-3 on page
368 for signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address

the pages within the FLASH. This is illustrated in Figure 30-2 on page 367. Note that if less than

eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)

in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte (Address bits15..8)

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS2, BS1 to “01”. This selects the address high byte.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Load Address Extended High byte (Address bits 23..16)

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS2, BS1 to “10”. This selects the address extended high byte.

367

7593L–AVR–09/12

AT90USB64/128

3. Set DATA = Address extended high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

I. Program Page

1. Set BS2, BS1 to “00”

2. Give WR a negative pulse. This starts programming of the entire page of data.
RDY/BSY goes low.

3. Wait until RDY/BSY goes high (see Figure 30-3 on page 368 for signal waveforms).

J. Repeat B through I until the entire Flash is programmed or until all data has been

programmed.

K. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals
are reset.

Figure 30-2. Addressing the Flash which is organized in pages (1).

Note: 1. PCPAGE and PCWORD are listed in Table 30-11 on page 364.

PROGRAM MEMORY

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM

COUNTER

368

7593L–AVR–09/12

AT90USB64/128

Figure 30-3. Programming the Flash waveforms (1).

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

30.6.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 30-12 on page 365. When programming the

EEPROM, the program data is latched into a page buffer. This allows one page of data to be

programmed simultaneously. The programming algorithm for the EEPROM data memory is as

follows (refer to “Programming the Flash” on page 366 for details on Command, Address and

Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS2, BS1 to “00”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (see Figure 30-4
on page 369 for signal waveforms).

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGH
DATA

DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G

F

ADDR. EXT.H

H I

369

7593L–AVR–09/12

AT90USB64/128

Figure 30-4. Programming the EEPROM waveforms.

30.6.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on

page 366 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. H: Load Address Extended Byte (0x00- 0xFF).

3. G: Load Address High Byte (0x00 - 0xFF).

4. B: Load Address Low Byte (0x00 - 0xFF).

5. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

6. Set BS to “1”. The Flash word high byte can now be read at DATA.

7. Set OE to “1”.

30.6.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”

on page 366 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

30.6.8 Programming the Fuse Low bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”

on page 366 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

370

7593L–AVR–09/12

AT90USB64/128

30.6.9 Programming the Fuse High bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming the

Flash” on page 366 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS2, BS1 to “01”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS2, BS1 to “00”. This selects low data byte.

30.6.10 Programming the Extended Fuse bits

The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming the

Flash” on page 366 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS2, BS1 to “10”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2, BS1 to “00”. This selects low data byte.

Figure 30-5. Programming the FUSES waveforms.

30.6.11 Programming the Lock bits

The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on

page 366 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write fuse low byte Write fuse high byte

0x40 DATA XX

A C

Write extended fuse byte

BS2

371

7593L–AVR–09/12

AT90USB64/128

30.6.12 Reading the Fuse and Lock bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash”

on page 366 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, and BS2, BS1 to “00”. The status of the Fuse Low bits can now be read
at DATA (“0” means programmed).

3. Set OE to “0”, and BS2, BS1 to “11”. The status of the Fuse High bits can now be read
at DATA (“0” means programmed).

4. Set OE to “0”, and BS2, BS1 to “10”. The status of the Extended Fuse bits can now be
read at DATA (“0” means programmed).

5. Set OE to “0”, and BS2, BS1 to “01”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

6. Set OE to “1”.

Figure 30-6. Mapping between BS1, BS2 and the Fuse and Lock Bits during read.

30.6.13 Reading the Signature bytes

The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on

page 366 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

30.6.14 Reading the Calibration byte

The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on

page 366 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

Lock bits 0

1

BS2

Fuse high byte

0

1

BS1

DATA

Fuse low byte 0

1

BS2

Extended fuse byte

372

7593L–AVR–09/12

AT90USB64/128

30.6.15 Parallel programming characteristics

Figure 30-7. Parallel programming timing, including some general timing requirements.

Figure 30-8. Parallel programming timing, loading sequence with timing requirements (1).

Note: 1. The timing requirements shown in Figure 30-7 (that is, tDVXH, tXHXL, and tXLDX) also apply to
loading operation.

Figure 30-9. Parallel programming timing, reading sequence (within the same page) with tim-
ing requirements (1).

Data & control
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low byte) DATA (Low byte) DATA (High byte) ADDR1 (Low byte)DATA

BS1

XA0

XA1

LOAD ADDRESS

(LOW BYTE)

LOAD DATA

(LOW BYTE)

LOAD DATA

(HIGH BYTE)

LOAD DATA LOAD ADDRESS

(LOW BYTE)

XTAL1

OE

ADDR0 (Low byte) DATA (Low byte) DATA (High byte) ADDR1 (Low byte)DATA

BS1

XA0

XA1

LOAD ADDRESS

(LOW BYTE)

READ DATA

(LOW BYTE)

READ DATA

(HIGH BYTE)

LOAD ADDRESS

(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

373

7593L–AVR–09/12

AT90USB64/128

Note: 1. The timing requirements shown in Figure 30-7 (that is, tDVXH, tXHXL, and tXLDX) also apply to
reading operation.

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

30.7 Serial downloading

Both the Flash and EEPROM memory arrays can be programmed using a serial programming

bus while RESET is pulled to GND. The serial programming interface consists of pins SCK, PDI

(input) and PDO (output). After RESET is set low, the Programming Enable instruction needs to

be executed first before program/erase operations can be executed. NOTE, in Table 30-14 on

page 374, the pin mapping for serial programming is listed. Not all packages use the SPI pins

dedicated for the internal Serial Peripheral Interface - SPI.

Table 30-13. Parallel programming characteristics, VCC = 5V ±10%.

Symbol Parameter Min. Typ. Max. Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67

ns

tXLXH XTAL1 Low to XTAL1 High 200

tXHXL XTAL1 Pulse Width High 150

tXLDX Data and Control Hold after XTAL1 Low 67

tXLWL XTAL1 Low to WR Low 0

tXLPH XTAL1 Low to PAGEL high 0

tPLXH PAGEL low to XTAL1 high 150

tBVPH BS1 Valid before PAGEL High 67

tPHPL PAGEL Pulse Width High 150

tPLBX BS1 Hold after PAGEL Low 67

tWLBX BS2/1 Hold after WR Low 67

tPLWL PAGEL Low to WR Low 67

tBVWL BS2/1 Valid to WR Low 67

tWLWH WR Pulse Width Low 150

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High (1) 3.7 4.5
ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase (2) 7.5 9

tXLOL XTAL1 Low to OE Low 0

ns
tBVDV BS1 Valid to DATA valid 0 250

tOLDV OE Low to DATA Valid 250

tOHDZ OE High to DATA Tri-stated 250

374

7593L–AVR–09/12

AT90USB64/128

30.8 Serial programming pin mapping

Figure 30-10. Serial programming and verify (1).

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8 - 5.5V.

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming

operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase

instruction. The Chip Erase operation turns the content of every memory location in both the

Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods

for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz

High: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz

30.8.1 Serial programming algorithm

When writing serial data to the Atmel AT90USB64/128, data is clocked on the rising edge of

SCK. When reading data from the AT90USB64/128, data is clocked on the falling edge of SCK.

See Figure 30-11 on page 375 for timing details.

To program and verify the AT90USB64/128 in the serial programming mode, the following

sequence is recommended (See four byte instruction formats in Table 30-16 on page 376):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20ms and enable serial programming by sending the Programming
Enable serial instruction to pin PDI.

Table 30-14. Pin mapping serial programming.

Symbol Pins (TQFP-64) I/O Description

PDI PB2 I Serial Data in

PDO PB3 O Serial Data out

SCK PB1 I Serial Clock

VCC

GND

XTAL1

SCK

PDO

PDI

RESET

+1.8 - 5.5V

AVCC

+1.8 - 5.5V
(2)

375

7593L–AVR–09/12

AT90USB64/128

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the
third byte of the Programming Enable instruction. Whether the echo is correct or not, all
four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give
RESET a positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at
a time by supplying the 7 LSB of the address and data together with the Load Program
Memory Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for a given address. The Program Memory
Page is stored by loading the Write Program Memory Page instruction with the address
lines 15..8. Before issuing this command, make sure the instruction Load Extended
Address Byte has been used to define the MSB of the address. The extended address
byte is stored until the command is re-issued, i.e., the command needs only be issued
for the first page, and when crossing the 64KWord boundary. If polling (RDY/BSY) is not
used, the user must wait at least tWD_FLASH before issuing the next page. (See Table 30-
15.) Accessing the serial programming interface before the Flash write operation com-
pletes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is
first automatically erased before new data is written. If polling is not used, the user must
wait at least tWD_EEPROM before issuing the next byte. (See Table 30-15.) In a chip
erased device, no 0xFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the
content at the selected address at serial output PDO. When reading the Flash memory,
use the instruction Load Extended Address Byte to define the upper address byte,
which is not included in the Read Program Memory instruction. The extended address
byte is stored until the command is re-issued, that is, the command needs only be
issued for the first page, and when crossing the 64KWord boundary.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

Figure 30-11. Serial programming waveforms.

Table 30-15. Minimum wait delay before writing the next Flash or EEPROM location.

Symbol Minimum wait delay

tWD_FLASH 4.5ms

tWD_EEPROM 9.0ms

tWD_ERASE 9.0ms

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

376

7593L–AVR–09/12

AT90USB64/128

Table 30-16. Serial programming instruction set.

Instruction

Instruction format

OperationByte 1 Byte 2 Byte 3 Byte 4

Programming Enable
1010 1100 0101 0011 xxxx xxxx xxxx xxxx Enable Serial Programming after

RESET goes low.

Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip Erase EEPROM and Flash.

Load Extended Address Byte
0100 1101 0000 0000 cccc cccc xxxx xxxx Defines Extended Address Byte for

Read Program Memory and Write
Program Memory Page.

Read Program Memory
0010 H000 aaaa aaaa bbbb bbbb oooo oooo Read H (high or low) data o from

Program memory at word address
c:a:b.

Load Program Memory Page

0100 H000 xxxx xxxx xxbb bbbb iiii iiii Write H (high or low) data i to Program
Memory page at word address b. Data
low byte must be loaded before Data
high byte is applied within the same
address.

Write Program Memory Page
0100 1100 aaaa aaaa bbxx xxxx xxxx xxxx Write Program Memory Page at

address c:a:b.

Read EEPROM Memory
1010 0000 0000 aaaa bbbb bbbb oooo oooo Read data o from EEPROM memory at

address a:b.

Write EEPROM Memory
1100 0000 0000 aaaa bbbb bbbb iiii iiii Write data i to EEPROM memory at

address a:b.

Load EEPROM Memory
Page (page access)

1100 0001 0000 0000 0000 00bb iiii iiii Load data i to EEPROM memory page
buffer. After data is loaded, program
EEPROM page.

Write EEPROM Memory
Page (page access)

1100 0010 0000 aaaa bbbb bb00 xxxx xxxx
Write EEPROM page at address a:b.

Read Lock bits
0101 1000 0000 0000 xxxx xxxx xxoo oooo Read Lock bits. “0” = programmed, “1”

= unprogrammed. See Table 30-1 on
page 359 for details.

Write Lock bits
1010 1100 111x xxxx xxxx xxxx 11ii iiii Write Lock bits. Set bits = “0” to

program Lock bits. See Table 30-1 on
page 359 for details.

Read Signature Byte 0011 0000 000x xxxx xxxx xxbb oooo oooo Read Signature Byte o at address b.

Write Fuse bits
1010 1100 1010 0000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to

unprogram.

Write Fuse High bits
1010 1100 1010 1000 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to

unprogram.

Write Extended Fuse Bits
1010 1100 1010 0100 xxxx xxxx iiii iiii Set bits = “0” to program, “1” to

unprogram. See Table 30-3 on page
360 for details.

Read Fuse bits
0101 0000 0000 0000 xxxx xxxx oooo oooo Read Fuse bits. “0” = programmed, “1”

= unprogrammed.

Read Fuse High bits
0101 1000 0000 1000 xxxx xxxx oooo oooo Read Fuse High bits. “0” = pro-

grammed, “1” = unprogrammed.

377

7593L–AVR–09/12

AT90USB64/128

Note: a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in,
x = don’t care.

30.8.2 Serial programming characteristics

For characteristics of the Serial Programming module see “SPI timing characteristics” on page

395.

30.9 Programming via the JTAG interface

Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,

TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is

default shipped with the fuse programmed. In addition, the JTD bit in MCUCR must be cleared.

Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be

cleared after two chip clocks, and the JTAG pins are available for programming. This provides a

means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-

tem Programming via the JTAG interface. Note that this technique can not be used when using

the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-

icated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maximum fre-

quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input

into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

30.9.1 Programming specific JTAG instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions

useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text

describes which Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be

used as an idle state between JTAG sequences. The state machine sequence for changing the

instruction word is shown in Figure 30-12 on page 378.

Read Extended Fuse Bits
0101 0000 0000 1000 xxxx xxxx oooo oooo Read Extended Fuse bits. “0” = pro-

grammed, “1” = unprogrammed. See
Table 30-3 on page 360 for details.

Read Calibration Byte 0011 1000 000x xxxx 0000 0000 oooo oooo Read Calibration Byte

Poll RDY/BSY
1111 0000 0000 0000 xxxx xxxx xxxx xxxo If o = “1”, a programming operation is

still busy. Wait until this bit returns to
“0” before applying another command.

Table 30-16. Serial programming instruction set. (Continued)

Instruction

Instruction format

OperationByte 1 Byte 2 Byte 3 Byte 4

378

7593L–AVR–09/12

AT90USB64/128

Figure 30-12. State machine sequence for changing the instruction word.

30.9.2 AVR_RESET (0xC)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking

the device out from the Reset mode. The TAP controller is not reset by this instruction. The one

bit Reset Register is selected as Data Register. Note that the reset will be active as long as there

is a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input

30.9.3 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-

bit Programming Enable Register is selected as Data Register. The active states are the

following:

• Shift-DR: The programming enable signature is shifted into the Data Register

• Update-DR: The programming enable signature is compared to the correct value, and

Programming mode is entered if the signature is valid

Test-logic-reset

Run-test/idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

379

7593L–AVR–09/12

AT90USB64/128

30.9.4 PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG

port. The 15-bit Programming Command Register is selected as Data Register. The active

states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous

command and shifting in the new command

• Update-DR: The programming command is applied to the Flash inputs

• Run-Test/Idle: One clock cycle is generated, executing the applied command

30.9.5 PROG_PAGELOAD (0x6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.

An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the eight

LSBs of the Programming Command Register. The active states are the following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary register.

A write sequence is initiated that within 11 TCK cycles loads the content of the temporary

register into the Flash page buffer. The AVR automatically alternates between writing the low

and the high byte for each new Update-DR state, starting with the low byte for the first

Update-DR encountered after entering the PROG_PAGELOAD command. The Program

Counter is pre-incriminated before writing the low byte, except for the first written byte. This

ensures that the first data is written to the address set up by PROG_COMMANDS, and

loading the last location in the page buffer does not make the program counter increment into

the next page

30.9.6 PROG_PAGEREAD (0x7)

The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.

An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs

of the Programming Command Register. The active states are the following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte

Register. The AVR automatically alternates between reading the low and the high byte for

each new Capture-DR state, starting with the low byte for the first Capture-DR encountered

after entering the PROG_PAGEREAD command. The Program Counter is post-incremented

after reading each high byte, including the first read byte. This ensures that the first data is

captured from the first address set up by PROG_COMMANDS, and reading the last location

in the page makes the program counter increment into the next page

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input

30.9.7 Data Registers

The Data Registers are selected by the JTAG instruction registers described in section “Pro-

gramming specific JTAG instructions” on page 377. The Data Registers relevant for

programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register

380

7593L–AVR–09/12

AT90USB64/128

30.9.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is

required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset

as long as there is a high value present in the Reset Register. Depending on the Fuse settings

for the clock options, the part will remain reset for a Reset Time-out period (refer to “Clock

sources” on page 41) after releasing the Reset Register. The output from this Data Register is

not latched, so the reset will take place immediately, as shown in Figure 9-1 on page 58.

30.9.9 Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared

to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-

tents of the register is equal to the programming enable signature, programming via the JTAG

port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when

leaving Programming mode.

Figure 30-13. Programming enable register.

30.9.10 Programming Command Register

The Programming Command Register is a 15-bit register. This register is used to serially shift in

programming commands, and to serially shift out the result of the previous command, if any. The

JTAG Programming Instruction Set is shown in Table 30-17 on page 382. The state sequence

when shifting in the programming commands is illustrated in Figure 30-15 on page 385.

TDI

TDO

D

A

T

A

= D Q

ClockDR & PROG_ENABLE

Programming enable

0xA370

381

7593L–AVR–09/12

AT90USB64/128

Figure 30-14. Programming Command register.
TDI

TDO

S

T

R

O

B

E

S

A

D

D

R

E

S

S

/

D

A

T

A

Flash
EEPROM

fuses
lock bits

382

7593L–AVR–09/12

AT90USB64/128

Table 30-17. JTAG programming instruction set.
a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i =

data in, x = don’t care.

Instruction TDI sequence TDO sequence Notes

1a. Chip Erase

0100011_10000000

0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10)

2c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx

2d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2f. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2g. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Write Flash Page

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2i. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10)

3c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx

3d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3e. Read Data Low and High Byte

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

383

7593L–AVR–09/12

AT90USB64/128

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte

0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte (6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse Extended Byte

0111011_00000000

0111001_00000000

0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte (7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse High Byte

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6h. Load Data Low Byte (7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6i. Write Fuse Low Byte

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte (9) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte (6) 0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse High Byte (7) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

Table 30-17. JTAG programming instruction set. (Continued)
a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i =

data in, x = don’t care.

Instruction TDI sequence TDO sequence Notes

384

7593L–AVR–09/12

AT90USB64/128

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.

3. Set bits to “0” to program the corresponding Fuse, “1” to un-program the Fuse.

4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.

5. “0” = programmed, “1” = un-programmed.

6. The bit mapping for Fuses Extended byte is listed in Table 30-3 on page 360.

7. The bit mapping for Fuses High byte is listed in Table 30-4 on page 361.

8. The bit mapping for Fuses Low byte is listed in Table 30-5 on page 361.

9. The bit mapping for Lock bits byte is listed in Table 30-1 on page 359.

10. Address bits exceeding PCMSB and EEAMSB (Table 30-11 on page 364 and Table 30-12 on page 365) are don’t care.

11. All TDI and TDO sequences are represented by binary digits (0b...).

8d. Read Fuse Low Byte (8) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8e. Read Lock Bits (9) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxoooooo
(5)

8f. Read Fuses and Lock Bits

0111010_00000000

0111110_00000000

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

xxxxxxx_oooooooo

xxxxxxx_oooooooo

(5)

Fuse Ext. byte

Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

11a. Load No Operation Command
0100011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

Table 30-17. JTAG programming instruction set. (Continued)
a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i =

data in, x = don’t care.

Instruction TDI sequence TDO sequence Notes

385

7593L–AVR–09/12

AT90USB64/128

Figure 30-15. State machine sequence for changing/reading the data word.

30.9.11 Flash Data Byte Register

The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer

before executing Page Write, or to read out/verify the content of the Flash. A state machine sets

up the control signals to the Flash and senses the strobe signals from the Flash, thus only the

data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-

ister. During page load, the Update-DR state copies the content of the scan chain over to the

temporary register and initiates a write sequence that within 11 TCK cycles loads the content of

the temporary register into the Flash page buffer. The AVR automatically alternates between

writing the low and the high byte for each new Update-DR state, starting with the low byte for the

first Update-DR encountered after entering the PROG_PAGELOAD command. The Program

Counter is pre-incremented before writing the low byte, except for the first written byte. This

ensures that the first data is written to the address set up by PROG_COMMANDS, and loading

the last location in the page buffer does not make the Program Counter increment into the next

page.

During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte

Register during the Capture-DR state. The AVR automatically alternates between reading the

low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-

Test-logic-reset

Run-test/idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

386

7593L–AVR–09/12

AT90USB64/128

ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is

post-incremented after reading each high byte, including the first read byte. This ensures that

the first data is captured from the first address set up by PROG_COMMANDS, and reading the

last location in the page makes the program counter increment into the next page.

Figure 30-16. Flash Data Byte Register.

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal

operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate

through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-

ter with sufficient number of clock pulses to complete its operation transparently for the user.

However, if too few bits are shifted between each Update-DR state during page load, the TAP

controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at

least 11 TCK cycles between each Update-DR state.

30.9.12 Programming algorithm

All references below of type “1a”, “1b”, and so on, refer to Table 30-17 on page 382.

30.9.13 Entering Programming mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

30.9.14 Leaving Programming mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

TDI

TDO

D

A

T

A

Flash
EEPROM

fuses
lock bits

STROBES

ADDRESS

State

machine

387

7593L–AVR–09/12

AT90USB64/128

30.9.15 Performing Chip Erase

1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE
(refer to Table 30-13 on page 373).

30.9.16 Programming the Flash

Before programming the Flash a Chip Erase must be performed, see “Performing Chip Erase”

on page 387.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address Extended High byte using programming instruction 2b.

4. Load address High byte using programming instruction 2c.

5. Load address Low byte using programming instruction 2d.

6. Load data using programming instructions 2e, 2f and 2g.

7. Repeat steps 5 and 6 for all instruction words in the page.

8. Write the page using programming instruction 2h.

9. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer to
Table 30-13 on page 373).

10. Repeat steps 3 to 9 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b, 2c and 2d. PCWORD (refer
to Table 30-11 on page 364) is used to address within one page and must be written as
0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, start-
ing with the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte
Register into the Flash page location and to auto-increment the Program Counter
before each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2h.

8. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer to
Table 30-13 on page 373).

9. Repeat steps 3 to 8 until all data have been programmed.

30.9.17 Reading the Flash

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b, 3c and 3d.

4. Read data using programming instruction 3e.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

388

7593L–AVR–09/12

AT90USB64/128

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b, 3c and 3d. PCWORD (refer
to Table 30-11 on page 364) is used to address within one page and must be written as
0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page (or
Flash), starting with the LSB of the first instruction in the page (Flash) and ending with
the MSB of the last instruction in the page (Flash). The Capture-DR state both captures
the data from the Flash, and also auto-increments the program counter after each word
is read. Note that Capture-DR comes before the shift-DR state. Hence, the first byte
which is shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

30.9.18 Programming the EEPROM

Before programming the EEPROM a Chip Erase must be performed, see “Performing Chip

Erase” on page 387.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH
(refer to Table 30-13 on page 373).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

30.9.19 Reading the EEPROM

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

30.9.20 Programming the Fuses

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will program
the corresponding fuse, a “1” will un-program the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to
Table 30-13 on page 373).

389

7593L–AVR–09/12

AT90USB64/128

6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to
Table 30-13 on page 373).

30.9.21 Programming the Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer
to Table 30-13 on page 373).

30.9.22 Reading the Fuses and Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

30.9.23 Reading the Signature Bytes

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

30.9.24 Reading the Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.

390

7593L–AVR–09/12

AT90USB64/128

31. Electrical characteristics for Atmel AT90USB64/128

31.1 Absolute maximum ratings*

31.2 DC characteristics

Operating temperature..................................... -40°C to +85°C *NOTICE: Stresses beyond those listed under �Absolute

maximum ratings� may cause permanent dam-

age to the device. This is a stress rating only and

functional operation of the device at these or

other conditions beyond those indicated in the

operational sections of this specification is not

implied. Exposure to absolute maximum rating

conditions for extended periods may affect

device reliability.

Storage temperature...................................... -65°C to +150°C

Voltage on any pin except RESET and VBUS
with respect to ground (7)-0.5V to VCC+0.5V

Voltage on RESET with respect to ground-0.5V to +13.0V

Voltage on VBUS with respect to ground...........-0.5V to +6.0V

Maximum operating voltage.. +6.0V

DC current per I/O pin.. 40.0mA

DC current VCC and GND pins 200.0mA

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (unless otherwise noted).

Symbol Parameter Condition Min. (5) Typ. Max. (5) Units

VIL
Input Low Voltage,Except
XTAL1 and Reset pin

VCC = 2.7V - 5.5V -0.5 0.2VCC
(1)

V

VIL1
Input Low Voltage,
XTAL1 pin

VCC = 2.7V - 5.5V -0.5 0.1VCC
(1)

VIL2
Input Low Voltage,
RESET pin

VCC = 2.7V - 5.5V -0.5 0.1VCC
(1)

VIH

Input High Voltage,
Except XTAL1 and
RESET pins

VCC = 2.7V - 5.5V 0.6VCC
(2) VCC + 0.5

VIH1
Input High Voltage,
XTAL1 pin

VCC = 2.7V - 5.5V 0.7VCC
(2) VCC + 0.5

VIH2
Input High Voltage,
RESET pin

VCC = 2.7V - 5.5V 0.9VCC
(2) VCC + 0.5

VOL Output Low Voltage (3) IOL = 10mA, VCC = 5V
IOL = 5mA, VCC = 3V

0.3

0.2

0.7
0.5

VOH Output High Voltage (4)
IOH = -20mA, VCC = 5V
IOH = -10mA, VCC = 3V

4.2
2.3

4.5

2.6

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low

(absolute value)
1

µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1

RRST Reset Pull-up Resistor 30 60
kΩ

RPU I/O Pin Pull-up Resistor 20 50

391

7593L–AVR–09/12

AT90USB64/128

Note: 1. "Max" means the highest value where the pin is guaranteed to be read as low

2. "Min" means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
Atmel AT90USB64/128:
1.)The sum of all IOL, for ports A0-A7, G2, C4-C7 should not exceed 100mA.
2.)The sum of all IOL, for ports C0-C3, G0-G1, D0-D7 should not exceed 100mA.
3.)The sum of all IOL, for ports G3-G5, B0-B7, E0-E7 should not exceed 100mA.
4.)The sum of all IOL, for ports F0-F7 should not exceed 100mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
AT90USB64/128:
1)The sum of all IOH, for ports A0-A7, G2, C4-C7 should not exceed 100mA.
2)The sum of all IOH, for ports C0-C3, G0-G1, D0-D7 should not exceed 100mA.
3)The sum of all IOH, for ports G3-G5, B0-B7, E0-E7 should not exceed 100mA.
4)The sum of all IOH, for ports F0-F7 should not exceed 100mA.

5. All DC Characteristics contained in this datasheet are based on simulation and characterization of other AVR microcon-
trollers manufactured in the same process technology. These values are preliminary values representing design targets, and
will be updated after characterization of actual silicon

6. Values with “PRR1 – Power Reduction Register 1” disabled (0x00).

ICC Power Supply Current (6)

Active 4MHz, VCC = 3V

(AT90USB64/128)
2.5 5

mA

Active 8MHz, VCC = 3V

(AT90USB64/128)
5 10

Active 8MHz, VCC = 5V

(AT90USB64/128)
10 18

Active 16MHz, VCC = 5V

(AT90USB64/128)
19 30

Icc Power-down mode

WDT enabled, BOD
enabled, VCC = 3V, 25°C

30

µA
WDT enabled, BOD
disabled, VCC = 3V, 25°C

10

WDT disabled, BOD
disabled, VCC = 3V, 25°C

2

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V

Vin = VCC/2
10 40 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

Iq
USB Regulator Quiescent
Current

UVCC >3.6V, I = 0mA 10 30 µA

Vusb
USB Regulator Output
Voltage (Ucap)

UVCC >3.6V, I = 40mA (8) 3.0 3.3 3.5 V

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (unless otherwise noted). (Continued)

Symbol Parameter Condition Min. (5) Typ. Max. (5) Units

392

7593L–AVR–09/12

AT90USB64/128

7. As specified on the USB Electrical chapter of USB Specifications 2.0, the D+/D- pads can withstand voltages down to -1V
applied through a 39Ω resistor

8. USB Peripheral consumes up to 50mA from the regulator or UVCC pin when USB is used at full-load

31.3 External clock drive waveforms

Figure 31-1. External clock drive waveforms.

31.4 External clock drive

Note: All DC characteristics contained in this datasheet are based on simulation and characterization of
other AVR microcontrollers manufactured in the same process technology. These values are pre-
liminary values representing design targets, and will be updated after characterization of actual
silicon.

31.5 Maximum speed vs. VCC

Maximum frequency is depending on VCC. As shown in Figure 31-2 on page 393, the maximum

frequency vs. VCC curve is linear between 2.7V < VCC < 5.5V.

VIL1

VIH1

Table 31-1. External clock drive.

Symbol Parameter

VCC=1.8-5.5V VCC=2.7-5.5V VCC=4.5-5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL
Oscillator
Frequency

0 2 0 8 0 16 MHz

tCLCL Clock Period 500 125 62.5

nstCHCX High Time 200 50 25

tCLCX Low Time 200 50 25

tCLCH Rise Time 2.0 1.6 0.5
μs

tCHCL Fall Time 2.0 1.6 0.5

ΔtCLCL

Change in period
from one clock
cycle to the next

2 2 2 %

393

7593L–AVR–09/12

AT90USB64/128

Figure 31-2. Maximum frequency vs. VCC, Atmel AT90USB64/128.

31.6 2-wire serial interface characteristics

Table 31-2 describes the requirements for devices connected to the 2-wire Serial Bus. The AT90USB64/128 2-wire Serial

Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 31-3 on page 394.

16MHz

8MHz

Table 31-2. 2-wire serial bus requirements.

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC

V
VIH Input High-voltage 0.7 VCC VCC + 0.5

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) –

VOL
(1) Output Low-voltage 3mA sink current 0 0.4

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300

nstof
(1) Output Fall Time from VIHmin to VILmax 10pF < Cb < 400pF (3) 20 + 0.1Cb

(3)(2) 250

tSP
(1) Spikes Suppressed by Input Filter 0 50 (2)

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz) (5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100kHz

fSCL > 100kHz

V
CC

0.4V–

3mA

1000ns
C
b

Ω
V
CC

0.4V–

3mA

300ns
C
b

394

7593L–AVR–09/12

AT90USB64/128

Notes: 1. In Atmel AT90USB64/128, this parameter is characterized and not 100% tested.

2. Required only for fSCL >100kHz.

3. Cb = capacitance of one bus line in pF.

4. fCK = CPU clock frequency

5. This requirement applies to all AT90USB64/128 2-wire Serial Interface operation. Other devices connected to the 2-wire
Serial Bus need only obey the general fSCL requirement.

6. The actual low period generated by the AT90USB64/128 2-wire Serial Interface is (1/fSCL - 2/fCK), thus fCK must be greater
than 6MHz for the low time requirement to be strictly met at fSCL = 100kHz.

7. The actual low period generated by the AT90USB64/128 2-wire Serial Interface is (1/fSCL - 2/fCK), thus the low time require-
ment will not be strictly met for fSCL > 308kHz when fCK = 8MHz. Still, AT90USB64/128 devices connected to the bus may
communicate at full speed (400kHz) with other AT90USB64/128 devices, as well as any other device with a proper tLOW

acceptance margin.

Figure 31-3. 2-wire serial bus timing.

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100kHz 4.0 –

µs

fSCL > 100kHz 0.6 –

tLOW Low Period of the SCL Clock
fSCL ≤ 100kHz (6) 4.7 –

fSCL > 100kHz (7) 1.3 –

tHIGH High period of the SCL clock
fSCL ≤ 100kHz 4.0 –

fSCL > 100kHz 0.6 –

tSU;STA
Set-up time for a repeated START
condition

fSCL ≤ 100kHz 4.7 –

fSCL > 100kHz 0.6 –

tHD;DAT Data hold time
fSCL ≤ 100kHz 0 3.45

fSCL > 100kHz 0 0.9

tSU;DAT Data setup time
fSCL ≤ 100kHz 250 –

ns
fSCL > 100kHz 100 –

tSU;STO Setup time for STOP condition
fSCL ≤ 100kHz 4.0 –

µs
fSCL > 100kHz 0.6 –

tBUF
Bus free time between a STOP and
START condition

fSCL ≤ 100kHz 4.7 –

fSCL > 100kHz 1.3 –

Table 31-2. 2-wire serial bus requirements. (Continued)

Symbol Parameter Condition Min Max Units

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

395

7593L–AVR–09/12

AT90USB64/128

31.7 SPI timing characteristics

See Figure 31-4 and Figure 31-5 on page 396 for details.

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK <12MHz
- 3 tCLCL for fCK >12MHz

Figure 31-4. SPI interface timing requirements (master mode).

Table 31-3. SPI timing parameters.

Description Mode Min. Typ. Max.

1 SCK period Master
See Table 18-4 on

page 174

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 × tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 × tck

11 SCK high/low (1) Slave 2 × tck

12 Rise/Fall time Slave 1.6 µs

13 Setup Slave 10

ns

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20

MOSI

(Data output)

SCK

(CPOL = 1)

MISO

(Data input)

SCK

(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

396

7593L–AVR–09/12

AT90USB64/128

Figure 31-5. SPI interface timing requirements (slave mode).

31.8 Hardware boot entrance timing characteristics

Figure 31-6. Hardware boot timing requirements.

MISO

(Data output)

SCK

(CPOL = 1)

MOSI

(Data input)

SCK

(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

Table 31-4. Hardware boot timings.

Symbol Parameter Min. Max.

tSHRH HWB low Setup before Reset High 0

tHHRH HWB low Hold after Reset High
StartUpTime (SUT)

+
Time Out Delay (TOUT)

RESET

ALE/HWB

tSHRH tHHRH

397

7593L–AVR–09/12

AT90USB64/128

31.9 ADC characteristics

Table 31-5. ADC characteristics.

Symbol Parameter Condition Min. Typ. Max. Units

Resolution

Single Ended Conversion 10

Bits

Differential Conversion

Gain = 1× or 10×
8

Differential Conversion

Gain = 200×
7

Absolute accuracy (Including
INL, DNL, quantization error,
gain and offset error)

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

1.5

LSB

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 1MHz

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

Noise Reduction Mode

1.5

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 1MHz
Noise Reduction Mode

Absolute accuracy

Gain = 1×, 10×, 200×

VREF = 4V, VCC = 5V

ADC Clock = 50 - 200kHz

1

Integral Non-Linearity (INL)
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

0.5 1

Integral Non-Linearity (INL)

(Accuracy after calibration for
offset and gain error)

Gain = 1×, 10×, 200×

VREF = 4V, VCC = 5V

ADC Clock = 50 - 200kHz

0.5 1

Differential Non-Linearity (DNL)
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

0.3 1

Gain Error

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

-2 0 +2

Gain = 1×, 10×, 200× -2 0 +2

Offset Error

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200kHz

-2 1 +2

Gain = 1×, 10×, 200×

VREF = 4V, VCC = 5V

ADC Clock = 50 - 200kHz

-1 0 +1

Conversion Time Free Running Conversion 65 260 µs

Clock Frequency Single Ended Conversion 50 1000 kHz

398

7593L–AVR–09/12

AT90USB64/128

AVCC Analog Supply Voltage VCC - 0.3 VCC + 0.3

V
VREF Reference Voltage

Single Ended Conversion 2.0 AVCC

Differential Conversion 2.0 AVCC - 0.5

VIN Input Voltage
Single ended channels 0 VREF

Differential Conversion 0 AVCC

Input Bandwidth
Single Ended Channels 38,5

kHz
Differential Channels 4

VINT1 Internal Voltage Reference 1.1V 1.0 1.1 1.2
V

VINT2 Internal Voltage Reference 2.56V 2.4 2.56 2.8

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

Table 31-5. ADC characteristics. (Continued)

Symbol Parameter Condition Min. Typ. Max. Units

399

7593L–AVR–09/12

AT90USB64/128

31.10 External data memory timing

Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.

2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.

Table 31-6. External data memory characteristics, 4.5 - 5.5 Volts, no wait-state.

Symbol Parameter

8MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

1 tLHLL ALE Pulse Width 115 1.0tCLCL-10

ns

2 tAVLL Address Valid A to ALE Low 57.5 0.5tCLCL-5 (1)

3a tLLAX_ST
Address Hold After ALE Low,
write access

5 5

3b tLLAX_LD
Address Hold after ALE Low,
read access

5 5

4 tAVLLC Address Valid C to ALE Low 57.5 0.5tCLCL-5 (1)

5 tAVRL Address Valid to RD Low 115 1.0tCLCL-10

6 tAVWL Address Valid to WR Low 115 1.0tCLCL-10

7 tLLWL ALE Low to WR Low 47.5 67.5 0.5tCLCL-15 (2) 0.5tCLCL+5 (2)

8 tLLRL ALE Low to RD Low 47.5 67.5 0.5tCLCL-15 (2) 0.5tCLCL+5 (2)

9 tDVRH Data Setup to RD High 40 40

10 tRLDV Read Low to Data Valid 75 1.0tCLCL-50

11 tRHDX Data Hold After RD High 0 0

12 tRLRH RD Pulse Width 115 1.0tCLCL-10

13 tDVWL Data Setup to WR Low 42.5 0.5tCLCL-20 (1)

14 tWHDX Data Hold After WR High 115 1.0tCLCL-10

15 tDVWH Data Valid to WR High 125 1.0tCLCL

16 tWLWH WR Pulse Width 115 1.0tCLCL-10

Table 31-7. External data memory characteristics, 4.5 - 5.5 Volts, 1 cycle wait-state.

Symbol Parameter

8MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 200 2.0tCLCL-50

ns
12 tRLRH RD Pulse Width 240 2.0tCLCL-10

15 tDVWH Data Valid to WR High 240 2.0tCLCL

16 tWLWH WR Pulse Width 240 2.0tCLCL-10

400

7593L–AVR–09/12

AT90USB64/128

Table 31-8. External data memory characteristics, 4.5 - 5.5 Volts, SRWn1 = 1, SRWn0 = 0.

Symbol Parameter

4MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 325 3.0tCLCL-50

ns
12 tRLRH RD Pulse Width 365 3.0tCLCL-10

15 tDVWH Data Valid to WR High 375 3.0tCLCL

16 tWLWH WR Pulse Width 365 3.0tCLCL-10

Table 31-9. External data memory characteristics, 4.5 - 5.5 Volts, SRWn1 = 1, SRWn0 = 1.

Symbol Parameter

4MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 325 3.0tCLCL-50

ns

12 tRLRH RD Pulse Width 365 3.0tCLCL-10

14 tWHDX Data Hold After WR High 240 2.0tCLCL-10

15 tDVWH Data Valid to WR High 375 3.0tCLCL

16 tWLWH WR Pulse Width 365 3.0tCLCL-10

Table 31-10. External data memory characteristics, 2.7 - 5.5 Volts, no wait-state.

Symbol Parameter

4MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

1 tLHLL ALE Pulse Width 235 tCLCL-15

ns

2 tAVLL Address Valid A to ALE Low 115 0.5tCLCL-10 (1)

3a tLLAX_ST
Address Hold After ALE Low,
write access

5 5

3b tLLAX_LD
Address Hold after ALE Low,
read access

5 5

4 tAVLLC Address Valid C to ALE Low 115 0.5tCLCL-10 (1)

5 tAVRL Address Valid to RD Low 235 1.0tCLCL-15

6 tAVWL Address Valid to WR Low 235 1.0tCLCL-15

7 tLLWL ALE Low to WR Low 115 130 0.5tCLCL-10 (2) 0.5tCLCL+5 (2)

8 tLLRL ALE Low to RD Low 115 130 0.5tCLCL-10 (2) 0.5tCLCL+5 (2)

9 tDVRH Data Setup to RD High 45 45

10 tRLDV Read Low to Data Valid 190 1.0tCLCL-60

11 tRHDX Data Hold After RD High 0 0

401

7593L–AVR–09/12

AT90USB64/128

Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.

2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.

12 tRLRH RD Pulse Width 235 1.0tCLCL-15

ns

13 tDVWL Data Setup to WR Low 105 0.5tCLCL-20 (1)

14 tWHDX Data Hold After WR High 235 1.0tCLCL-15

15 tDVWH Data Valid to WR High 250 1.0tCLCL

16 tWLWH WR Pulse Width 235 1.0tCLCL-15

Table 31-10. External data memory characteristics, 2.7 - 5.5 Volts, no wait-state. (Continued)

Symbol Parameter

4MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

Table 31-11. External data memory characteristics, 2.7 - 5.5 Volts, SRWn1 = 0, SRWn0 = 1.

Symbol Parameter

4MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 440 2.0tCLCL-60

ns
12 tRLRH RD Pulse Width 485 2.0tCLCL-15

15 tDVWH Data Valid to WR High 500 2.0tCLCL

16 tWLWH WR Pulse Width 485 2.0tCLCL-15

Table 31-12. External data memory characteristics, 2.7 - 5.5 Volts, SRWn1 = 1, SRWn0 = 0.

Symbol Parameter

4MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 690 3.0tCLCL-60

ns
12 tRLRH RD Pulse Width 735 3.0tCLCL-15

15 tDVWH Data Valid to WR High 750 3.0tCLCL

16 tWLWH WR Pulse Width 735 3.0tCLCL-15

Table 31-13. External data memory characteristics, 2.7 - 5.5 Volts, SRWn1 = 1, SRWn0 = 1.

Symbol Parameter

4MHz oscillator Variable oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 690 3.0tCLCL-60

ns

12 tRLRH RD Pulse Width 735 3.0tCLCL-15

14 tWHDX Data Hold After WR High 485 2.0tCLCL-15

15 tDVWH Data Valid to WR High 750 3.0tCLCL

16 tWLWH WR Pulse Width 735 3.0tCLCL-15

402

7593L–AVR–09/12

AT90USB64/128

Figure 31-7. External memory timing (SRWn1 = 0, SRWn0 = 0.

Figure 31-8. External memory timing (SRWn1 = 0, SRWn0 = 1).

ALE

T1 T2 T3

W
ri

te
R

ea
d

WR

T4

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataAddress

System clock (CLK CPU)

1

4

2

7

6

3a

3b

5

8 12

16

13

10

11

14

15

9

ALE

T1 T2 T3

W
ri

te
R

e
a

d

WR

T5

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataAddress

System clock (CLK CPU)

1

4

2

7

6

3a

3b

5

8 12

16

13

10

11

14

15

9

T4

403

7593L–AVR–09/12

AT90USB64/128

Figure 31-9. External memory timing (SRWn1 = 1, SRWn0 = 0).

Figure 31-10. External memory timing (SRWn1 = 1, SRWn0 = 1).

The ALE pulse in the last period (T4-T7) is only present if the next instruction accesses the RAM (internal
or external).

ALE

T1 T2 T3

W
ri

te
R

e
a
d

WR

T6

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataAddress

System clock (CLK CPU)

1

4

2

7

6

3a

3b

5

8 12

16

13

10

11

14

15

9

T4 T5

ALE

T1 T2 T3

W
ri

te
R

e
a
d

WR

T7

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataAddress

System clock (CLK CPU)

1

4

2

7

6

3a

3b

5

8 12

16

13

10

11

14

15

9

T4 T5 T6

404

7593L–AVR–09/12

AT90USB64/128

32. Atmel AT90USB64/128 typical characteristics

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

All Active- and Idle current consumption measurements are done with all bits in the PRR regis-
ters set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is
disabled during these measurements.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL×VCC×f
where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O
pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

405

7593L–AVR–09/12

AT90USB64/128

32.1 Input voltage levels

Figure 32-1. Input low voltage vs. VCC, all I/Os excluding DP/DM, XTAL1 and reset.

Figure 32-2. Input high voltage vs. VCC, all I/Os excluding DP/DM, XTAL1 and reset.

0.50

0.75

1.00

1.25

1.50

1.75

2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

T
h

re
s

h
o

ld
 (

V
)

85

25

-40

0.50

0.75

1.00

1.25

1.50

1.75

2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

T
h

re
s

h
o

ld
 (

V
)

85

25

-40

406

7593L–AVR–09/12

AT90USB64/128

32.2 Output voltage levels

Figure 32-3. Output low voltage vs. output current, all I/Os excluding DP/DM, VCC = 3V.

Figure 32-4. Output low voltage vs. output current, all I/Os excluding DP/DM, VCC = 5V.

0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

IOL (mA)

V
O

L
 (

V
) 85

25

-40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

IOL (mA)

V
O

L
 (

V
) 85

25

-40

407

7593L–AVR–09/12

AT90USB64/128

Figure 32-5. Output high voltage vs. output current, all I/Os excluding DP/DM, VCC = 3V.

Figure 32-6. Output high voltage vs. output current, all I/Os excluding DP/DM, VCC = 5V.

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 5 10 15 20

IOH (mA)

V
O

H
 (

V
) 85

25

-40

4.2

4.4

4.6

4.8

5.0

0 5 10 15 20

IOH (mA)

V
O

H
 (

V
) 85

25

-40

408

7593L–AVR–09/12

AT90USB64/128

32.3 Power-down supply current

Figure 32-7. Power-down supply current vs. VCC, with BOD disabled, WDT disabled, T = 25°C.

Figure 32-8. Power-down supply current vs. VCC, with BOD disabled, WDT enabled, T = 25°C.

0

0.5

1.0

1.5

2.0

2.5

3.0

2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

I C
C
 (

µ
A

)

0

2

4

6

8

10

12

14

16

2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

I C
C
 (

µ
A

)

409

7593L–AVR–09/12

AT90USB64/128

Figure 32-9. Power-down supply current vs. VCC, with BOD enabled, WDT enabled, T = 25°C.

32.4 Power-save supply current

Figure 32-10. Power-save supply current vs. VCC, with BOD & WDT disabled, T = 25°C.

0

10

20

30

40

50

60

2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

I C
C
 (

µ
A

)

0

1

2

3

4

5

6

7

8

2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

I C
C
 (

µ
A

)

410

7593L–AVR–09/12

AT90USB64/128

32.5 Idle supply current

Figure 32-11. Idle supply current vs. frequency, T = 25°C.

32.6 Active supply current

Figure 32-12. Active supply current vs. frequency, T = 25°C.

0

5

10

15

20

2 4 6 8 10 12 14 16

Frequency (MHz)

I C
C
 (

m
A

)

5.5

5.0

4.5

3.3

2.7

0

5

10

15

20

25

2 4 6 8 10 12 14 16

Frequency (MHz)

I C
C
 (

m
A

)

5.5

5.0

4.5

3.3

2.7

411

7593L–AVR–09/12

AT90USB64/128

32.7 Reset supply current

Figure 32-13. Reset supply current vs. frequency.

32.8 I/O pull-up current

Figure 32-14. I/O pull-up current vs. pin voltage, VCC = 5V.

0

2

4

6

8

10

12

4 6 8 10 12 14 16

Frequency (MHz)

I C
C
 (

m
A

)

5.5

5.0

4.5

3.3

2.7

-20

0

20

40

60

80

100

120

140

0 1 2 3 4 5

VOP (V)

I O
P
 (

u
A

) 85

25

-40

412

7593L–AVR–09/12

AT90USB64/128

Figure 32-15. Reset pull-up current vs. pin voltage, VCC = 5V.

32.9 Bandgap voltage

Figure 32-16. Bandgap voltage vs. temperature.

0

20

40

60

80

100

120

0 1 2 3 4 5

VRES ET (V)

I R
E

S
E

T
 (

µ
A

)

85

25

-40

1.080

1.085

1.090

1.095

1.100

1.105

1.110

1.115

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Temperature (°C)

B
a

n
d

g
a

p
 v

o
lta

g
e

 (
V

)

5.5

5.0

4.5

4.0

3.6

2.7

413

7593L–AVR–09/12

AT90USB64/128

32.10 Internal ARef voltage

Figure 32-17. Internal ARef reference voltage vs. temperature, VCC = 2.7-5.5V.

32.11 USB regulator

Figure 32-18. USB regulator quiescent current vs. input voltage, no load.

2.54

2.56

2.58

2.60

2.62

2.64

-40 -20 0 20 40 60 80

Temperature (°C)

T
e

n
s

io
n

 V
re

f I
n

te
r

(V
)

0

10

20

30

40

50

60

70

80

90

100

3.0 3.5 4.0 4.5 5.0 5.5 6.0

Voltage (V)

I C
C
 (

µ
A

)

414

7593L–AVR–09/12

AT90USB64/128

Figure 32-19. USB regulator output voltage vs. input voltage, load = 75Ω.

Note: The 75Ω load is equivalent to the maximum average consumption of the USB peripheral in opera-
tion (full bus load).

32.12 BOD levels

Figure 32-20. BOD voltage (2.4V level) vs. temperature.

2.6

2.8

3.0

3.2

3.4

3.0 3.5 4.0 4.5 5.0 5.5

Input Voltage (V)

O
u

tp
u

t
vo

lta
g

e
 (

V
)

85

25

-40

2.42

2.44

2.46

2.48

2.50

2.52

2.54

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Temperature (°C)

T
h

re
s

h
o

ld
 (

V
)

Rising Vcc

Falling Vcc

415

7593L–AVR–09/12

AT90USB64/128

Figure 32-21. BOD voltage (3.4V level) vs. temperature.

Figure 32-22. BOD voltage (4.3V level) vs. temperature.

3.42

3.44

3.46

3.48

3.50

3.52

3.54

3.56

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Temperature (°C)

T
h

re
s

h
o

ld
 (

V
)

Rising Vcc

Falling Vcc

4.34

4.36

4.38

4.40

4.42

4.44

4.46

4.48

4.50

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Temperature (°C)

T
h

re
s

h
o

ld
 (

V
)

Rising Vcc

Falling Vcc

416

7593L–AVR–09/12

AT90USB64/128

32.13 Watchdog timer frequency

Figure 32-23. WDT oscillator frequency vs. VCC.

32.14 Internal RC oscillator frequency

Figure 32-24. RC oscillator frequency vs. OSCCAL, T = 25°C.

108

110

112

114

116

118

120

122

124

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

F
R

C
 (

k
H

z
) 85

25

-40

2

4

6

8

10

12

14

16

-1 15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 255

OSCCAL (X1)

F
R

C
 (

M
H

z
)

417

7593L–AVR–09/12

AT90USB64/128

Figure 32-25. RC oscillator frequency vs. VCC.

Figure 32-26. RC oscillator frequency vs. temperature.

7.8

7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

F
R

C
 (

M
H

z
)

85

25

-40

7.8

8.0

8.2

8.4

8.6

8.8

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Temperature (°C)

F
R

C
 (

M
H

z
)

5.5

4.0

3.3

3.0

2.7

418

7593L–AVR–09/12

AT90USB64/128

32.15 Power-on reset

Figure 32-27. Power-on reset level vs. temperature.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Temperature (°C)

P
O

R
 V

o
lta

g
e

 (
V

)

419

7593L–AVR–09/12

AT90USB64/128

33. Register summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved - - - - - - - -

(0xFE) Reserved - - - - - - - -

(0xFD) Reserved - - - - - - - -

(0xFC) Reserved - - - - - - - -

(0xFB) Reserved - - - - - - - -

(0xFA) Reserved - - - - - - - -

(0xF9) OTGTCON PAGE VALUE

(0xF8) UPINT PINT7:0

(0xF7) UPBCHX - - - - - PBYCT10:8

(0xF6) UPBCLX PBYCT7:0

(0xF5) UPERRX - COUNTER1:0 CRC16 TIMEOUT PID DATAPID DATATGL

(0xF4) UEINT EPINT6:0

(0xF3) UEBCHX - - - - - BYCT10:8

(0xF2) UEBCLX BYCT7:0

(0xF1) UEDATX DAT7:0

(0xF0) UEIENX FLERRE NAKINE - NAKOUTE RXSTPE RXOUTE STALLEDE TXINE

(0xEF) UESTA1X - - - - - CTRLDIR CURRBK1:0

(0xEE) UESTA0X CFGOK OVERFI UNDERFI - DTSEQ1:0 NBUSYBK1:0

(0xED) UECFG1X EPSIZE2:0 EPBK1:0 ALLOC

(0xEC) UECFG0X EPTYPE1:0 - - EPDIR

(0xEB) UECONX STALLRQ STALLRQC RSTDT EPEN

(0xEA) UERST EPRST6:0

(0xE9) UENUM EPNUM2:0

(0xE8) UEINTX FIFOCON NAKINI RWAL NAKOUTI RXSTPI RXOUTI STALLEDI TXINI

(0xE7) Reserved - - - -

(0xE6) UDMFN FNCERR

(0xE5) UDFNUMH FNUM10:8

(0xE4) UDFNUML FNUM7:0

(0xE3) UDADDR ADDEN UADD6:0

(0xE2) UDIEN UPRSME EORSME WAKEUPE EORSTE SOFE SUSPE

(0xE1) UDINT UPRSMI EORSMI WAKEUPI EORSTI SOFI SUSPI

(0xE0) UDCON LSM RMWKUP DETACH

(0xDF) OTGINT STOI HNPERRI ROLEEXI BCERRI VBERRI SRPI

(0xDE) OTGIEN STOE HNPERRE ROLEEXE BCERRE VBERRE SRPE

(0xDD) OTGCON HNPREQ SRPREQ SRPSEL VBUSHWC VBUSREQ VBUSRQC

(0xDC) Reserved

(0xDB) Reserved

(0xDA) USBINT IDTI VBUSTI

(0xD9) USBSTA SPEED ID VBUS

(0xD8) USBCON USBE HOST FRZCLK OTGPADE IDTE VBUSTE

(0xD7) UHWCON UIMOD UIDE UVCONE UVREGE

(0xD6) Reserved

(0xD5) Reserved

(0xD4) Reserved

(0xD3) Reserved

(0xD2) Reserved - - - - - - - -

(0xD1) Reserved - - - - - - - -

(0xD0) Reserved - - - - - - - -

(0xCF) Reserved - - - - - - - -

(0xCE) UDR1 USART1 I/O Data Register

(0xCD) UBRR1H - - - - USART1 Baud Rate Register High Byte

(0xCC) UBRR1L USART1 Baud Rate Register Low Byte

(0xCB) Reserved - - - - - - - -

(0xCA) UCSR1C UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1

(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81

(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 PE1 U2X1 MPCM1

(0xC7) Reserved - - - - - - - -

(0xC6) Reserved - - - - - - - -

(0xC5) Reserved - - - - - - - -

(0xC4) Reserved - - - - - - - -

(0xC3) Reserved - - - - - - - -

(0xC2) Reserved - - - - - - - -

(0xC1) Reserved - - - - - - - -

(0xC0) Reserved - - - - - - - -

(0xBF) Reserved - - - - - - - -

420

7593L–AVR–09/12

AT90USB64/128

(0xBE) Reserved - - - - - - - -

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 -

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

(0xBB) TWDR 2-wire Serial Interface Data Register

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register

(0xB7) Reserved - - - - - - - -

(0xB6) ASSR - EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB

(0xB5) Reserved - - - - - - - -

(0xB4) OCR2B Timer/Counter2 Output Compare Register B

(0xB3) OCR2A Timer/Counter2 Output Compare Register A

(0xB2) TCNT2 Timer/Counter2 (8 Bit)

(0xB1) TCCR2B FOC2A FOC2B - - WGM22 CS22 CS21 CS20

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 - - WGM21 WGM20

(0xAF) UPDATX PDAT7:0

(0xAE) UPIENX FLERRE NAKEDE - PERRE TXSTPE TXOUTE RXSTALLE RXINE

(0xAD) UPCFG2X INTFRQ7:0

(0xAC) UPSTAX CFGOK OVERFI UNDERFI DTSEQ1:0 NBUSYBK1:0

(0xAB) UPCFG1X PSIZE2:0 PBK1:0 ALLOC

(0xAA) UPCFG0X PTYPE1:0 PTOKEN1:0 PEPNUM3:0

(0xA9) UPCONX PFREEZE INMODE RSTDT PEN

(0xA8) UPRST PRST6:0

(0xA7) UPNUM PNUM2:0

(0xA6) UPINTX FIFOCON NAKEDI RWAL PERRI TXSTPI TXOUTI RXSTALLI RXINI

(0xA5) UPINRQX INRQ7:0

(0xA4) UHFLEN FLEN7:0

(0xA3) UHFNUMH FNUM10:8

(0xA2) UHFNUML FNUM7:0

(0xA1) UHADDR HADD6:0

(0xA0) UHIEN HWUPE HSOFE RXRSME RSMEDE RSTE DDISCE DCONNE

(0x9F) UHINT HWUPI HSOFI RXRSMI RSMEDI RSTI DDISCI DCONNI

(0x9E) UHCON RESUME RESET SOFEN

(0x9D) OCR3CH Timer/Counter3 - Output Compare Register C High Byte

(0x9C) OCR3CL Timer/Counter3 - Output Compare Register C Low Byte

(0x9B) OCR3BH Timer/Counter3 - Output Compare Register B High Byte

(0x9A) OCR3BL Timer/Counter3 - Output Compare Register B Low Byte

(0x99) OCR3AH Timer/Counter3 - Output Compare Register A High Byte

(0x98) OCR3AL Timer/Counter3 - Output Compare Register A Low Byte

(0x97) ICR3H Timer/Counter3 - Input Capture Register High Byte

(0x96) ICR3L Timer/Counter3 - Input Capture Register Low Byte

(0x95) TCNT3H Timer/Counter3 - Counter Register High Byte

(0x94) TCNT3L Timer/Counter3 - Counter Register Low Byte

(0x93) Reserved - - - - - - - -

(0x92) TCCR3C FOC3A FOC3B FOC3C - - - - -

(0x91) TCCR3B ICNC3 ICES3 - WGM33 WGM32 CS32 CS31 CS30

(0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30

(0x8F) Reserved - - - - - - - -

(0x8E) Reserved - - - - - - - -

(0x8D) OCR1CH Timer/Counter1 - Output Compare Register C High Byte

(0x8C) OCR1CL Timer/Counter1 - Output Compare Register C Low Byte

(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte

 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte

(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte

(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte

(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte

(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte

(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte

(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte

(0x83) Reserved - - - - - - - -

(0x82) TCCR1C FOC1A FOC1B FOC1C - - - - -

(0x81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10

(0x7F) DIDR1 - - - - - - AIN1D AIN0D

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D

(0x7D) - - - - - - - - -

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

421

7593L–AVR–09/12

AT90USB64/128

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

(0x7B) ADCSRB ADHSM ACME - - - ADTS2 ADTS1 ADTS0

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

(0x79) ADCH ADC Data Register High byte

(0x78) ADCL ADC Data Register Low byte

(0x77) Reserved - - - - - - - -

(0x76) Reserved - - - - - - - -

(0x75) XMCRB XMBK - - - - XMM2 XMM1 XMM0

(0x74) XMCRA SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00

(0x73) Reserved - - - - - - - -

(0x72) Reserved - - - - - - - -

(0x71) TIMSK3 - - ICIE3 - OCIE3C OCIE3B OCIE3A TOIE3

(0x70) TIMSK2 - - - - - OCIE2B OCIE2A TOIE2

(0x6F) TIMSK1 - - ICIE1 - OCIE1C OCIE1B OCIE1A TOIE1

(0x6E) TIMSK0 - - - - - OCIE0B OCIE0A TOIE0

(0x6D) Reserved - - - - - - - -

(0x6C) Reserved - - - - - - - -

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0

(0x6A) EICRB ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40

(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00

(0x68) PCICR - - - - - - - PCIE0

(0x67) Reserved - - - - - - - -

(0x66) OSCCAL Oscillator Calibration Register

(0x65) PRR1 PRUSB - - - PRTIM3 - - PRUSART1

(0x64) PRR0 PRTWI PRTIM2 PRTIM0 - PRTIM1 PRSPI - PRADC

(0x63) Reserved - - - - - - - -

(0x62) Reserved - - - - - - - -

(0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPS0

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0

0x3F (0x5F) SREG I T H S V N Z C

0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

0x3C (0x5C) Reserved - - - - - - - -

0x3B (0x5B) RAMPZ - - - - - - RAMPZ1 RAMPZ0

0x3A (0x5A) Reserved - - - - - - - -

0x39 (0x59) Reserved - - - - - - - -

0x38 (0x58) Reserved - - - - - - - -

0x37 (0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN

0x36 (0x56) Reserved - - - - - - - -

0x35 (0x55) MCUCR JTD - - PUD - - IVSEL IVCE

0x34 (0x54) MCUSR - - - JTRF WDRF BORF EXTRF PORF

0x33 (0x53) SMCR - - - - SM2 SM1 SM0 SE

0x32 (0x52) Reserved - - - - - - - -

0x31 (0x51)
OCDR/

MONDR
OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0

 Monitor Data Register

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0

0x2F (0x4F) Reserved - - - - - - - -

0x2E (0x4E) SPDR SPI Data Register

0x2D (0x4D) SPSR SPIF WCOL - - - - - SPI2X

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1

0x29 (0x49) PLLCSR - - - PLLP2 PLLP1 PLLP0 PLLE PLOCK

0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B

0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A

0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit)

0x25 (0x45) TCCR0B FOC0A FOC0B - - WGM02 CS02 CS01 CS00

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 - - WGM01 WGM00

0x23 (0x43) GTCCR TSM - - - - - PSRASY PSRSYNC

0x22 (0x42) EEARH - - - - EEPROM Address Register High Byte

0x21 (0x41) EEARL EEPROM Address Register Low Byte

0x20 (0x40) EEDR EEPROM Data Register

0x1F (0x3F) EECR - - EEPM1 EEPM0 EERIE EEMPE EEPE EERE

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0

0x1D (0x3D) EIMSK INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

0x1C (0x3C) EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTF0

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

422

7593L–AVR–09/12

AT90USB64/128

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O regis-
ters as data space using LD and ST instructions, $20 must be added to these addresses. The Atmel AT90USB64/128 is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from $60 - $1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

0x1B (0x3B) PCIFR - - - - - - - PCIF0

0x1A (0x3A) Reserved - - - - - - - -

0x19 (0x39) Reserved - - - - - - - -

0x18 (0x38) TIFR3 - - ICF3 - OCF3C OCF3B OCF3A TOV3

0x17 (0x37) TIFR2 - - - - - OCF2B OCF2A TOV2

0x16 (0x36) TIFR1 - - ICF1 - OCF1C OCF1B OCF1A TOV1

0x15 (0x35) TIFR0 - - - - - OCF0B OCF0A TOV0

0x14 (0x34) Reserved - - - - - - - -

0x13 (0x33) Reserved - - - - - - - -

0x12 (0x32) Reserved - - - - - - - -

0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0

0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0

0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0

0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0

0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0

0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

423

7593L–AVR–09/12

AT90USB64/128

34. Instruction set summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

EIJMP Extended Indirect Jump to (Z) PC ←(EIND:Z) None 2

JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 4

ICALL Indirect Call to (Z) PC ← Z None 4

EICALL Extended Indirect Call to (Z) PC ←(EIND:Z) None 4

CALL k Direct Subroutine Call PC ← k None 5

RET Subroutine Return PC ← STACK None 5

RETI Interrupt Return PC ← STACK I 5

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

424

7593L–AVR–09/12

AT90USB64/128

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

ELPM Extended Load Program Memory R0 ← (RAMPZ:Z) None 3

ELPM Rd, Z Extended Load Program Memory Rd ← (Z) None 3

ELPM Rd, Z+ Extended Load Program Memory Rd ← (RAMPZ:Z), RAMPZ:Z ←RAMPZ:Z+1 None 3

Mnemonics Operands Description Operation Flags #Clocks

425

7593L–AVR–09/12

AT90USB64/128

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks

426

7593L–AVR–09/12

AT90USB64/128

35. Ordering information

35.1 Atmel AT90USB646

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully green.

3. See “Maximum speed vs. VCC” on page 392.

Speed [MHz] Power supply [V] Ordering code (2) USB interface Package (1) Operating range

16 (3) 2.7-5.5
AT90USB646-AU

AT90USB646-MU
Device

MD

PS

Industrial

(-40° to +85°C)

MD

64 - lead, 14 × 14mm body size, 1.0mm body thickness

0.8mm lead pitch, thin profile plastic quad flat package (TQFP)

PS

64 - lead, 9 × 9mm body size, 0.50mm pitch

Quad flat no lead package (QFN)

427

7593L–AVR–09/12

AT90USB64/128

35.2 Atmel AT90USB647

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully green.

3. See “Maximum speed vs. VCC” on page 392.

Speed [MHz] Power supply [V] Ordering code (2) USB interface Package (1) Operating range

16 (3) 2.7-5.5
AT90USB647-AU

AT90USB647-MU
USB OTG

MD

PS

Industrial

(-40° to +85°C)

MD

64 - lead, 14 × 14mm body size, 1.0mm body thickness

0.8mm lead pitch, thin profile plastic quad flat package (TQFP)

PS

64 - lead, 9 × 9mm body size, 0.50mm pitch

Quad flat no lead package (QFN)

428

7593L–AVR–09/12

AT90USB64/128

35.3 Atmel AT90USB1286

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully green.

3. See “Maximum speed vs. VCC” on page 392.

Speed [MHz] Power supply [V] Ordering code (2) USB interface Package (1) Operating range

16 (3) 2.7-5.5
AT90USB1286-AU

AT90USB1286-MU
Device

MD

PS

Industrial

(-40° to +85°C)

MD

64 - lead, 14 × 14mm body size, 1.0mm body thickness

0.8mm lead pitch, thin profile plastic quad flat package (TQFP)

PS

64 - lead, 9 × 9mm body size, 0.50mm pitch

Quad flat no lead package (QFN)

429

7593L–AVR–09/12

AT90USB64/128

35.4 Atmel AT90USB1287

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully green.

3. See “Maximum speed vs. VCC” on page 392.

Speed [MHz] Power supply [V] Ordering code (2) USB interface Package (1) Operating range

16 (3) 2.7-5.5
AT90USB1287-AU

AT90USB1287-MU
Host (OTG)

MD

PS

Industrial

(-40° to +85°C)

MD

64 - lead, 14 × 14mm body size, 1.0mm body thickness

0.8mm lead pitch, thin profile plastic quad flat package (TQFP)

PS

64 - lead, 9 × 9mm body size, 0.50mm pitch

Quad flat no lead package (QFN)

430

7593L–AVR–09/12

AT90USB64/128

36. Packaging information

36.1 TQFP64

431

7593L–AVR–09/12

AT90USB64/128

432

7593L–AVR–09/12

AT90USB64/128

36.2 QFN64

433

7593L–AVR–09/12

AT90USB64/128

434

7593L–AVR–09/12

AT90USB64/128

37. Errata

37.1 Atmel AT90USB1287/6 errata

37.1.1 AT90USB1287/6 errata history

Notes: 1. A blank or any alphanumeric string.

37.1.2 AT90USB1287/6 first release

• Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

• USB Eye Diagram violation in low-speed mode

• Transient perturbation in USB suspend mode generates over consumption

• VBUS Session valid threshold voltage

• USB signal rate

• VBUS residual level

• Spike on TWI pins when TWI is enabled

• High current consumption in sleep mode

• Async timer interrupt wake up from sleep generate multiple interrupts

9. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI

interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI

and IDTI flags.

8. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting

with low-speed signaling.

Problem fix/workaround

None.

7. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the

USB lines generates a wake up state. However the idle state following the perturbation does

Silicon Release 90USB1286-16MU 90USB1287-16AU 90USB1287-16MU

First Release Date Code up to 0648
Date Code up to 0714

and lots 0735 6H2726 (1) Date Code up to 0701

Second Release
Date Code from 0709 to 0801
except lots 0801 7H5103 (1)

from Date Code 0722 to 0806
except lots 0735 6H2726 (1)

Date Code from 0714 to 0810
except lots 0748 7H5103 (1)

Third Release
Lots 0801 7H5103 (1) and

Date Code from 0814
Date Code from 0814

Lots 0748 7H5103 (1) and
Date Code from 0814

Fourth Release TBD TBD TBD

435

7593L–AVR–09/12

AT90USB64/128

not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the

USB differential receiver is still enabled and generates a typical 300µA extra-power con-

sumption. Detection of the suspend state after the transient perturbation should be

performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

6. VBUS session valid threshold voltage

The VSession valid threshold voltage is internally connected to VBus_Valid (4.4V approx.).

That causes the device to attach to the bus only when Vbus is greater than VBusValid

instead of V_Session Valid. Thus if VBUS is lower than 4.4V, the device is detached.

Problem fix/workaround

According to the USB power drop budget, this may require connecting the device toa root

hub or a self-powered hub.

5. UBS signal rate

The average USB signal rate may sometime be measured out of the USB specifications

(12MHz ±30kHz) with short frames. When measured on a long period, the average signal

rate value complies with the specifications. This bit rate deviation does not generates com-

munication or functional errors.

Problem fix/workaround

None.

4. VBUS residual level

In USB device and host mode, once a 5V level has been detected to the VBUS pad, a resid-

ual level (about 3V) can be measured on the VBUS pin.

Problem fix/workaround

None.

3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first versus the others nodes of

the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consump-

tion will increase during sleep when executing the SLEEP instruction directly after a SEI

instruction.

Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should

be disabled.

436

7593L–AVR–09/12

AT90USB64/128

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go

back in sleep again it may wake up multiple times.

Problem fix/workaround

A sof tware workaround is to wai t w i th performing the s leep instruct ion unt i l

TCNT2>OCR2+1.

437

7593L–AVR–09/12

AT90USB64/128

37.1.3 Atmel AT90USB1287/6 second release

• Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

• USB Eye Diagram violation in low-speed mode

• Transient perturbation in USB suspend mode generates over consumption

• VBUS Session valid threshold voltage

• Spike on TWI pins when TWI is enabled

• High current consumption in sleep mode

• Async timer interrupt wake up from sleep generate multiple interrupts

7. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI

interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI

and IDTI flags.

6. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting

with low-speed signaling.

Problem fix/workaround

None.

5. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the

USB lines generates a wake up state. However the idle state following the perturbation does

not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the

USB differential receiver is still enabled and generates a typical 300µA extra-power con-

sumption. Detection of the suspend state after the transient perturbation should be

performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

4. VBUS session valid threshold voltage

The VSession valid threshold voltage is internally connected to VBus_Valid (4.4V approx.).

That causes the device to attach to the bus only when Vbus is greater than VBusValid

instead of V_Session Valid. Thus if VBUS is lower than 4.4V, the device is detached.

Problem fix/workaround

According to the USB power drop budget, this may require connecting the device toa root

hub or a self-powered hub.

3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

438

7593L–AVR–09/12

AT90USB64/128

Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first versus the others nodes of

the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consump-

tion will increase during sleep when executing the SLEEP instruction directly after a SEI

instruction.

Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should

be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go

back in sleep again it may wake up multiple times.

Problem fix/workaround

A sof tware workaround is to wai t w i th performing the s leep instruct ion unt i l

TCNT2>OCR2+1.

439

7593L–AVR–09/12

AT90USB64/128

37.1.4 Atmel AT90USB1287/6 Third Release

• Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

• Transient perturbation in USB suspend mode generates over consumption

• Spike on TWI pins when TWI is enabled

• High current consumption in sleep mode

• Async timer interrupt wake up from sleep generate multiple interrupts

5. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI

interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI

and IDTI flags.

4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the

USB lines generates a wake up state. However the idle state following the perturbation does

not set the SUSPI bit. The internal USB engine remains in suspend mode but the USB differ-

ential receiver is still enabled and generates a typical 300µA extra-power consumption.

Detection of the suspend state after the transient perturbation should be performed by soft-

ware (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem fix/workaround

No known workaround, enable AT90USB64/128 TWI first, before the others nodes of the

TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consump-

tion will increase during sleep when executing the SLEEP instruction directly after a SEI

instruction.

Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from sleep mode should be

disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep mode and wakes-up from an asynchronous timer interrupt and

then goes back into sleep mode, it may wake up multiple times.

440

7593L–AVR–09/12

AT90USB64/128

Problem fix/workaround

A software workaround is to wait before performing the sleep instruction: unti l

TCNT2>OCR2+1.

441

7593L–AVR–09/12

AT90USB64/128

37.1.5 Atmel AT90USB1287/6 Fourth Release

• Transient perturbation in USB suspend mode generates over consumption

• Spike on TWI pins when TWI is enabled

• High current consumption in sleep mode

• Async timer interrupt wake up from sleep generate multiple interrupts

4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the

USB lines generates a wake up state. However the idle state following the perturbation does

not set the SUSPI bit. The internal USB engine remains in suspend mode but the USB differ-

ential receiver is still enabled and generates a typical 300µA extra-power consumption.

Detection of the suspend state after the transient perturbation should be performed by soft-

ware (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first, before the others nodes of

the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consump-

tion will increase during sleep when executing the SLEEP instruction directly after a SEI

instruction.

Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from sleep mode should be

disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep mode and wakes-up from an asynchronous timer interrupt and

then goes back into sleep mode, it may wake up multiple times.

Problem fix/workaround

A software workaround is to wait before performing the sleep instruction: unti l

TCNT2>OCR2+1.

442

7593L–AVR–09/12

AT90USB64/128

37.2 Atmel AT90USB646/7 errata

37.2.1 AT90USB646/7 errata history TBD

Note ‘*’ means a blank or any alphanumeric string.

37.2.2 AT90USB646/7 first release.

• Incorrect interrupt routine execution for VBUSTI, IDTI interrupts flags

• USB Eye Diagram violation in low-speed mode

• Transient perturbation in USB suspend mode generates over consumption

• Spike on TWI pins when TWI is enabled

• High current consumption in sleep mode

• Async timer interrupt wake up from sleep generate multiple interrupts

6. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI

interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI

and IDTI flags.

5. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting

with low-speed signaling.

Problem fix/workaround

None.

4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the

USB lines generates a wake up state. However the idle state following the perturbation does

not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the

USB differential receiver is still enabled and generates a typical 300µA extra-power con-

sumption. Detection of the suspend state after the transient perturbation should be

performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Silicon Release 90USB646-16MU 90USB647-16AU 90USB647-16MU

First Release

Second Release

443

7593L–AVR–09/12

AT90USB64/128

Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first versus the others nodes of

the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consump-

tion will increase during sleep when executing the SLEEP instruction directly after a SEI

instruction.

Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should

be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go

back in sleep mode again it may wake up several times.

Problem fix/workaround

A sof tware workaround is to wai t w i th performing the s leep instruct ion unt i l

TCNT2>OCR2+1.

444

7593L–AVR–09/12

AT90USB64/128

37.2.3 Atmel AT90USB646/7 Second Release.

• USB Eye Diagram violation in low-speed mode

• Transient perturbation in USB suspend mode generates over consumption

• Spike on TWI pins when TWI is enabled

• High current consumption in sleep mode

• Async timer interrupt wake up from sleep generate multiple interrupts

5. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting

with low-speed signaling.

Problem fix/workaround

None.

4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the

USB lines generates a wake up state. However the idle state following the perturbation does

not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the

USB differential receiver is still enabled and generates a typical 300µA extra-power con-

sumption. Detection of the suspend state after the transient perturbation should be

performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first versus the others nodes of

the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consump-

tion will increase during sleep when executing the SLEEP instruction directly after a SEI

instruction.

Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should

be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go

back in sleep mode again it may wake up several times.

Problem fix/workaround

A sof tware workaround is to wai t w i th performing the s leep instruct ion unt i l

TCNT2>OCR2+1.

445

7593L–AVR–09/12

AT90USB64/128

38. Datasheet revision history for Atmel AT90USB64/128

Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

38.1 Changes from 7593A to 7593B

1. Changed default configuration for fuse bytes and security byte.

2. Suppression of timer 4,5 registers which does not exist.

3. Updated typical application schematics in USB section

38.2 Changes from 7593B to 7593C

1. Update to package drawings, MQFP64 and TQFP64.

38.3 Changes from 7593C to 7593D

1. For further product compatibility, changed USB PLL possible prescaler configurations.
Only 8MHz and 16MHz crystal frequencies allows USB operation (see Table 7-11 on
page 50).

38.4 Changes from 7593D to 7593E

1. Updated PLL Prescaler table: configuration words are different between AT90USB64x
and AT90USB128x to enable the PLL with a 16MHz source.

2. Cleaned up some bits from USB registers, and updated information about OTG timers,
remote wake-up, reset and connection timings.

3. Updated clock distribution tree diagram (USB prescaler source and configuration
register).

4. Cleaned up register summary.

5. Suppressed PCINT23:8 that do not exist from External Interrupts.

6. Updated Electrical Characteristics.

7. Added Typical Characteristics.

8. Update Errata section.

38.5 Changes from 7593E to 7593F

1. Removed ’Preliminary’ from document status.

2. Clarification in Stand by mode regarding USB.

38.6 Changes from 7593F to 7593G

1. Updated Errata section.

38.7 Changes from 7593G to 7593H

1. Added Signature information for 64K devices.

2. Fixed figure for typical bus powered application

3. Added min/max values for BOD levels

4. Added ATmega32U6 product

5. Update Errata section

6. Modified descriptions for HWUPE and WAKEUPE interrupts enable (these interrupts
should be enabled only to wake up the CPU core from power down mode).

446

7593L–AVR–09/12

AT90USB64/128

7. Added description to access unique serial number located in Signature Row see
“Reading the Signature Row from software” on page 354.

38.8 Changes from 7593H to 7593I

1. Updated Table 9-2 in “Brown-out detection” on page 60. Unused BOD levels removed.

38.9 Changes from 7593I to 7593J

1. Updated Table 9-2 in “Brown-out detection” on page 60. BOD level 100 removed.

2. Updated “Ordering information” on page 426.

3. Removed ATmega32U6 errata section.

38.10 Changes from 7593J to 7593K

1. Corrected Figure 6-7 on page 34, Figure 6-8 on page 34 and Figure 6-9 on page 35.

2. Corrected ordering information for Section 35.3 ”Atmel AT90USB1286” on page 428,
Section 35.4 ”Atmel AT90USB1287” on page 429 andSection 35.2 ”Atmel
AT90USB647” on page 427.

3. Removed the ATmega32U6 device and updated the datasheet accordingly.

4. Updated Assembly Code Example in “Watchdog reset” on page 61.

38.11 Changes from 7593K to 7593L

1. Updated the “Ordering information” on page 426. Changed the speed from 20MHz to
16MHz.

2. Replaced ATmegaAT90USBxxxx by AT90USBxxxx through the datasheet.

3. Updated the first paragraph of “Overview” on page 307. Port A replaced by Port F.

4. Updated ADC equation in “ADC conversion result” on page 318. The equation has
1024 instead of 1023.

5. Created “Packaging Information” chapter.

6. Replaced the “QFN64” Packaging by an updated QFN64 Packaging drawing.

7. Updated “Errata” on page 434. AT90USB1286/7 has a fourth release, while
AT90USB646/7 updated with a second release.

8. In Section “Overview” on page 307, “Port A” has been replaced by “Port F” in the first
section.

9. In Section “Atmel AT90USB647” on page 427 the USB interface has been changed to
USB OTG.

10. In Section “Atmel AT90USB1286” on page 428 the USB interface has been changed to
Device.

11. In Section “Atmel AT90USB1287” on page 429 the USB interface has been changed to
Host OTG.

12. General update according to new template.

i

7593L–AVR–09/12

AT90USB64X/128X

Table of contents

Features ... 1

1 Pin configurations ... 3

2 Overview ... 5

2.1 Block diagram ..6

2.2 Pin descriptions ...8

3 Resources ... 10

4 About code examples .. 10

5 AVR CPU core .. 11

5.1 Introduction ..11

5.2 Architectural overview ...11

5.3 ALU – Arithmetic Logic Unit ..12

5.4 Status register ...13

5.5 General purpose register file ...14

5.6 Stack pointer ...15

5.7 Instruction execution timing ...16

5.8 Reset and interrupt handling ...17

6 Atmel AVR AT90USB64/128 memories .. 20

6.1 In-system re-programmable flash program memory ...20

6.2 SRAM data memory ..21

6.3 EEPROM data memory ...24

6.4 I/O memory ..30

6.5 External memory interface ..31

7 System clock and clock options .. 40

7.1 Clock systems and their distribution ..40

7.2 Clock sources ..41

7.3 Low power crystal oscillator ..42

7.4 Low frequency crystal oscillator ..44

7.5 Calibrated internal RC oscillator ..45

7.6 External clock ..46

7.7 Clock output buffer ..47

7.8 Timer/counter oscillator ...47

7.9 System clock prescaler ...47

ii

7593L–AVR–09/12

AT90USB64X/128X

7.10 PLL ..49

8 Power management and sleep modes ... 51

8.1 Idle mode ...52

8.2 ADC noise reduction mode ...52

8.3 Power-down mode ..52

8.4 Power-save mode ...52

8.5 Standby mode ...53

8.6 Extended Standby mode ...53

8.7 Power Reduction Register ...54

8.8 Minimizing power consumption ...55

9 System control and reset .. 57

9.1 Resetting the AVR ...57

9.2 Reset sources ...57

9.3 Power-on reset ..58

9.4 External reset ..59

9.5 Brown-out detection ..60

9.6 Watchdog reset ...61

9.7 Internal voltage reference ..62

9.8 Watchdog timer ...63

10 Interrupts .. 68

10.1 Interrupt vectors in AT90USB64/128 ...68

11 I/O-ports .. 71

11.1 Introduction ..71

11.2 Ports as general digital I/O ..72

11.3 Alternate port functions ...76

11.4 Register description for I/O-ports ..89

12 External interrupts ... 92

13 Timer/Counter0, Timer/Counter1, and Timer/Counter3 prescalers ... 96

13.1 Internal clock source ...96

13.2 Prescaler reset ..96

13.3 External clock source ..96

13.4 GTCCR – General Timer/Counter Control Register ..97

14 8-bit Timer/Counter0 with PWM .. 98

14.1 Overview ...98

iii

7593L–AVR–09/12

AT90USB64X/128X

14.2 Timer/Counter clock sources ...99

14.3 Counter unit ...99

14.4 Output compare unit ..100

14.5 Compare Match Output Unit ..102

14.6 Modes of operation ..103

14.7 Timer/Counter timing diagrams ...107

14.8 8-bit Timer/Counter register description ..108

15 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3) 115

15.1 Overview ...115

15.2 Accessing 16-bit registers ...117

15.3 Timer/Counter clock sources ...120

15.4 Counter unit ...121

15.5 Input Capture unit ..122

15.6 Output Compare units ...124

15.7 Compare Match Output unit ..126

15.8 Modes of operation ..127

15.9 Timer/Counter timing diagrams ...134

15.10 16-bit Timer/Counter register description ..136

16 8-bit Timer/Counter2 with PWM and asynchronous operation 145

16.1 Overview ...145

16.2 Timer/Counter clock sources ...146

16.3 Counter unit ...146

16.4 Output Compare unit ...147

16.5 Compare Match Output unit ..149

16.6 Modes of operation ..150

16.7 Timer/Counter timing diagrams ...154

16.8 8-bit Timer/Counter register description ..156

16.9 Asynchronous operation of the Timer/Counter ..161

16.10 Timer/Counter prescaler ..164

17 Output Compare Modulator (OCM1C0A) ... 166

17.1 Overview ...166

17.2 Description ..166

18 SPI – Serial Peripheral Interface ... 168

18.1 SS Pin Functionality ..172

18.2 Data modes ...175

iv

7593L–AVR–09/12

AT90USB64X/128X

19 USART ... 177

19.1 Overview ...177

19.2 Clock generation ...178

19.3 Frame formats ...180

19.4 USART initialization ...181

19.5 Data transmission – The USART transmitter ..182

19.6 Data reception – The USART receiver ..185

19.7 Asynchronous data reception ..189

19.8 Multi-processor Communication mode ..192

19.9 USART register description ...193

19.10 Examples of baud rate setting ...198

20 USART in SPI mode ... 202

20.1 Overview ...202

20.2 Clock generation ...202

20.3 SPI data modes and timing ...203

20.4 Frame formats ...203

20.5 Data transfer ..205

20.6 USART MSPIM register description ..207

20.7 AVR USART MSPIM vs. AVR SPI ..209

21 2-wire serial interface .. 211

21.1 Features ..211

21.2 2-wire Serial Interface bus definition ...211

21.3 Data transfer and frame format ...212

21.4 Multi-master bus systems, arbitration and synchronization215

21.5 Overview of the TWI module ...216

21.6 TWI register description ..219

21.7 Using the TWI ..222

21.8 Transmission modes ...225

21.9 Multi-master systems and arbitration ...239

22 USB controller .. 241

22.1 Features ..241

22.2 Block diagram ..241

22.3 Typical application implementation ...242

22.4 General operating modes ..246

22.5 Power modes ..250

v

7593L–AVR–09/12

AT90USB64X/128X

22.6 Speed control ..251

22.7 Memory management ...252

22.8 PAD suspend ..253

22.9 OTG timers customizing ..254

22.10 Plug-in detection ..255

22.11 ID detection ...256

22.12 Registers description ...256

22.13 USB Software Operating modes ...261

23 USB device operating modes ... 262

23.1 Introduction ..262

23.2 Power-on and reset ...262

23.3 Endpoint reset ...262

23.4 USB reset ..263

23.5 Endpoint selection ...263

23.6 Endpoint activation ..263

23.7 Address setup ...264

23.8 Suspend, wake-up and resume ...265

23.9 Detach ...265

23.10 Remote Wake-up ..266

23.11 STALL request ..266

23.12 CONTROL endpoint management ..267

23.13 OUT endpoint management ..268

23.14 IN endpoint management ..269

23.15 Isochronous mode ...271

23.16 Overflow ..272

23.17 Interrupts ...272

23.18 Registers ...273

24 USB host operating modes ... 285

24.1 Pipe description ...285

24.2 Detach ...285

24.3 Power-on and reset ...285

24.4 Device detection ..286

24.5 Pipe selection ..286

24.6 Pipe configuration ..286

24.7 USB reset ..288

vi

7593L–AVR–09/12

AT90USB64X/128X

24.8 Address setup ...288

24.9 Remote wake-up detection ..288

24.10 USB pipe reset ..288

24.11 Pipe data access ...288

24.12 Control pipe management ...289

24.13 OUT pipe management ...289

24.14 IN Pipe management ...290

24.15 Interrupt system ...291

24.16 Registers ...292

25 Analog Comparator ... 304

25.1 Analog Comparator multiplexed input ...306

26 ADC – Analog to Digital Converter ... 307

26.1 Features ..307

26.2 Overview ...307

26.3 Operation ...309

26.4 Starting a conversion ...309

26.5 Prescaling and conversion timing ..310

26.6 Changing channel or reference selection ..313

26.7 ADC noise canceler ...314

26.8 ADC conversion result ...318

26.9 ADC register description ...321

27 JTAG interface and on-chip debug system 327

27.1 Overview ...327

27.2 TAP – Test Access Port ..327

27.3 TAP Controller ...329

27.4 Using the Boundary-scan chain ..330

27.5 Using the on-chip debug system ...330

27.6 On-chip debug specific JTAG instructions ...331

27.7 On-chip Debug related Register in I/O memory ..332

27.8 Using the JTAG programming capabilities ..332

27.9 Bibliography ...332

28 IEEE 1149.1 (JTAG) boundary-scan ... 333

28.1 Features ..333

28.2 System overview ...333

28.3 Data registers ..333

vii

7593L–AVR–09/12

AT90USB64X/128X

28.4 Boundary-scan specific JTAG instructions ..335

28.5 Boundary-scan Related Register in I/O memory ...336

28.6 Boundary-scan chain ...337

28.7 Atmel AT90USB64/128 Boundary-scan order ...340

28.8 Boundary-scan description language files ...342

29 Boot Loader support – read-while-write self-programming 343

29.1 Boot Loader features ...343

29.2 Application and Boot Loader flash sections ..343

29.3 Read-while-write and no read-while-write flash sections343

29.4 Boot Loader lock bits ...346

29.5 Entering the Boot Loader program ..347

29.6 Addressing the flash during self-programming ..350

29.7 Self-programming the flash ...351

30 Memory programming ... 359

30.1 Program and data memory lock bits ..359

30.2 Fuse bits ..360

30.3 Signature bytes ...362

30.4 Calibration byte ...362

30.5 Parallel programming parameters, pin mapping, and commands362

30.6 Parallel programming ..365

30.7 Serial downloading ..373

30.8 Serial programming pin mapping ..374

30.9 Programming via the JTAG interface ..377

31 Electrical characteristics for Atmel AT90USB64/128 390

31.1 Absolute maximum ratings* ...390

31.2 DC characteristics ...390

31.3 External clock drive waveforms ...392

31.4 External clock drive ...392

31.5 Maximum speed vs. VCC ... 392

31.6 2-wire serial interface characteristics ..393

31.7 SPI timing characteristics ..395

31.8 Hardware boot entrance timing characteristics ...396

31.9 ADC characteristics ...397

31.10 External data memory timing ...399

32 Atmel AT90USB64/128 typical characteristics 404

viii

7593L–AVR–09/12

AT90USB64X/128X

32.1 Input voltage levels ..405

32.2 Output voltage levels ...406

32.3 Power-down supply current ...408

32.4 Power-save supply current ..409

32.5 Idle supply current ...410

32.6 Active supply current ...410

32.7 Reset supply current ...411

32.8 I/O pull-up current ..411

32.9 Bandgap voltage ...412

32.10 Internal ARef voltage ...413

32.11 USB regulator ..413

32.12 BOD levels ..414

32.13 Watchdog timer frequency ..416

32.14 Internal RC oscillator frequency ..416

32.15 Power-on reset ..418

33 Register summary .. 419

34 Instruction set summary ... 423

35 Ordering information ... 426

35.1 Atmel AT90USB646 ..426

35.2 Atmel AT90USB647 ..427

35.3 Atmel AT90USB1286 ..428

35.4 Atmel AT90USB1287 ..429

36 Packaging information .. 430

36.1 TQFP64 ...430

36.2 QFN64 ...432

37 Errata ... 434

37.1 Atmel AT90USB1287/6 errata ...434

37.2 Atmel AT90USB646/7 errata ...442

38 Datasheet revision history for Atmel AT90USB64/128 445

38.1 Changes from 7593A to 7593B ...445

38.2 Changes from 7593B to 7593C ...445

38.3 Changes from 7593C to 7593D ...445

38.4 Changes from 7593D to 7593E ...445

38.5 Changes from 7593E to 7593F ...445

ix

7593L–AVR–09/12

AT90USB64X/128X

38.6 Changes from 7593F to 7593G ...445

38.7 Changes from 7593G to 7593H ..445

38.8 Changes from 7593H to 7593I ..446

38.9 Changes from 7593I to 7593J ...446

38.10 Changes from 7593J to 7593K ..446

38.11 Changes from 7593K to 7593L ...446

Table of contents ... i

7593L–AVR–09/12

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131

USA

Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5

418 Kwun Tong Road

Kwun Tong, Kowloon
HONG KONG

Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus
Parkring 4

D-85748 Garching b. Munich

GERMANY
Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan

16F, Shin Osaki Kangyo Bldg.
1-6-4 Osaki Shinagawa-ku

Tokyo 104-0032

JAPAN
Tel: (+81) 3-6417-0300

Fax: (+81) 3-6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, and others are registered trademarks or trademarks of Atmel Cor-
poration or its subsidiaries. Windows® is a registered trademark of Microsoft Corporation in U.S. and or other countries. Other terms

and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.

	Features
	1. Pin configurations
	2. Overview
	2.1 Block diagram
	2.2 Pin descriptions
	2.2.1 VCC
	2.2.2 GND
	2.2.3 AVCC
	2.2.4 Port A (PA7..PA0)
	2.2.5 Port B (PB7..PB0)
	2.2.6 Port C (PC7..PC0)
	2.2.7 Port D (PD7..PD0)
	2.2.8 Port E (PE7..PE0)
	2.2.9 Port F (PF7..PF0)
	2.2.10 D-
	2.2.11 D+
	2.2.12 UGND
	2.2.13 UVCC
	2.2.14 UCAP
	2.2.15 VBUS
	2.2.16 RESET
	2.2.17 XTAL1
	2.2.18 XTAL2
	2.2.19 AVCC
	2.2.20 AREF

	3. Resources
	4. About code examples
	5. AVR CPU core
	5.1 Introduction
	5.2 Architectural overview
	5.3 ALU – Arithmetic Logic Unit
	5.4 Status register
	5.5 General purpose register file
	5.5.1 The X-register, Y-register, and Z-register

	5.6 Stack pointer
	5.6.1 RAMPZ - Extended Z-pointer register for ELPM/SPM

	5.7 Instruction execution timing
	5.8 Reset and interrupt handling
	5.8.1 Interrupt response time

	6. Atmel AVR AT90USB64/128 memories
	6.1 In-system re-programmable flash program memory
	6.2 SRAM data memory
	6.2.1 Data memory access times

	6.3 EEPROM data memory
	6.3.1 EEPROM Read/Write Access
	6.3.2 EEARH and EEARL – The EEPROM Address Register
	6.3.3 EEDR – The EEPROM Data Register
	6.3.4 EECR – The EEPROM Control Register
	6.3.5 Preventing EEPROM corruption

	6.4 I/O memory
	6.4.1 General purpose I/O registers
	6.4.2 GPIOR2 – General purpose I/O Register 2
	6.4.3 GPIOR1 – General purpose I/O Register 1
	6.4.4 GPIOR0 – General purpose I/O Register 0

	6.5 External memory interface
	6.5.1 Overview
	6.5.2 Using the external memory interface
	6.5.3 Address latch requirements
	6.5.4 Pull-up and bus-keeper
	6.5.5 Timing
	6.5.6 XMCRA – External Memory Control Register A
	6.5.7 XMCRB – External Memory Control Register B
	6.5.8 Using all locations of external memory smaller than 64KB
	6.5.9 Using all 64KB locations of external memory

	7. System clock and clock options
	7.1 Clock systems and their distribution
	7.1.1 CPU Clock – clkCPU
	7.1.2 I/O Clock – clkI/O
	7.1.3 Flash Clock – clkFLASH
	7.1.4 Asynchronous Timer Clock – clkASY
	7.1.5 ADC Clock – clkADC
	7.1.6 USB Clock – clkUSB

	7.2 Clock sources
	7.2.1 Default clock source
	7.2.2 Clock startup sequence

	7.3 Low power crystal oscillator
	7.4 Low frequency crystal oscillator
	7.5 Calibrated internal RC oscillator
	7.5.1 OSCCAL – Oscillator Calibration Register

	7.6 External clock
	7.7 Clock output buffer
	7.8 Timer/counter oscillator
	7.9 System clock prescaler
	7.9.1 CLKPR – Clock Prescale Register

	7.10 PLL
	7.10.1 Internal PLL for USB interface
	7.10.2 PLLCSR – PLL Control and Status Register

	8. Power management and sleep modes
	8.0.1 SMCR – Sleep Mode Control Register
	8.1 Idle mode
	8.2 ADC noise reduction mode
	8.3 Power-down mode
	8.4 Power-save mode
	8.5 Standby mode
	8.6 Extended Standby mode
	8.7 Power Reduction Register
	8.7.1 PRR0 – Power Reduction Register 0
	8.7.2 PRR1 – Power Reduction Register 1

	8.8 Minimizing power consumption
	8.8.1 Analog to digital converter
	8.8.2 Analog comparator
	8.8.3 Brown-out detector
	8.8.4 Internal voltage reference
	8.8.5 Watchdog timer
	8.8.6 Port pins
	8.8.7 On-chip debug system

	9. System control and reset
	9.1 Resetting the AVR
	9.2 Reset sources
	9.3 Power-on reset
	9.4 External reset
	9.5 Brown-out detection
	9.6 Watchdog reset
	9.6.1 MCUSR – MCU Status Register

	9.7 Internal voltage reference
	9.7.1 Voltage reference enable signals and start-up time

	9.8 Watchdog timer
	9.8.1 WDTCSR – Watchdog Timer Control Register

	10. Interrupts
	10.1 Interrupt vectors in AT90USB64/128
	10.1.1 Moving interrupts between application and boot space
	10.1.2 MCUCR – MCU Control Register

	11. I/O-ports
	11.1 Introduction
	11.2 Ports as general digital I/O
	11.2.1 Configuring the pin
	11.2.2 Toggling the pin
	11.2.3 Switching between input and output
	11.2.4 Reading the pin value
	11.2.5 Digital input enable and sleep modes
	11.2.6 Unconnected pins

	11.3 Alternate port functions
	11.3.1 MCUCR – MCU Control Register
	11.3.2 Alternate functions of Port A
	11.3.3 Alternate functions of Port B
	11.3.4 Alternate functions of Port C
	11.3.5 Alternate Functions of Port D
	11.3.6 Alternate functions of Port E
	11.3.7 Alternate functions of Port F

	11.4 Register description for I/O-ports
	11.4.1 PORTA – Port A Data Register
	11.4.2 DDRA – Port A Data Direction Register
	11.4.3 PINA – Port A Input Pins Address
	11.4.4 PORTB – Port B Data Register
	11.4.5 DDRB – Port B Data Direction Register
	11.4.6 PINB – Port B Input Pins Address
	11.4.7 PORTC – Port C Data Register
	11.4.8 DDRC – Port C Data Direction Register
	11.4.9 PINC – Port C Input Pins Address
	11.4.10 PORTD – Port D Data Register
	11.4.11 DDRD – Port D Data Direction Register
	11.4.12 PIND – Port D Input Pins Address
	11.4.13 PORTE – Port E Data Register
	11.4.14 DDRE – Port E Data Direction Register
	11.4.15 PINE – Port E Input Pins Address
	11.4.16 PORTF – Port F Data Register
	11.4.17 DDRF – Port F Data Direction Register
	11.4.18 PINF – Port F Input Pins Address

	12. External interrupts
	12.0.1 EICRA – External Interrupt Control Register A
	12.0.2 EICRB – External Interrupt Control Register B
	12.0.3 EIMSK – External Interrupt Mask Register
	12.0.4 EIFR – External Interrupt Flag Register
	12.0.5 PCICR – Pin Change Interrupt Control Register
	12.0.6 PCIFR – Pin Change Interrupt Flag Register
	12.0.7 PCMSK0 – Pin Change Mask Register 0

	13. Timer/Counter0, Timer/Counter1, and Timer/Counter3 prescalers
	13.1 Internal clock source
	13.2 Prescaler reset
	13.3 External clock source
	13.4 GTCCR – General Timer/Counter Control Register

	14. 8-bit Timer/Counter0 with PWM
	14.1 Overview
	14.1.1 Registers
	14.1.2 Definitions

	14.2 Timer/Counter clock sources
	14.3 Counter unit
	14.4 Output compare unit
	14.4.1 Force output compare
	14.4.2 Compare match blocking by TCNT0 write
	14.4.3 Using the output compare unit

	14.5 Compare Match Output Unit
	14.5.1 Compare output mode and waveform generation

	14.6 Modes of operation
	14.6.1 Normal mode
	14.6.2 Clear Timer on Compare Match (CTC) mode
	14.6.3 Fast PWM mode
	14.6.4 Phase correct PWM mode

	14.7 Timer/Counter timing diagrams
	14.8 8-bit Timer/Counter register description
	14.8.1 TCCR0A – Timer/Counter Control Register A
	14.8.2 TCCR0B – Timer/Counter Control Register B
	14.8.3 TCNT0 – Timer/Counter Register
	14.8.4 OCR0A – Output Compare Register A
	14.8.5 OCR0B – Output Compare Register B
	14.8.6 TIMSK0 – Timer/Counter Interrupt Mask Register
	14.8.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

	15. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)
	15.1 Overview
	15.1.1 Registers
	15.1.2 Definitions

	15.2 Accessing 16-bit registers
	15.2.1 Reusing the Temporary High Byte register

	15.3 Timer/Counter clock sources
	15.4 Counter unit
	15.5 Input Capture unit
	15.5.1 Input Capture Trigger Source
	15.5.2 Noise Canceler
	15.5.3 Using the Input Capture unit

	15.6 Output Compare units
	15.6.1 Force Output Compare
	15.6.2 Compare Match Blocking by TCNTn write
	15.6.3 Using the Output Compare unit

	15.7 Compare Match Output unit
	15.7.1 Compare Output mode and Waveform generation

	15.8 Modes of operation
	15.8.1 Normal mode
	15.8.2 Clear Timer on Compare Match (CTC) mode
	15.8.3 Fast PWM mode
	15.8.4 Phase correct PWM mode
	15.8.5 Phase and frequency correct PWM mode

	15.9 Timer/Counter timing diagrams
	15.10 16-bit Timer/Counter register description
	15.10.1 TCCR1A – Timer/Counter1 Control Register A
	15.10.2 TCCR3A – Timer/Counter3 Control Register A
	15.10.3 TCCR1B – Timer/Counter1 Control Register B
	15.10.4 TCCR3B – Timer/Counter3 Control Register B
	15.10.5 TCCR1C – Timer/Counter1 Control Register C
	15.10.6 TCCR3C – Timer/Counter3 Control Register C
	15.10.7 TCNT1H and TCNT1L – Timer/Counter1
	15.10.8 TCNT3H and TCNT3L – Timer/Counter3
	15.10.9 OCR1AH and OCR1AL – Output Compare Register 1 A
	15.10.10 OCR1BH and OCR1BL – Output Compare Register 1 B
	15.10.11 OCR1CH and OCR1CL – Output Compare Register 1 C
	15.10.12 OCR3AH and OCR3AL – Output Compare Register 3 A
	15.10.13 OCR3BH and OCR3BL – Output Compare Register 3 B
	15.10.14 OCR3CH and OCR3CL – Output Compare Register 3 C
	15.10.15 ICR1H and ICR1L – Input Capture Register 1
	15.10.16 ICR3H and ICR3L – Input Capture Register 3
	15.10.17 TIMSK1 – Timer/Counter1 Interrupt Mask Register
	15.10.18 TIMSK3 – Timer/Counter3 Interrupt Mask Register
	15.10.19 TIFR1 – Timer/Counter1 Interrupt Flag Register
	15.10.20 TIFR3 – Timer/Counter3 Interrupt Flag Register

	16. 8-bit Timer/Counter2 with PWM and asynchronous operation
	16.1 Overview
	16.1.1 Registers
	16.1.2 Definitions

	16.2 Timer/Counter clock sources
	16.3 Counter unit
	16.4 Output Compare unit
	16.4.1 Force output compare
	16.4.2 Compare Match Blocking by TCNT2 Write
	16.4.3 Using the Output Compare unit

	16.5 Compare Match Output unit
	16.5.1 Compare Output mode and Waveform generating

	16.6 Modes of operation
	16.6.1 Normal mode
	16.6.2 Clear Timer on Compare Match (CTC) mode
	16.6.3 Fast PWM mode
	16.6.4 Phase correct PWM mode

	16.7 Timer/Counter timing diagrams
	16.8 8-bit Timer/Counter register description
	16.8.1 TCCR2A – Timer/Counter Control Register A
	16.8.2 TCCR2B – Timer/Counter Control Register B
	16.8.3 TCNT2 – Timer/Counter Register
	16.8.4 OCR2A – Output Compare Register A
	16.8.5 OCR2B – Output Compare Register B

	16.9 Asynchronous operation of the Timer/Counter
	16.9.1 ASSR – Asynchronous Status Register
	16.9.2 Asynchronous operation of Timer/Counter2
	16.9.3 TIMSK2 – Timer/Counter2 Interrupt Mask Register
	16.9.4 TIFR2 – Timer/Counter2 Interrupt Flag Register

	16.10 Timer/Counter prescaler
	16.10.1 GTCCR – General Timer/Counter Control Register

	17. Output Compare Modulator (OCM1C0A)
	17.1 Overview
	17.2 Description
	17.2.1 Timing example

	18. SPI – Serial Peripheral Interface
	18.1 SS Pin Functionality
	18.1.1 Slave Mode
	18.1.2 Master mode
	18.1.3 SPCR – SPI Control Register
	18.1.4 SPSR – SPI Status Register
	18.1.5 SPDR – SPI Data Register

	18.2 Data modes

	19. USART
	19.1 Overview
	19.2 Clock generation
	19.2.1 Internal Clock Generation – The Baud Rate generator
	19.2.2 Double speed operation (U2Xn)
	19.2.3 External clock
	19.2.4 Synchronous clock operation

	19.3 Frame formats
	19.3.1 Parity bit calculation

	19.4 USART initialization
	19.5 Data transmission – The USART transmitter
	19.5.1 Sending frames with 5 to 8 data bits
	19.5.2 Sending frames with 9 data bits
	19.5.3 Transmitter flags and interrupts
	19.5.4 Parity Generator
	19.5.5 Disabling the transmitter

	19.6 Data reception – The USART receiver
	19.6.1 Receiving frames with 5 to 8 data bits
	19.6.2 Receiving frames with 9 data bits
	19.6.3 Receive compete flag and interrupt
	19.6.4 Receiver error flags
	19.6.5 Parity Checker
	19.6.6 Disabling the Receiver
	19.6.7 Flushing the receive buffer

	19.7 Asynchronous data reception
	19.7.1 Asynchronous clock recovery
	19.7.2 Asynchronous data recovery
	19.7.3 Asynchronous Operational Range

	19.8 Multi-processor Communication mode
	19.8.1 Using MPCMn

	19.9 USART register description
	19.9.1 UDRn – USART I/O Data Register n
	19.9.2 UCSRnA – USART Control and Status Register A
	19.9.3 UCSRnB – USART Control and Status Register n B
	19.9.4 UCSRnC – USART Control and Status Register n C
	19.9.5 UBRRLn and UBRRHn – USART baud rate registers

	19.10 Examples of baud rate setting

	20. USART in SPI mode
	20.1 Overview
	20.2 Clock generation
	20.3 SPI data modes and timing
	20.4 Frame formats
	20.4.1 USART MSPIM initialization

	20.5 Data transfer
	20.5.1 Transmitter and receiver flags and interrupts
	20.5.2 Disabling the transmitter or receiver

	20.6 USART MSPIM register description
	20.6.1 UDRn – USART MSPIM I/O data register
	20.6.2 UCSRnA – USART MSPIM Control and Status Register n A
	20.6.3 UCSRnB – USART MSPIM Control and Status Register n B
	20.6.4 UCSRnC – USART MSPIM Control and Status Register n C
	20.6.5 UBRRnL and UBRRnH – USART MSPIM Baud Rate Registers

	20.7 AVR USART MSPIM vs. AVR SPI

	21. 2-wire serial interface
	21.1 Features
	21.2 2-wire Serial Interface bus definition
	21.2.1 TWI terminology
	21.2.2 Electrical interconnection

	21.3 Data transfer and frame format
	21.3.1 Transferring bits
	21.3.2 START and STOP conditions
	21.3.3 Address packet format
	21.3.4 Data packet format
	21.3.5 Combining address and data packets into a transmission

	21.4 Multi-master bus systems, arbitration and synchronization
	21.5 Overview of the TWI module
	21.5.1 SCL and SDA pins
	21.5.2 Bit Rate Generator unit
	21.5.3 Bus Interface unit
	21.5.4 Address Match unit
	21.5.5 Control unit

	21.6 TWI register description
	21.6.1 TWBR – TWI Bit Rate Register
	21.6.2 TWCR – TWI Control Register
	21.6.3 TWSR – TWI Status Register
	21.6.4 TWDR – TWI Data Register
	21.6.5 TWAR – TWI (Slave) Address Register
	21.6.6 TWAMR – TWI (Slave) Address Mask Register

	21.7 Using the TWI
	21.8 Transmission modes
	21.8.1 Master Transmitter Mode
	21.8.2 Master Receiver mode
	21.8.3 Slave Receiver mode
	21.8.4 Slave Transmitter mode
	21.8.5 Miscellaneous states
	21.8.6 Combining several TWI modes

	21.9 Multi-master systems and arbitration

	22. USB controller
	22.1 Features
	22.2 Block diagram
	22.3 Typical application implementation
	22.3.1 Device mode
	22.3.1.1 Bus powered device
	22.3.1.2 Self powered device

	22.3.2 Host / OTG mode
	22.3.3 Design guidelines

	22.4 General operating modes
	22.4.1 Introduction
	22.4.2 Power-on and reset
	22.4.3 Interrupts

	22.5 Power modes
	22.5.1 Idle mode
	22.5.2 Power down
	22.5.3 Freeze clock

	22.6 Speed control
	22.6.1 Device mode
	22.6.2 Host mode

	22.7 Memory management
	22.8 PAD suspend
	22.9 OTG timers customizing
	22.10 Plug-in detection
	22.10.1 Peripheral mode
	22.10.2 Host mode

	22.11 ID detection
	22.12 Registers description
	22.12.1 USB general registers

	22.13 USB Software Operating modes

	23. USB device operating modes
	23.1 Introduction
	23.2 Power-on and reset
	23.3 Endpoint reset
	23.4 USB reset
	23.5 Endpoint selection
	23.6 Endpoint activation
	23.7 Address setup
	23.8 Suspend, wake-up and resume
	23.9 Detach
	23.10 Remote Wake-up
	23.11 STALL request
	23.11.1 Special consideration for control endpoints
	23.11.2 STALL handshake and retry mechanism

	23.12 CONTROL endpoint management
	23.12.1 Control write
	23.12.2 Control read

	23.13 OUT endpoint management
	23.13.1 Overview
	23.13.2 Detailed description

	23.14 IN endpoint management
	23.14.1 Overview
	23.14.2 Detailed description
	23.14.2.1 Abort

	23.15 Isochronous mode
	23.15.1 Underflow
	23.15.2 CRC error

	23.16 Overflow
	23.17 Interrupts
	23.18 Registers
	23.18.1 USB device general registers
	23.18.2 USB device endpoint registers

	24. USB host operating modes
	24.1 Pipe description
	24.2 Detach
	24.3 Power-on and reset
	24.4 Device detection
	24.5 Pipe selection
	24.6 Pipe configuration
	24.7 USB reset
	24.8 Address setup
	24.9 Remote wake-up detection
	24.10 USB pipe reset
	24.11 Pipe data access
	24.12 Control pipe management
	24.13 OUT pipe management
	24.14 IN Pipe management
	24.14.1 CRC error (isochronous only)

	24.15 Interrupt system
	24.16 Registers
	24.16.1 General USB host registers
	24.16.2 USB Host Pipe registers

	25. Analog Comparator
	25.0.1 ADCSRB – ADC Control and Status Register B
	25.0.2 ACSR – Analog Comparator Control and Status Register
	25.1 Analog Comparator multiplexed input
	25.1.1 DIDR1 – Digital Input Disable Register 1

	26. ADC – Analog to Digital Converter
	26.1 Features
	26.2 Overview
	26.3 Operation
	26.4 Starting a conversion
	26.5 Prescaling and conversion timing
	26.5.1 Differential channels

	26.6 Changing channel or reference selection
	26.6.1 ADC input channels
	26.6.2 ADC voltage reference

	26.7 ADC noise canceler
	26.7.1 Analog input circuitry
	26.7.2 Analog noise canceling techniques
	26.7.3 Offset compensation schemes
	26.7.4 ADC accuracy definitions

	26.8 ADC conversion result
	26.9 ADC register description
	26.9.1 ADMUX – ADC Multiplexer Selection Register
	26.9.2 ADCSRA – ADC Control and Status Register A
	26.9.3 ADCL and ADCH – The ADC data register
	26.9.3.1 ADLAR = 0
	26.9.3.2 ADLAR = 1

	26.9.4 ADCSRB – ADC Control and Status Register B
	26.9.5 DIDR0 – Digital Input Disable Register 0

	27. JTAG interface and on-chip debug system
	27.0.1 Features
	27.1 Overview
	27.2 TAP – Test Access Port
	27.3 TAP Controller
	27.4 Using the Boundary-scan chain
	27.5 Using the on-chip debug system
	27.6 On-chip debug specific JTAG instructions
	27.6.1 PRIVATE0; 0x8
	27.6.2 PRIVATE1; 0x9
	27.6.3 PRIVATE2; 0xA
	27.6.4 PRIVATE3; 0xB

	27.7 On-chip Debug related Register in I/O memory
	27.7.1 OCDR – On-chip Debug Register

	27.8 Using the JTAG programming capabilities
	27.9 Bibliography

	28. IEEE 1149.1 (JTAG) boundary-scan
	28.1 Features
	28.2 System overview
	28.3 Data registers
	28.3.1 Bypass register
	28.3.2 Device Identification register
	28.3.2.1 Version
	28.3.2.2 Part number
	28.3.2.3 Manufacturer ID

	28.3.3 Reset register
	28.3.4 Boundary-scan Chain

	28.4 Boundary-scan specific JTAG instructions
	28.4.1 EXTEST; 0x0
	28.4.2 IDCODE; 0x1
	28.4.3 SAMPLE_PRELOAD; 0x2
	28.4.4 AVR_RESET; 0xC
	28.4.5 BYPASS; 0xF

	28.5 Boundary-scan Related Register in I/O memory
	28.5.1 MCUCR – MCU Control Register
	28.5.2 MCUSR – MCU Status Register

	28.6 Boundary-scan chain
	28.6.1 Scanning the digital port pins
	28.6.2 Scanning the RESET pin

	28.7 Atmel AT90USB64/128 Boundary-scan order
	28.8 Boundary-scan description language files

	29. Boot Loader support – read-while-write self-programming
	29.1 Boot Loader features
	29.2 Application and Boot Loader flash sections
	29.2.1 Application section
	29.2.2 BLS – Boot Loader section

	29.3 Read-while-write and no read-while-write flash sections
	29.3.1 RWW – Read-While-Write section
	29.3.2 NRWW – No Read-While-Write section

	29.4 Boot Loader lock bits
	29.5 Entering the Boot Loader program
	29.5.1 Regular application conditions.
	29.5.2 Boot Reset fuse
	29.5.3 External hardware conditions
	29.5.4 SPMCSR – Store Program Memory Control and Status Register

	29.6 Addressing the flash during self-programming
	29.7 Self-programming the flash
	29.7.1 Performing page erase by SPM
	29.7.2 Filling the Temporary Buffer (page loading)
	29.7.3 Performing a Page Write
	29.7.4 Using the SPM interrupt
	29.7.5 Consideration while updating BLS
	29.7.6 Prevent reading the RWW section during self-programming
	29.7.7 Setting the Boot Loader Lock bits by SPM
	29.7.8 EEPROM Write prevents writing to SPMCSR
	29.7.9 Reading the Fuse and Lock bits from software
	29.7.10 Reading the Signature Row from software
	29.7.11 Preventing flash corruption
	29.7.12 Programming time for flash when using SPM
	29.7.13 Simple Assembly Code example for a Boot Loader
	29.7.14 Atmel AT90USB64/128 Boot Loader parameters

	30. Memory programming
	30.1 Program and data memory lock bits
	30.2 Fuse bits
	30.2.1 Latching of fuses

	30.3 Signature bytes
	30.4 Calibration byte
	30.5 Parallel programming parameters, pin mapping, and commands
	30.5.1 Signal names

	30.6 Parallel programming
	30.6.1 Enter programming mode
	30.6.2 Considerations for efficient programming
	30.6.3 Chip erase
	30.6.4 Programming the Flash
	30.6.5 Programming the EEPROM
	30.6.6 Reading the Flash
	30.6.7 Reading the EEPROM
	30.6.8 Programming the Fuse Low bits
	30.6.9 Programming the Fuse High bits
	30.6.10 Programming the Extended Fuse bits
	30.6.11 Programming the Lock bits
	30.6.12 Reading the Fuse and Lock bits
	30.6.13 Reading the Signature bytes
	30.6.14 Reading the Calibration byte
	30.6.15 Parallel programming characteristics

	30.7 Serial downloading
	30.8 Serial programming pin mapping
	30.8.1 Serial programming algorithm
	30.8.2 Serial programming characteristics

	30.9 Programming via the JTAG interface
	30.9.1 Programming specific JTAG instructions
	30.9.2 AVR_RESET (0xC)
	30.9.3 PROG_ENABLE (0x4)
	30.9.4 PROG_COMMANDS (0x5)
	30.9.5 PROG_PAGELOAD (0x6)
	30.9.6 PROG_PAGEREAD (0x7)
	30.9.7 Data Registers
	30.9.8 Reset Register
	30.9.9 Programming Enable Register
	30.9.10 Programming Command Register
	30.9.11 Flash Data Byte Register
	30.9.12 Programming algorithm
	30.9.13 Entering Programming mode
	30.9.14 Leaving Programming mode
	30.9.15 Performing Chip Erase
	30.9.16 Programming the Flash
	30.9.17 Reading the Flash
	30.9.18 Programming the EEPROM
	30.9.19 Reading the EEPROM
	30.9.20 Programming the Fuses
	30.9.21 Programming the Lock Bits
	30.9.22 Reading the Fuses and Lock Bits
	30.9.23 Reading the Signature Bytes
	30.9.24 Reading the Calibration Byte

	31. Electrical characteristics for Atmel AT90USB64/128
	31.1 Absolute maximum ratings*
	31.2 DC characteristics
	31.3 External clock drive waveforms
	31.4 External clock drive
	31.5 Maximum speed vs. VCC
	31.6 2-wire serial interface characteristics
	31.7 SPI timing characteristics
	31.8 Hardware boot entrance timing characteristics
	31.9 ADC characteristics
	31.10 External data memory timing

	32. Atmel AT90USB64/128 typical characteristics
	32.1 Input voltage levels
	32.2 Output voltage levels
	32.3 Power-down supply current
	32.4 Power-save supply current
	32.5 Idle supply current
	32.6 Active supply current
	32.7 Reset supply current
	32.8 I/O pull-up current
	32.9 Bandgap voltage
	32.10 Internal ARef voltage
	32.11 USB regulator
	32.12 BOD levels
	32.13 Watchdog timer frequency
	32.14 Internal RC oscillator frequency
	32.15 Power-on reset

	33. Register summary
	34. Instruction set summary
	35. Ordering information
	35.1 Atmel AT90USB646
	35.2 Atmel AT90USB647
	35.3 Atmel AT90USB1286
	35.4 Atmel AT90USB1287

	36. Packaging information
	36.1 TQFP64
	36.2 QFN64

	37. Errata
	37.1 Atmel AT90USB1287/6 errata
	37.1.1 AT90USB1287/6 errata history
	37.1.2 AT90USB1287/6 first release
	37.1.3 Atmel AT90USB1287/6 second release
	37.1.4 Atmel AT90USB1287/6 Third Release
	37.1.5 Atmel AT90USB1287/6 Fourth Release

	37.2 Atmel AT90USB646/7 errata
	37.2.1 AT90USB646/7 errata history TBD
	37.2.2 AT90USB646/7 first release.
	37.2.3 Atmel AT90USB646/7 Second Release.

	38. Datasheet revision history for Atmel AT90USB64/128
	38.1 Changes from 7593A to 7593B
	38.2 Changes from 7593B to 7593C
	38.3 Changes from 7593C to 7593D
	38.4 Changes from 7593D to 7593E
	38.5 Changes from 7593E to 7593F
	38.6 Changes from 7593F to 7593G
	38.7 Changes from 7593G to 7593H
	38.8 Changes from 7593H to 7593I
	38.9 Changes from 7593I to 7593J
	38.10 Changes from 7593J to 7593K
	38.11 Changes from 7593K to 7593L

	Table of contents

