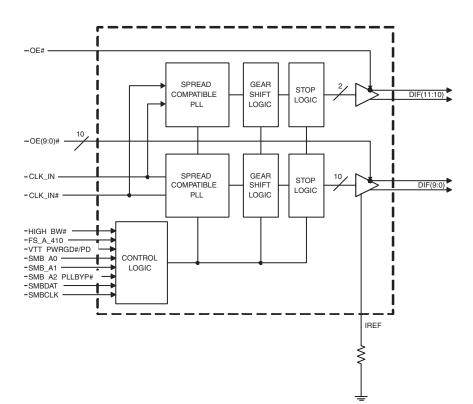


Frequency Gearing Clock for CPU, PCle Gen1, Gen2, & FBD

ICS9FG1201H

Description

The **ICS9FG1201H** follows the Intel DB1200G Rev 1.0 Differential Buffer Specification. This buffer provides 12 output clocks for CPU Host Bus, PCI-Express, or Fully Buffered DIMM applications. The outputs are configured with two groups. Both groups (DIF 9:0) and (DIF 11:10) can be equal to or have a gear ratio to the input clock. A differential CPU clock from a CK410B or CK410B+ main clock generator, such as the ICS932S421, drives the ICS9FG1201. The **ICS9FG1201H** can provide outputs up to 400MHz


Key Specifications

- DIF output cycle-to-cycle jitter < 50ps
- DIF output-to-output skew < 50ps within a group
- DIF output-to-output skew < 100ps across all outputs
- 56-pin SSOP/TSSOP package
- RoHS compliant packaging

Functional Block Diagram

Features/Benefits

- Drives 2 channels of 4 FBDIMMs (total of 8 FBDIMMs)
- Power up default is all outputs in 1:1 mode
- DIF_(9:0) can be "gear-shifted" from the input CPU Host Clock
- DIF_(11:10) can be "gear-shifted" from the input CPU Host Clock
- Spread spectrum compatible
- Supports output clock frequencies up to 400 MHz
- 8 Selectable SMBus addresses
- SMBus address determines PLL or Bypass mode

IDT™/ICS™ Frequency Gearing Clock for CPU, PCIe Gen1, Gen2, & FBD

Pin Configuration

Functionality Table

FS_A_410 ¹	CLK_IN (CPU FSB) MHz	DIF_(9:0) Output MHz	DIF_(11:10) Output MHz		
1	100.00	100.00	100.00		
1	133.33	133.33	133.33		
1	166.66	166.66	166.66		
1		RESERVED			
0	200.00	200.00	200.00		
0	266.66	266.66	266.66		
0	333.33	333.33	333.33		
0	400.00	400.00	400.00		

1. FS_A_410 is a low-threshold input. Please see the $V_{\rm IL_FS}$ and $V_{\rm IH_FS}$

specifications in the Input/Supply/Common Output Parameters Table for correct values.

Power Groups

Pin N	umber	Description
VDD	GND	Description
56	55	Main PLL, Analog
11,22,38,50	12,23,37,49	DIF clocks

Pin Description

Pin #	Pin Name	Туре	Pin Description
			3.3V input for selecting PLL Band Width
1	HIGH_BW#	IN	0 = High, 1 = Low
2	CLK_IN	IN	Input for reference clock.
3	CLK_IN#	IN	"Complementary" reference clock input.
4	SMB_A0	IN	SMBus address bit 0 (LSB)
5	OE0#	IN	Active low input for enabling DIF pair 0.
5	0e0#	IIN	1 = tri-state outputs, 0 = enable outputs
6	DIF_0	OUT	0.7V differential true clock output
7	DIF_0#	OUT	0.7V differential complement clock output
8	OE1#	IN	Active low input for enabling DIF pair 1.
0			1 = tri-state outputs, 0 = enable outputs
9	DIF_1	OUT	0.7V differential true clock output
10	DIF_1#	OUT	0.7V differential complement clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	GND	PWR	Ground pin.
13	DIF_2	OUT	0.7V differential true clock output
14	DIF_2#	OUT	0.7V differential complement clock output
15	OE2#	IN	Active low input for enabling DIF pair 2.
			1 = tri-state outputs, 0 = enable outputs
16	DIF_3	OUT	0.7V differential true clock output
17	DIF_3#	OUT	0.7V differential complement clock output
18	OE3#	IN	Active low input for enabling DIF pair 3.
			1 = tri-state outputs, 0 = enable outputs
19	DIF_4	OUT	0.7V differential true clock output
20	DIF_4#	OUT	0.7V differential complement clock output
21	OE4#	IN	Active low input for enabling DIF pair 4
			1 = tri-state outputs, 0 = enable outputs
22	VDD	PWR	Power supply, nominal 3.3V
23	GND	PWR	Ground pin.
24	DIF_5	OUT	0.7V differential true clock output
25	DIF_5#	OUT	0.7V differential complement clock output
26	OE5#	IN	Active low input for enabling DIF pair 5.
			1 = tri-state outputs, 0 = enable outputs
27	SMB_A1	IN	SMBus address bit 1
28	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant

Pin Description (continued)

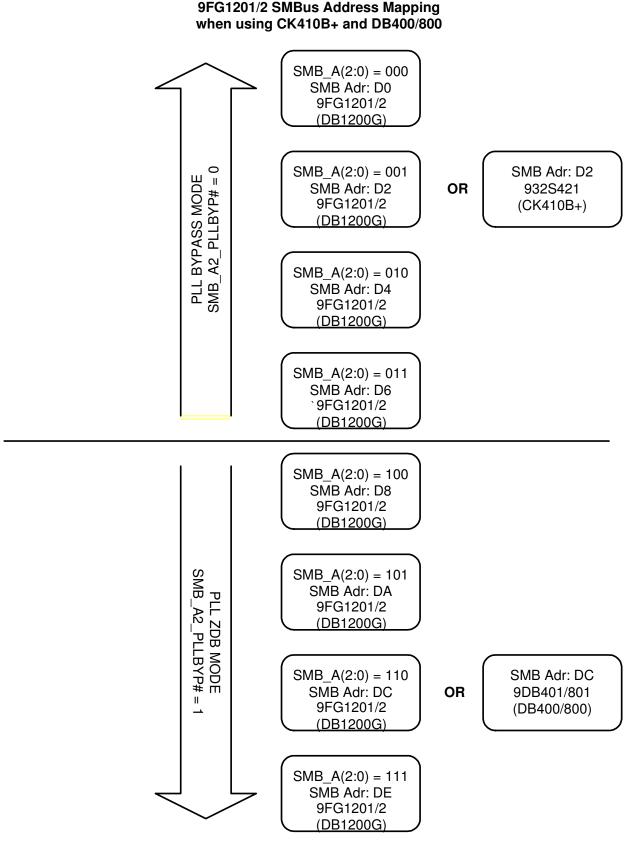
Pin #	Pin Name	Туре	Pin Description
29	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
			SMBus address bit 2. When Low, the part operates as a fanout buffer
00		INI	with the PLL bypassed. When High, the part operates as a zero-delay
30	SMB_A2_PLLBYP#	IN	buffer (ZDB) with the PLL operating.
			0 = fanout mode (PLL bypassed), 1 = ZDB mode (PLL used)
04	050#	INI	Active low input for enabling DIF pair 6.
31	OE6#	IN	1 = tri-state outputs, 0 = enable outputs
32	DIF_6#	OUT	0.7V differential complement clock output
33	DIF_6	OUT	0.7V differential true clock output
04	057#	INI	Active low input for enabling DIF pair 7.
34	OE7#	IN	1 = tri-state outputs, 0 = enable outputs
35	DIF_7#	OUT	0.7V differential complement clock output
36	DIF_7	OUT	0.7V differential true clock output
37	GND	PWR	Ground pin.
38	VDD	PWR	Power supply, nominal 3.3V
39	DIF 8#	OUT	0.7V differential complement clock output
40	DIF_8	OUT	0.7V differential true clock output
4.4	050#	INI	Active low input for enabling DIF pair 8.
41	OE8#	IN	1 = tri-state outputs, 0 = enable outputs
42	DIF_9#	OUT	0.7V differential complement clock output
43	DIF_9	OUT	0.7V differential true clock output
	050#	INI	Active low input for enabling DIF pair 9.
44	OE9#	IN	1 = tri-state outputs, 0 = enable outputs
			Vtt_PwrGd# is an active low input used to determine when latched
45		INI	inputs are ready to be sampled. PD is an asynchronous active high
45	VTT_PWRGD#/PD	IN	input pin used to put the device into a low power state. The internal
			clocks, PLLs and the crystal oscillator are stopped.
			3.3V tolerant low threshold input for CPU frequency selection. This
46	FS_A_410	IN	pin requires CK410 FSA. Refer to input electrical characteristics for
			Vil_FS and Vih_FS threshold values.
47	DIF_10#	OUT	0.7V differential complement clock output
48	DIF_10	OUT	0.7V differential true clock output
49	GND	PWR	Ground pin.
50	VDD	PWR	Power supply, nominal 3.3V
51	DIF_11#	OUT	0.7V differential complement clock output
52	DIF_11	OUT	0.7V differential true clock output
	OE10 11#	INI	Active low input for enabling output pairs 10 and 11.
53	OE10_11#	IN	1 = tri-state outputs, 0 = enable outputs
			This pin establishes the reference current for the differential current-
54	IREF	OUT	mode output pairs. This pin requires a fixed precision resistor tied to
54		001	ground in order to establish the appropriate current. 475 ohms is the
			standard value.
55	GNDA	PWR	Ground pin for the PLL core.
56	VDDA	PWR	3.3V power for the PLL core.

A_410	SMBus Byte 0				Input	Output		lı	Input (CPU FSB) and Output Frequencies (MHz)			
FS_A_	Bit 3	Bit 2	Bit 1	Bit 0	(m)	(n)	(n/m)	200.0	266.7	320.0	333.3	400.0
0	0	0	0	0	3	1	0.333	66.7	88.9	106.7	111.1	133.3
0	0	0	0	1	5	2	0.400	80.0	106.7	128.0	133.3	160.0
0	0	0	1	0	12	5	0.417	83.3	111.1	133.3	138.9	166.7
0	0	0	1	1	2	1	0.500	100.0	133.3	160.0	166.7	200.0
0	0	1	0	0	5	3	0.600	120.0	160.0	192.0	200.0	240.0
0	0	1	0	1	8	5	0.625	125.0	166.7	200.0	208.3	250.0
0	0	1	1	0	3	2	0.667	133.3	177.8	213.3	222.2	266.7
0	0	1	1	1	4	3	0.750	150.0	200.0	240.0	250.0	300.0
0	1	0	0	0	6	5	0.833	166.7	222.2	266.7	277.8	333.3
<u>0</u>	1	<u>0</u>	<u>0</u>	1	1	1	<u>1.000</u>	<u>200.0</u>	<u> 266.7</u>	<u>320.0</u>	<u>333.3</u>	<u>400.0</u>
0	1	0	1	0	5	6	1.200	240.0	320.0	384.0	400.0	NA
0	1	0	1	1	4	5	1.250	250.0	333.3	400.0	NA	NA
0	1	1	0	0	3	4	1.333	266.7	355.6	NA	NA	NA
0	1	1	0	1	2	3	1.500	300.0	400.0	NA	NA	NA
0	1	1	1	0	3	5	1.667	333.3	NA	NA	NA	NA
0	1	1	1	1	1	2	2.000	400.0	NA	NA	NA	NA
										FSB) Fre		(MHz)
					1			100	133.33	160	166.67	
1	0	0	0	0	3	1	0.333					
1	0	0	0	1	5	2	0.400	NA	53.3	64.0	66.7	
1	0	0	1	0	12	5	0.417	NA	55.6	66.7	69.4	
1	0	0	1	1	2	1	0.500	50.0	66.7	80.0	83.3	
1	0	1	0	0	5	3	0.600	60.0	80.0	96.0	100.0	
1	0	1	0	1	8	5	0.625	62.5	83.3	100.0	104.2	
1	0	1	1	0	3	2	0.667	66.7	88.9	106.7	111.1	
1	0	1	1	1	5	4	0.800	80.0	106.7	128.0	133.3	
1	1	0	0	0	6	5	0.833	NA	111.1	133.3	138.9	
1	1	<u>0</u>	<u>0</u>	1	1	1	<u>1.000</u>	<u>100.0</u>	<u>133.3</u>	<u>160.0</u>	<u>166.7</u>	
1	1	0	1	0	5	6	1.200	120.0	160.0	192.0	200.0	
1	1	0	1	1	4	5	1.250	125.0	166.7	200.0	208.3	
1	1	1	0	0	3	4	1.333	133.3	177.8	213.3	222.2	
1	1	1	0	1	2	3	1.500	150.0	200.0			
1	1	1	1	0	3	5	1.667	166.7	222.2	266.7	277.8	
1	1	1	1	1	1	2	2.000	200.0	266.7	320.0	333.3	

ICS9FG1201 Programmable Gear Ratios

Note: Lines in **BOLD** are Power-up defaults for $FS_A_{410} = 0$ and 1 respectively. Shaded areas are shown for reference only and are not necessarily valid operating points

Byte 8, bit 2 FSC	Byte 8, bit 1 FSB	Byte 8, bit 0 FS_A_410	CLK_IN (CPU FSB) MHz	1:1 DIF Outputs MHz	Notes
1	0	1	100.00	100.00	3
0	0	1	133.33	133.33	3
0	1	1	166.67	166.67	1
0	1	0	200.00	200.00	3
0	0	0	266.67	266.67	3
1	0	0	333.33	333.33	3
1	1	0	400.00	400.00	2
1	1	1	Res		


ICS 9FG1201H 1:1 PLL Programming

Notes:FS_A_410 = 1

1. Powerup Default for FS_A_410 = 1

2. Powerup Default for $FS_A_{410} = 0$

3. Setting the exact FSB frequency after Power up is required for best phase noise performance.

IDT™/ICS™ Frequency Gearing Clock for CPU, PCIe Gen1, Gen2, & FBD

General SMBus serial interface information for the ICS9FG1201H

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D0 (h)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D0 (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D1 (h)
- ICS clock will *acknowledge*
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block W	e Operation			
Cor	ntroller (Host)	ICS (Slave/Receiver)			
Т	starT bit				
Slave	Address D0 _(h) *				
WR	WRite				
	-		ACK		
Begi	nning Byte = N				
			ACK		
Data	Byte Count = X				
			ACK		
Begir	ning Byte N				
			ACK		
	\diamond	Byte			
	0	В	\diamond		
	\diamond	×	\diamond		
			0		
Byte	e N + X - 1				
			ACK		
Р	stoP bit				

Ind	Index Block Read Operation									
Con	troller (Host)	IC	S (Slave/Receiver)							
Т	starT bit									
Slave	Address D0 _(h) *									
WR	WRite									
			ACK							
Begii	nning Byte = N									
			ACK							
RT	Repeat starT									
Slave	Address D1 _(h) *									
RD	ReaD									
		ACK								
		Data Byte Count = X								
	ACK									
			Beginning Byte N							
	ACK									
		fe	\diamond							
	\diamond	X Byte	\diamond							
\diamond			\diamond							
0										
			Byte N + X - 1							
N	Not acknowledge									
Р	stoP bit									

* Note: See SMBus Address Mapping (page 7), for programming SMBus Read/Write Address

IDT™/ICS™ Frequency Gearing Clock for CPU, PCIe Gen1, Gen2, & FBD

SMBusTable: Gear Ratio Select Register

Byte 0 Pin #		Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	DIF(9:0) Group of 10 gear ratio enable		ear ratio enable	RW	Gear Ratio	1:1	1	
Bit 6	DIF(11:10)	Group of 2 ge	ear ratio enable	RW	Gear Ratio	1:1	1
Bit 5	- Reserved		erved	RW			1	
Bit 4		-	Gear Ratio F	S4 (FS_A_410)	RW			Latch
Bit 3		-	Gear R	latio FS3	RW	See 9FG1201		1
Bit 2		-	Gear R	latio FS2	RW	Programn	Programmable Gear	
Bit 1		-	Gear R	latio FS1	RW	Ratios Table		1
Bit 0		-	Gear R	latio FS0	RW			1

SMBusTable: Output Control Register

Byte	1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	35	, 36	DIF_7	Output Control	RW	Hi-Z	Enable	1
Bit 6	32	, 33	DIF_6	Output Control	RW	Hi-Z	Enable	1
Bit 5	24	, 25	DIF_5	Output Control	RW	Hi-Z	Enable	1
Bit 4	19	9,20	DIF_4	Output Control	RW	Hi-Z	Enable	1
Bit 3	16	6,17	DIF_3	Output Control	RW	Hi-Z	Enable	1
Bit 2	13	3,14	DIF_2	Output Control	RW	Hi-Z	Enable	1
Bit 1	9	,10	DIF_1	Output Control	RW	Hi-Z	Enable	1
Bit 0	6	6,7	DIF_0	Output Control	RW	Hi-Z	Enable	1

SMBusTable: Output and PLL BW Control Register

Byte	Byte 2 Pin #		Name	Control Function	Туре	0	1	PWD
Bit 7			Res	erved				1
Bit 6	see note PLL BW		PLL_BV	V# adjust	RW	High BW	Low BW	1
Bit 5	see	see note BYPASS# te		est mode / PLL	RW	Bypass	PLL	1
Bit 4			Reserved					1
Bit 3	51	1,52	DIF_11	Output Control	RW	Hi-Z	Enable	1
Bit 2	47	7,48	DIF_10	Output Control	RW	Hi-Z	Enable	1
Bit 1	42	2,43	DIF_9	Output Control	RW	Hi-Z	Enable	1
Bit 0	39	9,40	DIF_8	Output Control	RW	Hi-Z	Enable	1

Note: Bit 6 is wired OR to the pin 1 input, any 0 selects High BW Note: Bit 5 is wired OR to the pin 30 input, any 0 selects Fanout Bypass mode

SMBusTable: Output Enable Readback Register

Byte	3 Pir	n #	Name	Control Function	Туре	0	1	PWD
Bit 7	34		Readback ·	- OE7# Input	R	Read	lback	Х
Bit 6	31		Readback ·	- OE6# Input	R	Read	lback	Х
Bit 5	26		Readback	- OE5# Input	R	Read	lback	Х
Bit 4	21		Readback	- OE4# Input	R	Read	lback	Х
Bit 3	18		Readback	- OE3# Input	R	Read	lback	Х
Bit 2	15		Readback	- OE2# Input	R	Read	lback	Х
Bit 1	8		Readback	- OE1# Input	R	Readback		Х
Bit 0	5		Readback	- OE0# Input	R	Read	lback	Х

SMBusTable: Output Enable Readback Register

Byte	4 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	46	Readback	- FS_A_410	R	Readback		Х
Bit 6	1	Readback -	HIGH_BW# In	R	Read	Readback	
Bit 5	30	Readback - SME	3_A2_PLLBYP# In	R	Readback		Х
Bit 4		Res	erved	R	Read	lback	Х
Bit 3		Res	erved	R	Read	lback	Х
Bit 2	53	Readback - C	DE10_11# Input	R	Read	lback	Х
Bit 1	44	Readback	- OE9# Input	R	Readback		Х
Bit 0	41	Readback	- OE8# Input	R	Read	lback	Х

SMBusTable: Vendor & Revision ID Register

Byte	5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	RID3		R	-	-	Х
Bit 6		-	RID2	REVISION ID	R	-	-	Х
Bit 5		-	RID1	REVISIONID	R	-	-	Х
Bit 4		-	RID0		R	-	-	Х
Bit 3		-	VID3		R	-	-	0
Bit 2		-	VID2	VENDOR ID	R	-	-	0
Bit 1		-	VID1		R	-	-	0
Bit 0		-	VID0		R	-	-	1

SMBusTable: DEVICE ID

Byte	6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Device II	D 7 (MSB)	RW	Rese	erved	1
Bit 6		-	Devid	ce ID 6	RW	Reserved		1
Bit 5		-	Devid	ce ID 5	RW	Reserved		0
Bit 4		-	Devid	ce ID 4	RW	Rese	erved	0
Bit 3		-	Devid	ce ID 3	RW	Rese	erved	0
Bit 2		-	Devid	ce ID 2	RW	Rese	erved	0
Bit 1		-	Devid	ce ID 1	RW	Reserved		0
Bit 0		-	Devid	ce ID 0	RW	Rese	erved	1

SMBusTable: Byte Count Register

Byte	7 I	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		BC7		RW	-	-	0
Bit 6	-		BC6		RW	-	-	0
Bit 5	-		BC5	Muiting to this register	RW	-	-	0
Bit 4	-		BC4	Writing to this register	RW	-	-	0
Bit 3	-		BC3	configures how many bytes will be read back.	RW	-	-	1
Bit 2	-		BC2	bytes will be read back.	RW	-	-	0
Bit 1	-		BC1		RW	-	-	0
Bit 0	-		BC0		RW	-	-	1

SMBusTable: 1:1 PLL Frequency Selection

Byte	8	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2		-	Frequenc	y Select C	RW			х
Bit 1		-	Frequenc	Frequency Select B RW Programming Table			1	
Bit 0		-	FS_/	A_410	RW	Fiogrami	ning rable	Latch

SMBusTable: Reserved Register

Byte	9	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1				RESERVED				0
Bit 0				RESERVED				0

SMBus Table: M/N Programming Enable

Byte	10 Pin	t Name	Control Function	Туре	0	1	PWD	
			Gear PLL and 1:1 PLL					
Bit 7	-	M/N_EN	M/N Programming	RW	Disable	Enable	0	
			Enable					
Bit 6			RESERVED				Х	
Bit 5			RESERVED					
Bit 4			RESERVED					
Bit 3			RESERVED				Х	
Bit 2			RESERVED				Х	
Bit 1			RESERVED				Х	
Bit 0			RESERVED				X	

SMBus Table: Gear PLL Frequency Control Register

Byte	11	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED			Х	
Bit 6				RESERVED				Х
Bit 5		-	Gear PLL M Div5		RW			Х
Bit 4		-	Gear PLL M Div4		RW			Х
Bit 3		-	Gear PLL M Div3	M Divider Programming	RW	See 9FG1	201H M/N	Х
Bit 2		-	Gear PLL M Div2	bits	RW	programm	ning Table	Х
Bit 1		-	Gear PLL M Div1]	RW			Х
Bit 0		-	Gear PLL M Div0		RW			Х

Byte	12 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	Gear PLL N Div7		RW			Х
Bit 6	-	Gear PLL N Div6		RW			Х
Bit 5	_	Gear PLL N Div5]	RW			Х
Bit 4	-	Gear PLL N Div4	N Divider Programming	RW	See 9FG1	201H M/N	Х
Bit 3	-	Gear PLL N Div3	bits	RW	programn	ning Table	Х
Bit 2	_	Gear PLL N Div2]	RW			Х
Bit 1	_	Gear PLL N Div1]	RW			Х
Bit 0	-	Gear PLL N Div0		RW			Х

SMBus Table: Gear PLL Frequency Control Register

SMBusTable: Gear PLL Output Divider Register

Byte	13	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6	RESERVED				0			
Bit 5				RESERVED				0
Bit 4			RESERVED					0
Bit 3			GoutDiv 3		RW			Х
Bit 2			GoutDiv 2	Gear Output Divider	RW	See Gear O	Output Divider	Х
Bit 1			GoutDiv 1		RW	Та	able	Х
Bit 0			GoutDiv 1		RW			Х

SMBusTable: Reserved Register

Byte [·]	14	Pin #	Name	Control Function	Туре	0	1	PWD	
Bit 7				RESERVED					
Bit 6		RESERVED					0		
Bit 5				RESERVED				0	
Bit 4				RESERVED				0	
Bit 3				RESERVED				0	
Bit 2				RESERVED				0	
Bit 1				RESERVED				0	
Bit 0				RESERVED				0	

SMBusTable: Reserved Register

Byte	15	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1				RESERVED				0
Bit 0				RESERVED				0

SMBusTable: Reserved Register

Byte ⁻	16	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1				RESERVED				0
Bit 0				RESERVED				0

SMBus Table: 1:1 PLL Frequency Control Register

Byte	17	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5		-	1:1 PLL M Div5		RW			Х
Bit 4		-	1:1 PLL M Div4		RW			Х
Bit 3		-	1:1 PLL M Div3	M Divider Programming	RW	See 9FG1	201H M/N	Х
Bit 2		-	1:1 PLL M Div2	bits	RW	programn	ning Table	Х
Bit 1		-	1:1 PLL M Div1		RW			Х
Bit 0		-	1:1 PLL M Div0		RW			Х

SMBus Table: 1:1 PLL Frequency Control Register

Byte	18 F	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		1:1 PLL N Div7		RW			Х
Bit 6	-		1:1 PLL N Div6		RW			Х
Bit 5	-		1:1 PLL N Div5		RW			Х
Bit 4	-		1:1 PLL N Div4	N Divider Programming	RW	See 9FG1	201H M/N	Х
Bit 3	-		1:1 PLL N Div3	bits	RW	programn	ning Table	Х
Bit 2	-		1:1 PLL N Div2		RW			Х
Bit 1	-		1:1 PLL N Div1		RW			Х
Bit 0	-		1:1 PLL N Div0		RW			Х

SMBusTable: 1:1 PLL Output Divider Register

Byte	19	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3			1outDiv 3		RW			Х
Bit 2			1outDiv 2	1:1 Output Divider	RW	See 1:1 Ou	utput Divider	Х
Bit 1			1outDiv 1		RW	Та	lble	Х
Bit 0			1outDiv 1		RW			Х

SMBusTable: Reserved Register

Byte 2	20	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1				RESERVED				0
Bit 0				RESERVED				0

SMBusTable: Test Byte Register

Byte	21	Test	Test Function	Туре	Test Result	PWD
Bit 7		``	ICS ONLY TEST	RW	Reserved	0
Bit 6			ICS ONLY TEST	RW	Reserved	0
Bit 5			ICS ONLY TEST	RW	Reserved	0
Bit 4			ICS ONLY TEST	RW	Reserved	0
Bit 3			ICS ONLY TEST	RW	Reserved	0
Bit 2			ICS ONLY TEST	RW	Reserved	0
Bit 1			ICS ONLY TEST	RW	Reserved	0
Bit 0			ICS ONLY TEST	RW	Reserved	0

Note: Do NOT write to Bit 21. Erratic device operation will result!

Absolute Max

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
3.3V Core Supply Voltage	VDD_A		GND - 0.5		$V_{DD} + 0.5V$	V	1
3.3V Logic Supply Voltage	VDD_In		GND - 0.5		$V_{DD} + 0.5V$	V	1
Storage Temperature	Ts		-65		150	°C	1
Ambient Operating Temp	Tambient		0		70	°C	1
Case Temperature	Tcase				115	S	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

Electrical Characteristics - Input/Supply/Common Output Parameters

 T_A = 0 - 70 °C; Supply Voltage V_{DD} = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Input High Voltage	V _{IH}	3.3 V +/-5%, Except CLK_IN	2		V _{DD} + 0.3	V	1
Input Low Voltage	V _{IL}	3.3 V +/-5%, Except CLK_IN	V _{SS} - 0.3		0.8	V	1
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull- up resistors	-5			uA	
Low Threshold Input- High Voltage	$V_{\text{IH}_{\text{FS}}}$	3.3 V +/-5%, Applies to FS_A_410 pin	0.7		V _{DD} + 0.3	v	1
Low Threshold Input- Low Voltage	V _{IL_FS}	3.3 V +/-5%, Applies to FS_A_410 pin	V _{SS} - 0.3		0.35	V	1
Operating Current	I _{DD3.3OP}	all outputs driven			375	mA	1
Powerdown Current	I _{DD3.3PD}	all differential pairs tri-stated			24	mA	1
Input Frequency	Fi	$V_{DD} = 3.3 V$	100		400	MHz	З
Pin Inductance	L _{pin}				7	nH	1
Input Capacitance	C _{IN}	Logic Inputs			5	pF	1
input Capacitance	C _{OUT}	Output pin capacitance			5	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up or de- assertion of PD# to 1st clock			1.8	ms	1
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_PD#		DIF output enable after PD# de-assertion			300	us	1
Tfall_Pd#		PD# fall time of			5	ns	1
Trise_Pd#		PD# rise time of			5	ns	2
SMBus Voltage	V _{MAX}	Maximum input voltage			5.5	V	1
Low-level Output Voltage	V _{OL}	@ I _{PULLUP}			0.4	V	1
Current sinking at V _{OL} = 0.4 V	I _{PULLUP}		4			mA	1
SCLK/SDATA Clock/Data Rise Time	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Clock/Data Fall Time	T _{FI2C}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_{O} = V_{x}$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using	660		850	mV	1,3
Voltage Low	VLow	oscilloscope math function.	-150		150		1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300				1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
		400MHz nominal	2.4993		2.5008	ns	2
		400MHz spread	2.4993		2.5133	ns	2
		333.33MHz nominal	2.9991		3.0009	ns	2
		333.33MHz spread	2.9991		3.016	ns	2
		266.66MHz nominal	3.7489		3.7511	ns	2
		266.66MHz spread	3.7489		3.77	ns	2
	Traviad	200MHz nominal	4.9985		5.0015	ns	2
Average period	Tperiod	200MHz spread	4.9985		5.0266	ns	2
		166.66MHz nominal	5.9982		6.0018	ns	2
		166.66MHz spread	5.9982		6.0320	ns	2
		133.33MHz nominal	7.4978		7.5023	ns	2
		133.33MHz spread	7.4978		7.5400	ns	2
		100.00MHz nominal	9.9970		10.0030	ns	2
		100.00MHz spread	9.9970		10.0533	ns	2
		400MHz nominal/spread	2.4143			ns	1,2
		333.33MHz nominal/spread	2.9141			ns	1,2
		266.66MHz nominal/spread	3.6639			ns	1,2
Absolute min period	T _{absmin}	200MHz nominal/spread	4.8735			ns	1,2
		166.66MHz nominal/spread	5.8732			ns	1,2
		133.33MHz nominal/spread	7.3728			ns	1,2
		100.00MHz nominal/spread	9.8720			ns	1,2
Rise Time	t _r	V _{OL} = 0.175V, V _{OH} = 0.525V	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525V V_{OL} = 0.175V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Jitter, Cycle to cycle	t _{JCYC-CYC}	PLL mode, from differential wavefrom			50	ps	1,4,5
	t _{JBYP}	Bypass mode as additive jitter			50	ps	1,4

 $T_A = 0 - 70 \,^{\circ}\text{C}; V_{DD} = 3.3 \text{ V} + -5\%; C_L = 2pF, R_S = 33.2\Omega, R_P = 49.9\Omega, I_{REF} = 475\Omega$

Notes:

1. Guaranteed by design and characterization, not 100% tested in production.

2. All Long Term Accuracy and Clock Period specifications are guaranteed assuming that the input frequency meets CK410B accuracy requirements

3.IREF = VDD/(3xRR). For RR = 475 Ω (1%), IREF = 2.32mA. IOH = 6 x IREF and VOH = 0.7V @ ZO=50 Ω .

4. Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

5. Measured from differential cross-point to differential cross-point

6. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

Electrical Characteristics - Skew and Differential Jitter Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3$ V +/-5%

Group	Parameter	Description	Min	Тур	Max	Units	Notes
CLK_IN, DIF[x:0]	t _{SPO_PLL}	Input-to-Output Skew in PLL mode (1:1 only), nominal value @ 25 °C, 3.3V	-500	140	500	ps	1,2,4,5,8, 12
CLK_IN, DIF[x:0]	t _{PD_BYP}	Input-to-Output Skew in Bypass mode (1:1 only), nominal value @ 25℃, 3.3V	2.5	3.1	4.5	ns	1,2,3,5, 12
CLK_IN, DIF [x:0]	Δt_{SPO_PLL}	Input-to-Output Skew Variation in PLL mode (over specified voltage / temperature operating ranges)		270	350	ps	1,2,4,5,6, 10,12
CLK_IN, DIF [x:0]	$\Delta t_{\text{PD}_\text{BYP}}$	Input-to-Output Skew Variation in Bypass mode (over specified voltage / temperature operating ranges)		470	500	ps	1,2,3,4,5, 6,10,12
DIF[11:10]	t _{skew_g2}	Output-to-Output Skew Group of 2 (Common to Bypass and PLL mode)		10	25	ps	1,2,12
DIF[9:0]	t _{SKEW_G10}	Output-to-Output Skew Group of 10 (Common to Bypass and PLL mode)		40	50	ps	1,2,12
DIF[11:0]	t _{SKEW_A12}	Output-to-Output Skew across all 12 outputs (Common to Bypass and PLL mode - all outputs at same gear)		80	100	ps	1,2,3,12
DIF[11:0]	t _{JPH}	Differential Phase Jitter (RMS Value)		5	10	ps	1,4,7,12
DIF[11:0]	t _{SSTERROR}	Differential Spread Spectrum Tracking Error (peak to peak)		40	80	ps	1,4,9,12
PLL Jitter Peaking	j _{peak-hibw}	(HIGH_BW# = 0)	0	2	2.5	dB	11,12
PLL Jitter Peaking	j _{peak-lobw}	(HIGH_BW# = 1)	0	1.3	2	dB	11,12
PLL Bandwidth	рІІ _{нівw}	(HIGH_BW# = 0)	2	3.6	4	MHz	12,13
PLL Bandwidth	pll _{LOBW}	(HIGH_BW# = 1)	0.7	1.2	1.4	MHz	12,13

NOTES on Skew and Differential Jitter Parameters:

1. Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

2. Measured from differential cross-point to differential cross-point

3. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

4. This parameter is deterministic for a given device

5. Measured with scope averaging on to find mean value.

6. Long-term variation from nominal of input-to-output skew over temperature and voltage for a single device.

7. This parameter is measured at the outputs of two separate 9FG1201H devices driven by a single CK410B+. The 9FG1201H must be set to high bandwidth. Differential phase jitter is the accumulation of the phase jitter not shared by the outputs (eg. not including the affects of spread spectrum). Target ranges of consideration are agents with BW of 1-22MHz and 11-33MHz.

8. t is the period of the input clock

9. Differential spread spectrum tracking error is the difference in spread spectrum tracking between two 9FG1201H devices This parameter is measured at the outputs of two separate 9FG1201H devices driven by a single CK410B+ in Spread Spectrum mode. The 9FG1201H must set to high bandwidth. The spread spectrum characterisitics are : maximum of 0.5%, 30 to 33KHz modulation frequency, linear profile.

10. This parameter is an absolute value. It is not a double-sided figure.

11. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.

12. Guaranteed by design and characterization, not 100% tested in production.

13. Measured at 3 db down or half power point.

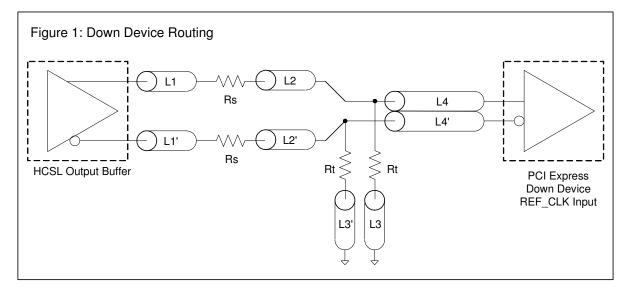
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP.	MAX	UNITS	NOTES
	t _{jphPCle1}	PCIe Gen 1 REFCLK phase jitter (including PLL BW 8 - 16 MHz, $\zeta = 0.54$, Td=10 ns, Ftrk=1.5 MHz)		40/38	86	ps	1,2,3,5
	t _{jphPCle2Lo}	PCIe Gen 2 REFCLK phase jitter (including PLL BW 8 - 16 MHz, $\zeta = 0.54$, Td=12 ns) Lo-band content (10kHz to 1.5MHz)		1.3/1.2	3	ps rms	1,2,5
Jitter, Phase	t _{jphPCle2Hi}	PCIe Gen 2 REFCLK phase jitter (including PLL BW 8 - 16 MHz, $\zeta = 0.54$, Td=12 ns) Hi-band content (1.5MHz to Nyquist)		3.0/2.4	3.1	ps rms	1,2,5
	t _{jphFBD1_3.2G}	FBD REFCLK phase jitter (including PLL BW 11 - 33 MHz, $\zeta = 0.54$, Td=12 ns Ftrl=0.2MHz)		2.8/2.3	3	ps (RMS)	1,2,5
	t _{jphFBD1_4.8G}	FBD REFCLK phase jitter (including PLL BW 11 - 33 MHz, $\zeta = 0.54$, Td=12 ns Ftrl=0.2MHz)		2.3/1.9	2.5	ps (RMS)	1,2,5

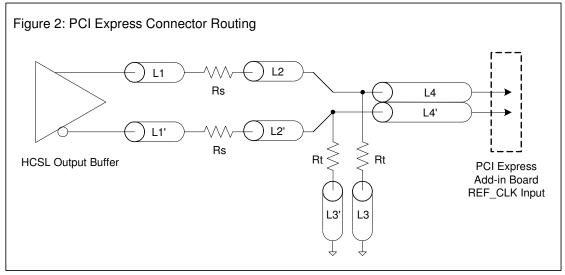
Notes on Phase Jitter:

¹ See http://www.pcisig.com for complete specs. Guaranteed by design and characterization, not tested in production.

² Device driven by 932S421BGLF or equivalent

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1⁻¹²

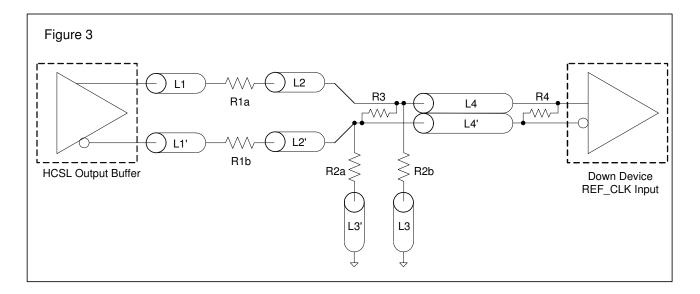

⁴ Hi-Bandwidth Number/Low Bandwidth Number with Spread On. Spread Off gives lower numbers.


⁵ Byte 8 must be properly set to meet these parameters.

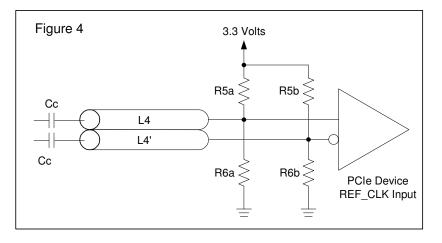
SRC Reference Clock						
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure			
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1			
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
Rs	33	ohm	1			
Rt	49.9	ohm	1			

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

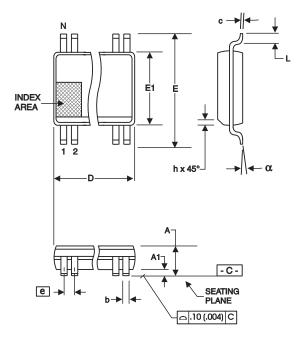
Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



ICS9FG1201H Frequency Gearing Clock for CPU, PCIe Gen1, Gen2, & FBD


Vdiff \			Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
van	Vp-p	Vcm	R1	R2	R3	R4	Note			
0.45v (0.22v	1.08	33	150	100	100				
0.58 0	0.28	0.6	33	78.7	137	100				
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible			
0.60 (0.3	1.2	33	174	140	100	Standard LVDS			

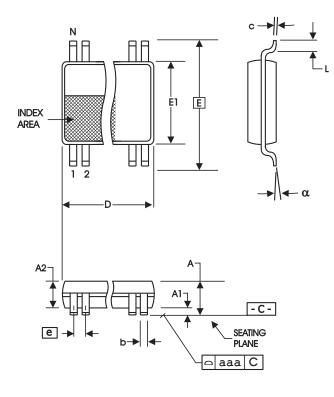
R1a = R1b = R1


R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)					
Component	Value	Note			
R5a, R5b	8.2K 5%				
R6a, R6b	1K 5%				
Сс	0.1 μF				
Vcm	0.350 volts				

IDT™/ICS™ Frequency Gearing Clock for CPU, PCIe Gen1, Gen2, & FBD

56-L ood	200	mil	Rody	25	mil	SEVD
56-Lead,	300	IIIII	DOUY,	20	mm,	33UP


	In Millimeters		In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
А	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25	.005	.010	
D	SEE VARIATIONS		SEE VARIATIONS		
E	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635	BASIC	0.025 BASIC		
h	0.38	0.64	.015	.025	
L	0.50	1.02	.020	.040	
N	SEE VAF	RIATIONS	SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS

Ν	Dn	nm.	D (inch)		
	MIN	MAX	MIN	MAX	
	56	18.31	18.55	.720	.730

Reference Doc.: JEDEC Publication 95, MO-118

10-0034

56-Lead 6.10 mm.	Body,	0.50 mm.	Pitch TSSOP
(240	mil)	(20 m	nil)

(240		mii)	(20 mil)		
	In Millir	neters	In Inc	ches	
SYMBOL	COMMON DI	COMMON DIMENSIONS		MENSIONS	
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VAR	IATIONS	SEE VARIATIONS		
E	8.10 B	ASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 B	ASIC	0.020 BASIC		
L	0.45	0.75	.018	.030	
Ν	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

N	D m	m.	D (inch)		
IN	MIN	MAX	MIN	MAX	
56	13.90	14.10	.547	.555	

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

Part / Order Number	Shipping/Packaging	Package	Temperature
9FG1201HGLF	Tubes	56-pin TSSOP	0 to +70℃
9FG1201HGLFT	Tape and Reel	56-pin TSSOP	0 to +70℃
9FG1201HFLF	Tubes	56-pin SSOP	0 to +70℃
9FG1201HFLFT	Tape and Reel	56-pin SSOP	0 to +70℃

"LF" denotes Pb free packaging, RoHS compliant

"H" denotes revision designator (will not correlate with datasheet revision)

Revision History

Rev.	Issue Date	Description	Page #
Α	10/22/2007	Release to Final.	-
B 1/29/2	1/29/2008	Updated Key Specifications:	1
	1/29/2006	Changed units for DIF output-to-output skew to "ps".	
С	2/12/2008	Changed Cin value from 6 pf to 5 pf.	14
D	9/24/2008	Added 1:1 VCO Programming Table	6
E	1/21/2009	Updated Skew and Phase Jitter tables.	17,18
F	9/23/2009	Updated Ordering Information table	22

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>