
N e v e r s t o p t h i n k i n g .

Microcontrol lers

User Manual, V 1.7, January 2001

C166S V2

16-Bi t Microcontrol ler

Edition 2001-01

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany

© Infineon Technologies AG 2001.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted
characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address
list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

Microcontrol lers

User Manual, V 1.7, January 2001

N e v e r s t o p t h i n k i n g .

C166S V2

16-Bit Microcontrol ler

C166S V2

Revision History: 2001-01 V 1.7

Previous Version: -

Page Subjects (major changes since last revision)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

ce.cmd@infineon.com

User Manual

C166S V2

Table of Contents Page

User Manual 5 V 1.7, 2001-01

1 Introduction . 9

1.1 Technical Overview . 9

1.2 System Description . 10

1.2.1 CPU . 11

1.2.2 On-Chip Memory Modules . 12

1.2.3 Data Management Unit (DMU) . 12

1.2.4 Program Memory Unit (PMU) . 12

1.2.5 Interrupt and PEC Controller . 13

1.2.6 OCDS and JTAG . 13

1.2.7 External Bus Controller (EBC) . 13

1.2.8 System Control Unit (SCU) . 13

1.2.9 Clock Generation Unit (CGU) . 14

1.2.10 On-Chip Bootstrap Loader . 14

2 Central Processing Unit . 15

2.1 Register Description Format . 17

2.2 CPU Special Function Registers . 18

2.3 Instruction Fetch and Program Flow Control . 19

2.3.1 Branch Target Addressing Modes . 20

2.3.2 Branch Detection and Branch Prediction . 22

2.3.3 Sequential and Mispredicted Instruction Flow . 24

2.3.3.1 Correctly Predicted Instruction Flow . 24

2.3.3.2 Incorrectly Predicted Instruction Flow . 26

2.3.4 Atomic and Extend Instructions . 27

2.3.5 Code Addressing via Code Segment and Instruction Pointer 28

2.3.6 IFU Control Registers . 30

2.3.6.1 The CPU Configuration Register CPUCON1 30

2.3.6.2 The CPU Configuration Register CPUCON2 31

2.4 Use of General Purpose Registers . 34

2.4.1 Memory Mapped GPR Banks and the Global Register Bank 36

2.4.2 Local Register Bank . 40

2.4.3 Context Switch . 40

2.4.3.1 Changing the selected Physical Register Bank 40

2.4.3.2 Context Switching of the Global Register Bank 42

2.5 Data Addressing . 45

2.5.1 Short Addressing Modes . 46

2.5.2 Long and Indirect Addressing Modes . 48

2.5.2.1 Addressing via Data Page Pointer DPP . 49

2.5.2.2 DPP Override Mechanism in the C166S V2 CPU 51

2.5.2.3 Long Addressing Mode . 52

2.5.2.4 Indirect Addressing Modes . 53

2.5.3 DSP Addressing . 56

2.5.4 The CoREG Addressing Mode . 63

User Manual

C166S V2

Table of Contents Page

User Manual 6 V 1.7, 2001-01

2.5.5 The System Stack . 64

2.6 Data Processing . 68

2.6.1 Data Types . 68

2.6.2 Constants . 70

2.6.3 16-bit Adder/Subtracter, Barrel Shifter, and 16-bit Logic Unit 70

2.6.4 Bit Manipulation Unit . 70

2.6.5 Multiply and Divide Unit . 71

2.6.6 The Processor Status Word PSW . 74

2.7 Parallel Data Processing . 78

2.7.1 Representation of Numbers and Rounding . 79

2.7.2 The 16-bit by 16-bit signed/unsigned Multiplier and Scaler 80

2.7.3 Concatenation Unit . 80

2.7.4 One-bit Scaler . 80

2.7.5 The 40-bit Adder/Subtracter . 81

2.7.6 The Data Limiter . 81

2.7.7 The Accumulator Shifter . 82

2.7.8 The 40-bit Signed Accumulator Register . 82

2.7.9 The Repeat Counter MRW . 84

2.7.10 The MAC Unit Status Word MSW . 85

2.7.11 The MAC Unit Control Word MCW . 88

2.8 Dedicated CSFRs . 89

3 C166S V2 Memory Organization . 91

3.1 Data Organization in Memory . 93

3.2 Internal Program Memory . 93

3.3 DPRAM, Internal SRAM, and SFR Areas . 94

3.3.1 Data Memories . 94

3.3.2 Special Function Register Areas . 96

3.3.3 IO Area . 97

3.3.4 PEC Source and Destination Pointers . 97

3.4 External Memory Space . 98

3.4.1 Boot and Debug/Monitor Program Memories . 98

3.5 Crossing Memory Boundaries . 99

3.6 System Stack . 99

3.6.1 Data Organization in Global General Purpose Registers 100

4 Instruction Pipeline . 103

4.1 Instruction Dependencies in Different Pipeline Stages 104

4.1.1 The General Purpose Registers . 104

4.1.2 Indirect Addressing Modes . 106

4.1.3 Memory Bandwidth Conflicts . 107

4.1.4 CPU-SFRs and the Pipeline . 110

5 Interrupt and Exception Handling . 117

User Manual

C166S V2

User Manual 7 V 1.7, 2001-01

5.1 Interrupt System and Control . 118

5.1.1 General Interrupt System Structure . 118

5.1.2 Interrupt Arbitration . 120

5.1.3 Interrupt Control . 122

5.1.4 Interrupt Vector Table . 124

5.1.5 Interrupt Jump Table Cache . 125

5.2 Status and Switch Context Control . 127

5.2.1 Interrupt Control Functions in the PSW . 127

5.2.2 Saving the Status during Interrupt Service . 129

5.2.3 Context Switching . 130

5.2.4 Fast Bank Switching . 131

5.3 Traps . 132

5.3.1 Software Traps . 132

5.3.2 Hardware Traps . 133

5.4 Peripheral Event Controller . 138

5.4.1 PEC Control Registers . 139

5.4.2 The PEC Source and Destination Pointer . 145

5.4.3 PEC Handler Interrupt Actions Summary . 147

5.4.4 PEC Channel Assignment and Arbitration . 149

5.5 CPU Action Control Unit . 151

6 External Bus Controller . 153

6.1 Introduction . 153

6.2 Timing Principles . 154

6.2.1 A Phase . 157

6.2.2 B Phase . 157

6.2.3 C Phase . 157

6.2.4 D Phase . 157

6.2.5 E Phase . 157

6.2.6 F Phase . 158

6.3 Functional Description . 158

6.3.1 Configuration Register Overview . 158

6.3.2 The EBC MODE Registers EBCMODx . 158

6.3.3 The Timing Configuration registers TCONCSx 161

6.3.4 The Function Configuration Registers FCONCSx 163

6.3.5 The Address Window Selection Registers ADDRSELx 164

6.3.5.1 Definition of Address Areas . 164

6.3.5.2 Address Window Arbitration . 166

6.3.6 Ready Controlled Bus Cycles . 167

6.3.6.1 General . 167

6.3.6.2 The Synchronous/Asynchronous READY . 168

6.3.6.3 Combining the READY function with predefined wait states 168

6.3.7 EBC Idle State . 169

User Manual

C166S V2

User Manual 8 V 1.7, 2001-01

6.4 Multi Master Systems . 169

6.4.1 External Bus Arbitration . 169

6.4.1.1 Initialization of Arbitration . 169

6.4.1.2 Arbitration Master Scheme . 170

6.4.1.3 Arbitration Slave Scheme . 171

6.4.1.4 Locking the Bus . 171

6.4.2 Connecting Multimaster Systems . 172

6.5 Fastest possible external access . 173

7 Instruction Set . 175

7.1 Short Instruction Summary . 175

7.2 Instruction Set Summary . 178

7.3 Instruction Opcodes . 192

8 Detailed Instruction Description . 205

8.1 Normal Instruction Set . 212

8.2 DSP Instruction Set . 315

8.3 Instructions for OCDS/ITC injection and System Control 417

9 Summary of CPU/Subsystem Registers . 421

9.1 General Purpose Registers (GPRs) . 421

9.2 Core Special Function Registers . 423

9.2.1 Ordered by Name . 423

9.2.2 Ordered by Address . 424

9.3 Register Overview Interrupt and Peripheral Event Controller 426

9.3.1 Ordered by Name . 426

9.3.2 Ordered by Address . 427

9.4 Register Overview External Bus Controller . 430

9.4.1 Ordered by Name . 430

9.4.2 Ordered by Address . 431

10 Keyword Index . 433

User Manual

C166S V2

Introduction

User Manual 1-9 V 1.7, 2001-01

1 Introduction

C166S V2 is a member of the most recent generation of the popular C166

microcontroller cores. C166S V2 combines high performance with enhanced modular

architecture. It was developed to provide easy migration from standard existing C16x to

the new C166S V2 core with its impressive DSP performance and advanced interrupt

handling. The system architecture inherits successful hardware and software concepts

that have been established in the C16x 16-bit microcontroller families. C166 code

compatibility enable re-use of existing code. This dramatically reduces the time-to-

market for new product development.

The following features position C166S V2 strategically for contemporary and emerging

markets for performance-hungry real-time applications:

– High CPU performance. Single clock cycle execution doubles the performance at the

same CPU frequency (relative to the performance of the C166).

– Built-in advanced MAC unit dramatically increases DSP performance.

– High Internal Program Memory bandwidth and the instruction fetch pipeline

significantly improve program flow regularity and optimize fetches into the execution

pipeline.

– Sophisticated Data Memory structure and multiple high-speed data buses provide

transparent data access (0 cycles) and broad bandwidth for efficient DSP processing.

– Advanced exceptions handling block with multi-stage arbitration capability yields

stellar interrupt performance with extremely small latency.

– Upgraded Peripheral Event Controller supports efficient and flexible DMA features to

support a broad range of fast peripherals.

– Highly modular architecture and flexible bus structure provide effective methods of

integrating application-specific peripherals to produce customer-oriented derivatives.

This User’s Manual describes the new standard C166S V2 core independently from its

use for the dedicated product. Differencies to existing standard products are therefore

described in the User’s Manual (or Target Specification) of the product.

1.1 Technical Overview

– 5-stage execution pipeline

– 2-stage instruction fetch pipeline with FIFO for instruction pre-fetching

– Pipeline with forwarding that controls data dependencies in hardware

– Linear address space for code and data (von Neumann architecture)

– Multiple high bandwidth internal busses for data and instructions

– Enhanced memory map with extended I/O areas

– 16 MBytes total linear address space

– C16x family compatible on-chip special function register area

– Fast multiplication (16-bit x 16-bit) in one CPU clock cycle

– Fast background execution of division (32-bit/16-bit) in 21 CPU clock cycles

User Manual

C166S V2

Introduction

User Manual 1-10 V 1.7, 2001-01

– Nearly all instructions executed in one CPU clock cycle

– Enhanced boolean bit manipulation facilities

– Zero cycle jump execution

– Additional instructions to support High Level Language (HLL) and operating systems

– Register-based design with multiple variable register banks

– Two additional fast register banks

– General purpose register architecture

– 16 General-purpose registers (GPRs) for byte operands

– 16 General-purpose registers (GPRs) for integer operands

– Overlapping 8-bit and 16-bit registers

– Opcode fully upward compatible with C166 family

– Variable stack with automatic stack overflow/underflow detection

– High performance branch-, call- and loop processing

– Multiply and accumulate instructions (MAC) executed in one CPU clock cycle

– Extremely short interrupt response time

– "Fast interrupt" and "Fast context switch" features

– Peripheral bus (PDBUS+) with bit protection

1.2 System Description

The basic C166S V2 System consists of the following main units:

• C166S V2 CPU

• On-Chip Data- and Code-Memories

• Data Management Unit (DMU)

• Program Management Unit (PMU)

• Interrupt and Peripheral Event Controller (PEC) Controller

• OCDS and JTAG-Interface

• External Bus Controller (EBC)

• System Control Unit (SCU)

• Clock Generation Unit (CGU)

The powerful C166S V2 core, the peripherals, and the internal memories of the

C166S V2 microcontroller are connected to various busses:

• 16-bit high performance system bus

• 16-bit enhanced peripheral bus (PDBUS+)

• 64-bit internal program memory bus

• 16-bit data memory bus

User Manual

C166S V2

Introduction

User Manual 1-11 V 1.7, 2001-01

Figure 1-1 shows a typical configuration of a C166S V2-based system.

Figure 1-1 C166S V2 System

1.2.1 CPU

– 5-stage execution pipeline

– 2-stage instruction fetch pipeline with FIFO for instruction pre-fetching

– Pipeline with forwarding that controls data dependencies in hardware

– Flexible PMU and DMU with cache capabilities

– Linear address space for code and data (von Neumann architecture)

– Multiple high bandwidth internal busses for data and instructions

– 16 MBytes total linear address space

– Nearly all instructions executed in one CPU clock cycle

– Enhanced boolean bit manipulation facilities

– Zero cycle jump execution

– Additional instructions to support HLL and operating systems

– Register-based design with multiple variable register banks

– Two additional fast register banks

– General purpose register architecture

– 16 General-purpose registers (GPRs) for byte operands

– 16 General-purpose registers (GPRs) for integer operands

Data Memory

up tp 24 kBytes

SRAM

Program Memory

up to 4MBytes

JTAGOCDS

C166S V2 CPU

DMU

Injection
Interface

up tp 3 kBytes

DPRAM

C166S V2 MegaCore

Break
Interface

Trace
Interface

PMU

Dedicated Pins

Periheral

2

Peripheral

....

Peripheral

n

SCU

WDT
PLL

OSC

16

16

16

64 64

PDBUS+

PORT PORT

CGU

E
x
te

rn
a
l

B
u
s

J
T

A
G

R
E

S
E

T

C166S V2

 System High Speed System Bus

PORT

 EBC Config.

Block

External Bus Interface

C
O

N
F

IG

Interrupt Controller

and

Peripheral Event Controller

X
T

A
L
1

X
T

A
L
2

C
L

K
O

U
T

N
M

I

Peripheral

1

C
L

K
O

U
T

User Manual

C166S V2

Introduction

User Manual 1-12 V 1.7, 2001-01

– Overlapping 8-bit and 16-bit registers

Multiply Accumulate Unit (MAC)

– Single cycle MAC with zero cycle latency including a 16*16 multiplier plus 40-bit barrel

shifter; single clock multiplication is ten times faster than C166 at the same CPU clock

– 40-bit accumulator to handle overflows

– Automatic saturation to 32 bit or rounding included with the MAC instruction

– Fractional numbers supported directly

– One Finite Impulse Response Filter (FIR) tap per cycle with no circular buffer

management

1.2.2 On-Chip Memory Modules

– Up to 3 KBytes on-chip dual ported SRAM for DSP data and register banks

– Up to 24 KBytes on-chip internal single ported SRAM module for data storage

– Up to 4 MBytes on-chip memory module for program storage

Note: The on-chip memory configuration may differ from product to product. Product

specific on-chip memory configurations are defined in the corresponding product

specifications.

1.2.3 Data Management Unit (DMU)

The Data Management Unit (DMU) handles all data transfers external to the core (i.e.

external memory or on-chip special function registers on the PDBUS+) and instruction

fetches in external memory. The DMU acts as a data mover between the various

interfaces. By handling all these interfaces, it incorporates the C166S V2 System Bus.

An access prioritization between External BUS Controller (EBC) accesses from the core

and Program Memory Unit (PMU) is handled by the DMU. This allows an instruction

fetch from external memory in parallel with data access that is not on EBC.

1.2.4 Program Memory Unit (PMU)

The PMU has two basic functions: to provide the CPU with instructions and to provide

the CPU (through the DMU) with data located in the Internal Program Memory. The

Internal Program Memory is implemented within the PMU.

The instructions requested by the CPU can be located in the Internal Program Memory;

in which case, the instructions are requested to the internal memory. Alternatively, they

can be located in external memory; in which case, the PMU re-sends this request to the

EBC through the DMU, receives the data from the external memory, through the EBC/

DMU, and delivers it as the requested instruction to the CPU.

User Manual

C166S V2

Introduction

User Manual 1-13 V 1.7, 2001-01

1.2.5 Interrupt and PEC Controller

– 16-Priority-level interrupt system with up to 128 sources on four group levels

– Eight PEC channels with 24-bit source and destination pointers with segment pointer

registers

– Enhanced PEC pointers. PEC source pointers and PEC destination pointers can be

simultaneously modified

– Independent programmable PEC level and "End of PEC" interrupt

1.2.6 OCDS and JTAG

The OCDS (level 1) provides facilities to the debugger to emulate resources and assist

in application program debug. The main features are:

– Real time emulation

– Extended trigger capability including: instruction pointer events, data events on

address and/or value, external inputs, counters, chaining of events, timers, etc.

– Software break support

– Break and “break before make” (on IP events only)

– Interrupt servicing during break or monitor mode

– Simple monitor mode or JTAG based debugging through instruction injection

The C166S V2 OCDS is controlled by the debugger1) through a set of registers

accessible from the JTAG interface. The OCDS also receives informations (such as IP,

data, status) from the core for monitoring the activity and generating triggers. Finally, the

OCDS interacts with the core through a break interface to suspend program execution,

and through an injection interface to allow execution of OCDS generated instructions.

1.2.7 External Bus Controller (EBC)

All external memory accesses are performed by a particular on-chip External Bus

Controller (EBC).

1.2.8 System Control Unit (SCU)

The System Control Unit supports all central control tasks and all product specific

features. The following typical sub-modules are implemented in this unit:

Reset Control

The reset function is controlled by the reset control unit.

1) Debugger refers to the tool connected to the emulator, and more specifically to the OCDS via the JTAG and
which manages the emulation/debugging task.

User Manual

C166S V2

Introduction

User Manual 1-14 V 1.7, 2001-01

Power Saving Control

The Power Saving Control block, known from the power management of the C166

derivatives, manages idle mode, power down mode, and sleep mode of the C166S V2.

ID Control

A set of six identification registers is defined for the most important silicon parameters,

including the chip manufacturer, the chip type and its properties. These ID registers can

be used for automatic test selection.

External Interrupt Control

The C166S V2 System provides asynchronous fast external interrupt inputs.

Central System Control

The central system behavior of the C166S V2 is controlled by this block. The frequency

of the PDBUS+ (bus clock) and of all peripherals connected to this bus is programmable

according to the maximum physical bus speed and the application requirements.

Furthermore, the clock generation status is indicated. Depending on the application

state, various security levels (such as protected and unprotected mode) are supported

by the security level control state machine.

Watchdog Timer (WDT)

The Watchdog Timer is one of the fail-safe mechanisms that have been implemented to

prevent the controller from malfunctioning. However, the Watchdog Timer can detect

only long term malfunctions.

1.2.9 Clock Generation Unit (CGU)

The C166S V2 Clock Generation Unit uses either an oscillator or crystal to generate the

system clock. A programmable on-chip PLL adds high flexibility to clock generation for

the C166S V2.

1.2.10 On-Chip Bootstrap Loader

As in the C166, the on-chip bootstrap loader allows the start code to be moved into

internal RAM via the serial interface.

User Manual

C166S V2

Central Processing Unit

User Manual 2-15 V 1.7, 2001-01

2 Central Processing Unit

C166S V2 CPU represents the third generation of the well known C166 core family. It

combines many powerful enhancements with compatibility to the C166 family. The new

architecture results in high CPU performance, fast and efficient access to different kinds

of memories, and proficient peripheral units integration.
 .

Figure 2-1 CPU Architecture

address

data in

data out

CSP IP

CPUCON1

CPUCON2

 FIFO
IFU

IDX0

IDX1

QX1

QX0

QR1

QR0

SP

SPSEG

VECSEG

STKOV

STKUN

DPP0

DPP1

DPP3

DPP2

+/-+/- ADU

MDLMDHMAL

Division Unit

MAH

Multiply Unit

MSW

MCW

ALU

RF

+/-
+/-

ZEROS

PSW

ONES

MRW

TFR

CPUID

MDC

Barrel-Shifter

Bit-Mask-Gen.

Multiply Unit

WBMAC

 CPU

CP

2-Stage
 Prefetch

Pipeline

5-Stage
 Pipeline

IPIP

DPRAM

address

data in

data out

DMU

R15

R14

R0

R1

SRAM

data in

address

data out

Peripheral-Bus

PMU
 Internal Program Memory

System-Bus

ad
dr

es
s

da
ta

 in

da
ta

 o
ut

System-Bus

Prefetch Unit

Branch Unit

Return Stack Injection/Exception

Handler

GPRs

Buffer

R15

R14

R0

R1

GPRs

R15

R14

R0

R1

GPRs

R15

R14

R0

R1

GPRs

User Manual

C166S V2

Central Processing Unit

User Manual 2-16 V 1.7, 2001-01

The new core architecture of the C166S V2 CPU results in higher CPU clock frequencies

and reduces the number of clock cycles per executed instruction by half, compared to

the C166 core. C166S V2 CPU also integrates a multiplication and accumulation unit

which dramatically increases performance of the DSP-intensive tasks.

C166S V2 CPU has eight main units that are listed below. All of these units have been

optimized to achieve maximum performance and flexibility.

• High Performance Instruction Fetch Unit (IFU)

– High Bandwidth Fetch Interface

– Instruction FIFO

– High Performance Branch-, Call-, and Loop-Processing with instruction flow

prediction

• Return Stack

– Injection/Exception Handler

– Handling of Interrupt Requests

– Handling of Hardware Failures

• Instruction Pipeline (IPIP)

– Bypassable 2-stage Prefetch Pipeline

– 5-stage Execution Pipeline

• Address and Data Unit (ADU)

– 16-bit arithmetic unit for address generation

– DSP address unit with a set of dedicated address- and offset pointers

• Arithmetic and Logic Unit (ALU)

– 8-bit and 16-bit Arithmetic Unit

– 16-bit Barrel Shifter

– Multiplication and Division Unit

– 8-bit and 16-bit Logic Unit

– Bit manipulation Unit

• Multiply and ACcumulate Unit (MAC)

– 16-bit multiplier with 32-bit result generation1)

– 40-bit Accumulator with 40-bit Barrel Shifter

– Repeat Control Unit

• Register File (RF)

– 5-port Register File with three independent register banks

• Write Back Buffer (WB)

– 3-entries buffer

1) The same hardware-multiplier is used in the ALU and in the MAC Unit.

User Manual

C166S V2

Central Processing Unit

User Manual 2-17 V 1.7, 2001-01

2.1 Register Description Format

C166S V2 CPU contains a set of Special Function Register (SFR) and Extended Special

Function Registers (ESFR). They are described in the respective chapter of this manual.

The example below shows how to interpret the format and notation used to describe

SFRs and ESFRs.

A word register looks like this:

A byte register looks like this:

Elements:

REG_NAME Name of this register

bitX Name of bit

bitfieldX Name of bitfield

A16 / A8 Long 16-bit address/Short 8-bit address

SFR(b)/ESFR(b) Register space (SFR or ESFR (bit addressable) Register)

XSFR Register located in the internal 4 k IO area

REG_NAME

Short Description SFR(b)/ESFR(b)/XSFR Reset Value: aaaaH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 bitfield
A 0 0 bit

C
bit
B

bit
A

r r r r r r rwh r r rw rw rwh

REG_NAME

Short Description SFR(b)/ESFR(b)/XSFR Reset Value: aaH

7 6 5 4 3 2 1 0

0 bitfield
A 0 bit

C
bit
B

bit
A

r rwh r rw rw rwh

Field Bits Type Description

bitfieldX [m:n] type Description

value Function off(Default)

value Enable Function 1

... ...

bitX [n] type Description

0 Function off(Default)

1 Enable Function

User Manual

C166S V2

Central Processing Unit

User Manual 2-18 V 1.7, 2001-01

(* *) * * Register contents after reset

’0/1’ : defined value,

’U’ : unchanged (undefined (’X’) after power up)

’?’ : defined by reset configuration

[n] Bit number

[m:n] n : Bit number first bit of the bitfield

m : Bit number of last bit of the bitfield

type ’r’ : readable by software

’w’ : writable by software

’h’ : writable by hardware

value ’0/1’ : defined value,

’X’ : undefined,

’0’ : reserved for future purpose, read access delivers 0,

 must not be set to 1

2.2 CPU Special Function Registers

The core CPU requires a set of CPU Special Function Registers (CSFRs) to maintain

the system state information, to control system and bus configuration, and to manage

code memory segmentation and data memory paging. The CPU also uses CSFRs to

access the General Purpose Registers (GPRs) and the System Stack, to supply the ALU

with register-addressable constants, and to support multiply and divide ALU operations.

The access mechanism for these CSFRs in the CPU core is identical to the access

mechanism for any other SFR. Since all SFRs can be controlled by any instruction

capable of addressing the SFR/CSFR memory space, there is no need for special

system control instructions.

However, to ensure proper processor operations, certain restrictions on the user access

to some CSFRs must be imposed. For example, the Instruction Pointer (IP) and Code

Segment Pointer (CSP) cannot be accessed directly at all. They can only be changed

indirectly via branch instructions.

The PSW, SP, and MDC registers can be modified not only explicitly by the programmer,

but also implicitly by the CPU during normal instruction processing.

Note: Note that any explicit write request (via software) to an CSFR supersedes a

simultaneous modification by hardware of the same register.

Note: All SFRs may be accessed wordwise, or bytewise (some of them even bitwise).
Reading bytes from word SFRs is a non-critical operation. Any write operation to

a single byte of an CSFR clears the non-addressed complementary byte within the

specified CSFR.

Non-implemented (reserved) CSFR bits cannot be modified, and will always

supply a read value of 0.

User Manual

C166S V2

Central Processing Unit

User Manual 2-19 V 1.7, 2001-01

2.3 Instruction Fetch and Program Flow Control

The Instruction Fetch Unit (IFU) pre-fetches and pre-processes instructions to provide a

continuous instruction flow. The IFU can fetch simultaneously at least two instructions

via a 64-bit wide bus from the Program Management Unit (PMU). The pre-fetched

instructions are stored in an instruction FIFO. Pre-processing of branch instructions

enables the instruction flow to be predicted. While the CPU is in the process of executing

an instruction fetched from the FIFO, the pre-fetcher of the IFU starts to fetch a new

instruction at a predicted target address from the PMU. The latency time of this access

is hidden by the execution of the instructions which have been buffered in the FIFO

before. Even for a non-sequential instruction, execution the IFU can generally provide a

continuous instruction flow. The IFU contains two pipeline stages: the Prefetch Stage

and the Fetch Stage.

Figure 2-2 IFU Block Diagram

Instruction Buffer(up to 6 Instr.)

Instruction Buffer(up to 3 Instr.)

Instruction Buffer(up to 1 Instr.)

Instruction

FIFO

Branch Detection and Prediction Logic

6
4
b
it

d
a

ta

Branch Folding
Unit

B
y
p
a
s
s
 F

e
tc

h
 t

o
 D

e
c
o
d
e

B
y
p
a
s
s
 P

re
fe

tc
h
 t

o
 D

e
c
o
d
e

F
e
tc

h

S
ta

g
e

P
re

fe
tc

h

S
ta

g
e

Injection and Exception Handler

Return Stack

TFRVECSEG

D
e
c
o
d
e

S
ta

g
e

IP

CSP

+/-

CPUCON1

CPUCON2

CPUID

2
4
-b

it
 a

d
d
re

s
s

IFU PipelineIFU Control

Control Registers

User Manual

C166S V2

Central Processing Unit

User Manual 2-20 V 1.7, 2001-01

During the pre-fetch stage, the Branch Detection and Prediction Logic analyzes up to

three pre-fetched instructions stored in the first Instruction Buffer (up to six instructions).

If a branch is detected, then the IFU starts to fetch the next instructions from the PMU

according to the prediction rules. After having been analyzed, up to three instructions are

stored in the second Instruction Buffer (three instructions) which is the input register of

the Fetch Stage.

On the Fetch Stage, the pre-fetched instructions are stored in the instruction FIFO. The

Branch Folding Unit (BFU) allows processing of branch instructions in parallel with

preceding instructions. To achieve this the BFU pre-processes and re-formats the

branch instruction. First, BFU defines (calculates) the absolute target address. This

address—after being combined with branch condition and branch attribute bits—is

stored in the same FIFO step as the preceding instruction. The target address is also

used to pre-fetch the next instructions.

For the Execution Pipeline, both instructions are fetched from the FIFO again and are

executed in parallel. If the instruction flow was predicted incorrectly (or FIFO is empty),

the two stages of the IFU can be bypassed.

Note: Pipeline behavior in case of a incorrectly predicted instruction flow is described in

the following sections.

2.3.1 Branch Target Addressing Modes

The target address and the segment of jump or call instructions can be specified by

several addressing modes. The Instruction Pointer register (IP) may be updated using

relative, absolute, or indirect modes. The Code Segment Pointer register (CSP) can be

updated using an absolute value only. A special mode is provided to address the

interrupt and trap jump vector table which resides in the lowest portion of the code

segment selected by the VECSEG register contents.

Table 2-1 Branch Target Addressing Modes

Mnemonic Target Address Target Segment Valid Address Range

caddr (IP) = caddr - caddr = 0000H...FFFEH

rel (IP) = (IP) + 2*rel

(IP) = (IP) + 2*(rel+1)

-

-

rel = 00H...7FH

rel = 80H...FFH

[Rw] (IP) = (Rw) - Rw w = 0...15

seg - (CSP) = seg seg = 0...255(3)

#trap7 (IP) = 0000H +

VECSC*trap7

(CSP) = VECSEG trap7 = 00H...7FH

User Manual

C166S V2

Central Processing Unit

User Manual 2-21 V 1.7, 2001-01

caddr: Specifies an absolute 16-bit code address within the current segment.

Branches MAY NOT be taken to odd code addresses. Therefore, the least

significant bit of ’caddr’ is not used.

rel: This mnemonic represents an 8-bit signed word offset address relative to the

current Instruction Pointer contents, which points to the instruction after the

branch instruction. Depending on the offset address range, both forward (’rel’=

00H to 7FH) and backward (’rel’= 80H to FFH) branches are possible. The

branch instruction itself is repeatedly executed, when ’rel’ = ’-1’ (FFH) for a

word-sized branch instruction, or ’rel’ = ’-2’ (FEH) for a double-word-sized

branch instruction.

[Rw]: In this case, the 16-bit branch target instruction address is determined indi-

rectly by the contents of a word GPR. In contrast to indirect data addresses,

indirectly specified code addresses are NOT calculated via additional pointer

registers (eg. DPP registers). Branches MAY NOT be taken to odd code

addresses. Therefore, the least significant bit of ’caddr’ is not used.

seg: Specifies an absolute code segment number. The C166S V2 CPU supports

256 different code segments, so only the eight lower bits (respectively) of the

’seg’ operand value are used to update the CSP register.

#trap7: Specifies a particular interrupt or trap number for branching to the correspond-

ing interrupt or trap service routine via a jump vector table. Trap numbers from

00H to 7FH can be specified to access any double word code location within

the address range xx’0000H...xx’15D4H (depending of VECSC) in the selected

code segment (see VECSEG, i.e. the interrupt jump vector table), please refer

to Section 5.1.4.

User Manual

C166S V2

Central Processing Unit

User Manual 2-22 V 1.7, 2001-01

2.3.2 Branch Detection and Branch Prediction

The Branch Detection Unit pre-processes instructions and classifies detected branches.

Depending on the branch class, the Branch Prediction Unit predicts the program flow

using the rules in the following table:.

Note: For JMPA+/- and CALLA+/- instructions, a static user programmable prediction
scheme is used. If bit 8 (’a’) of the instruction long word is cleared, the branch is

assumed ‘taken.’ If it is set, the branch is assumed ‘not taken’. The user controls

value of bit 8 by entering ’+’ or ’-’ in the instruction mnemonics. This bit can be also

set/cleared by the Assembler for JMPA and CALLA instructions depending on the

jump condition.

Table 2-2 Branch Target Addressing Modes

Instruction Classes Instructions Prediction

Branch instructions with user

programmable branch

prediction

JMPA- xcc,caddr

JMPA+ xcc,caddr

CALLA- xcc, caddr

CALLA+ xcc,caddr

The User can specify whether

the branch should be taken

Branch instructions with branch

prediction defined by Assembler

JMPA xcc,caddr

CALLA xcc, caddr

Assembler defines whether the

branch should be taken based

on the jump condition.

Inter-segment branch

instructions

JMPS seg, caddr

CALLS seg,caddr

The branch is always taken.

Indirect branch instructions JMPI cc,[Rw]

CALLI cc,[Rw]

The branch is taken only if the

branch is unconditional.

Relative branches instructions

with condition code

JMPR cc,rel The branch is taken if it is

unconditional or if the branch is

a backward branch.

Relative branch instructions

without condition code

CALLR rel The branch is always taken.

Branch instructions with

bitcondition

JB bitaddr,rel

JBC bitaddr,rel

JNB bitaddr,rel

JNBS bitaddr,rel

The branch is taken if it is a

backward branch. Forward

branches are always not taken.

Return instructions RET

RETS

RETP

RETI

The branch is always taken.

User Manual

C166S V2

Central Processing Unit

User Manual 2-23 V 1.7, 2001-01

Note: For JMPA instruction, a pre-fetch hint bit is used (the instruction bit 9 = l). This bit

is required by the fetch unit to deal efficiently with short backward loops. It must

be set if 0 < IP_jmpa - IP_target <= 32, where IP_jmpa is the address of the JMPA

instruction and IP_target is the target address of the JMPA. Otherwise, bit 9 must
be cleared.

User Manual

C166S V2

Central Processing Unit

User Manual 2-24 V 1.7, 2001-01

2.3.3 Sequential and Mispredicted Instruction Flow

Because passing through one pipeline stage takes at least one clock cycle, any isolated

instruction takes at least five clock cycles to be completed. Pipelining, however, allows

parallel (i.e. simultaneous) processing of up to five instructions (with branches up to six

instructions). Therefore, most of the instructions appear to be processed during one

clock cycle as soon as the pipeline has been filled once after reset.

The pipelining increases the average instruction throughput considered over a certain

period of time. In this manual, any execution time specification always refers to the

average instruction execution time due to pipelined parallel processing.

2.3.3.1 Correctly Predicted Instruction Flow

Figure 2-3 and Figure 2-4 show the continuous execution of instructions in principal

under the assumption of a fast (0 wait states) Program Memory. In this example, most

of the instructions are executed in one CPU cycle while Instruction In+6 takes two CPU

cycles for the execution. In+6 is a general example for multicycle instructions (two cycles

instruction in this case).

The instructions are fetched from the Instruction FIFO while the IFU pre-fetches the next

instructions to fill the FIFO. The Instruction FIFO is being filled with new instructions

while the previously stored instructions are being fetched from the FIFO to be executed

in the CPU. As long as the instruction flow is correctly predicted by the IFU, both

processes are independent.
I

Figure 2-3 Program Memory Contents for Figure 2-4

The diagram shows the sequential instruction flow through the different pipeline stages.

While the Prefetcher is prefetching the instruction from the PMU, the processing pipeline

is filled with instructions fetched out of the FIFO. In this example with a fast Internal

Program Memory, the Prefetcher is able to fetch more instructions than the processing

pipeline can execute. In Tn+4, the FIFO and prefetch buffer are filled and no further

In+10In+11

In+7

In+13In+14

In+14In+15In+15

Ia

Ia+8

Ia+32

In+16

In+16In+17In+18In+19

In+20

In+9

In+11

In+8

In+12 In+12

In+10

In+6

Ia+16

Ia+24

In+20In+21In+21
Ia+40

User Manual

C166S V2

Central Processing Unit

User Manual 2-25 V 1.7, 2001-01

instructions can be prefetched. The PMU address stays stable (Tn+4) until a whole 64-bit

double word can be buffered (Tn+7) in the 96-bit Prefetch buffer again.

Figure 2-4 Sequential Instruction Execution

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Tn+8

PMU Address Ia+16 Ia+24 Ia+32 Ia+40 Ia+40 Ia+40 Ia+40 Ia+48 Ia+48

PMU Data 64bit Id+1 Id+2 Id+3 Id+4 Id+5 Id+5 Id+5 Id+5 Id+7

PREFETCH

96 bit Buffer

In+6

...

In+9

In+9

...

In+11

In+12

In+13

In+14

In+15

In+15

...

In+19

In+15

...

In+19

In+16

...

In+19

In+17

...

In+19

In+18

...

In+21

FETCH

Instruction

Buffer

In+5 In+6

In+7

In+8

In+9

In+10

In+11

In+12

In+13

In+14 - In+15 In+16 In+17

FIFO contents In+3

...

In+5

In+4

...

In+8

In+5

...

In+11

In+6

...

In+13

In+7

...

In+14

In+7

...

In+14

In+8

...

In+15

In+9

...

In+16

In+10

...

In+17

Fetch from FIFO In+4 In+5 In+6 In+7 In+7 In+8 In+9 In+10 In+11

DECODE In+3 In+4 In+5 In+6 In+6 In+7 In+8 In+9 In+10

ADDRESS In+2 In+3 In+4 In+5 In+6 In+6 In+7 In+8 In+9

MEMORY In+1 In+2 In+3 In+4 In+5 In+6 In+6 In+7 In+8

EXECUTE In In+1 In+2 In+3 In+4 In+5 In+6 In+6 In+7

WRITE BACK In In+1 In+2 In+3 In+4 In+5 In+6 In+6

User Manual

C166S V2

Central Processing Unit

User Manual 2-26 V 1.7, 2001-01

2.3.3.2 Incorrectly Predicted Instruction Flow

If the CPU detects that the IFU made an incorrect prediction of the instruction flow, then

the pipeline stages and the Instruction FIFO containing the wrong prefetched instructions

are canceled. The entire instruction fetch must be restarted at the correct point of the

program. Figure 2-5 and Figure 2-6 show the behavior in the case of incorrectly

predicted instruction flow (0- wait states Internal Program Memory).

During the cycle Tn, the CPU detects an incorrectly prediction case which leads to a

canceling of the pipeline. The new address is transferred to the PMU in Tn+1 which

delivers the first data in the next cycle Tn+2. But, the target instruction crosses the 64-bit

memory boundary and a second fetch in Tn+3 is required to get the entire 32-bit

instruction. In Tn+4, the Prefetch Buffer contains two 32-bit instructions while the first

instruction Im is directly forwarded to the Decode stage.

Figure 2-5 Program Memory Contents for Figure 2-6

The prefetcher is now restarted and prefetches further instructions. In Tn+5, the

instruction Im+1 is forwarded from the Fetch Instruction Buffer directly to the Decode

stage as well. The Fetch row shows all instructions in the Fetch Instruction Buffer and

the instructions fetched from the Instruction FIFO. The instruction Im+3 is the first

instruction fetched from the FIFO during Tn+6. During the same cycle, instruction Im+2

was still forwarded from the Fetch Instruction Buffer to the Decode stage.

Im

Im

Im+1Im+1Im+2

Im+2Im+3Im+3

Ia+8

Ia

Ia+16

Ia+24

Im+4

Im+4Im+5Im+5I...

I...

I... I...

64-bit wide Program Memory with four

16 bit packages

User Manual

C166S V2

Central Processing Unit

User Manual 2-27 V 1.7, 2001-01

Figure 2-6 Incorrectly Predicted Instruction Flow

2.3.4 Atomic and Extend Instructions

The atomic and extend instructions (ATOMIC, EXTR, EXTP, EXTS, EXTPR, EXTSR)

disable the standard and PEC interrupts and class A traps until completion of the

immediately following sequence of instructions. The number of instructions in the

sequence may vary from 1 to 4. It is coded in the 2-bit constant field #irang2 and takes

values from 0 to 3. The EXTended instructions additionally change the addressing

mechanism during this sequence (see instruction description).

ATOMIC and EXTended instructions become active immediately, so no additional NOPs

are required. All instructions requiring multi cycles or hold states for execution are

considered to be one instruction. The ATOMIC and EXTended instructions can be used

with any instruction type.

Note: If a class B trap interrupt occurs during an ATOMIC or EXTended sequence, then

the sequence is terminated, an interrupt lock is removed, and the standard

condition is restored before the trap routine is executed. The remaining

instructions of the terminated sequence executed after returning from the trap

routine will run under standard conditions.

Note: Certain precautions are required when using nested ATOMIC and EXTended

instructions. There is only one counter to control the length of the sequence, i.e.

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Tn+8

PMU Address I... Ia Ia+8 Ia+16 Ia+24 I... I... I... I...

PMU Data 64bit I... Id Id+1 Id+2 Id+3 I... I... I...

PREFETCH

96-bit Buffer

I... Im
Im+1

Im+2

Im+3

Im+4

Im+5

I... I...

FETCH

Instruction

Buffer

Inext+2 Im+1 Im+2

Im+3

Im+4

Im+5

I...

Fetch from FIFO Im+3 Im+4 Im+5

DECODE Inext+1 Im Im+1 Im+2 Im+3 Im+4

ADDRESS Inext Im Im+1 Im+2 Im+3

MEMORY Ibranch Im Im+1 Im+2

EXECUTE In Ibranch Im Im+1

WRITE BACK In Ibranch Im

User Manual

C166S V2

Central Processing Unit

User Manual 2-28 V 1.7, 2001-01

issuing an ATOMIC or EXTended instruction within a sequence will reload the

counter with the value of the new instruction.

2.3.5 Code Addressing via Code Segment and Instruction Pointer

The C166S V2 CPU provides a total addressable memory space of 16 MBytes. This

address space is arranged as 256 segments of 64 Kilobytes each. A dedicated 24-bit

code address pointer is used to access the memories for instruction fetches. This pointer

has two parts: an 8-bit code segment pointer CSP and a 16-bit offset pointer called

Instruction Pointer (IP). The concatenation of the CSP and IP results directly in a correct

24-bit physical memory address.

Figure 2-7 Addressing via the Code Segment- and Instruction Pointer

The Instruction Pointer IP

This register determines the 16-bit intra-segment address of the currently fetched

instruction within the code segment selected by the CSP register. The IP register is not

mapped into the C166S V2 CPU’s address space, and thus it is not directly accessible

by the programmer. The IP can be modified indirectly via the stack by return instructions.

The IP register is implicitly updated by the C166S V2 CPU for branch instructions and

after instruction fetch operations.

IP

Instruction Pointer (not addressable) Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP 0

h -

CSP 015 IP

023

0
00’0000H

1
01’0000H

254
FE’0000H

255
FF’0000H

Memory organized in segments

segment offset

0 1578

1516

User Manual

C166S V2

Central Processing Unit

User Manual 2-29 V 1.7, 2001-01

The Code Segment Pointer CSP

This non-bit addressable register selects the code segment being used at run-time to

access instructions. The lower 8 bits of register CSP select one of up 256 segments of

64 Kilobytes each, while the higher 8 bits are reserved for future use. The reset value is

specified by the contents of the VECSEG register (Section 5.1.4).

The actual code memory address is generated by direct extension of the 16-bit contents

of the IP register by the lower byte of the CSP register as shown in the figure below. The

CSP register can be only read and may not be written by data operations.

There are two modes: segmented and non-segmented. The mode is selected with the

SGTDIS bit in the CPUCON1 register. After reset, the segmented mode is selected.

Note: For a summary of the CPUCON1 register, please refer to Section 2.3.6.

Field Bits Type Description

IP [15:1] h Specifies the intra segment offset from which the

current instruction is to be fetched. IP refers to the

current segment <SEGNR>.

0 [0] - IP is always word-aligned

CSP

Code Segment Pointer SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 SEGNR

r r r r r r r r rh

Field Bits Type Description

SEGNR [7:0] rh Specifies the code segment from which the current

instruction is to be fetched.

CPUCON1

CPU Control Register 1 SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 VECSC
WDT
CTL

SGT
DIS

INT
SCXT

BP ZCJ

r r r r r r r r r rw rw rw rw rw rw

User Manual

C166S V2

Central Processing Unit

User Manual 2-30 V 1.7, 2001-01

Segmented Mode

The CSP is modified either directly by the JMPS and CALLS instructions, or indirectly via

the stack by the RETS and RETI instructions.

Upon the acceptance of an interrupt or the execution of a software TRAP instruction, the

CSP register is automatically loaded with the segment address of the vector location.

Non-Segmented Mode

In non-segmented mode, the CSP is fixed to the CSP value of the instruction that

disabled the segmentation. It is no longer possible to modify the CSP either directly by

the JMPS or CALLS instructions or indirectly via the stack by the RETS (RETI)

instruction.

In case of interrupt processing or a software TRAP instruction, the CSP register is

automatically loaded with the segment address of the vector location (VECSEG).

Note: For the correct execution of interrupt tasks, the contents of VECSEG must be the

same as the segment selected by the current value of CSP, i.e. the vector table

must be located in the segment pointed by the CSP.

Note: For Single Chip Mode, the contents of the CSP register are significant for internal

Program Memories accesses.

2.3.6 IFU Control Registers

2.3.6.1 The CPU Configuration Register CPUCON1

This register is used to configure the C166S V2 CPU. Most bits of this register enable

dedicated features of the Instruction Fetch Unit (IFU). CPICON1 may not exist in future

product derivatives.

Field Bits Type Description

SGTDIS [3] rw Segmentation Disable/Enable Control

0 Segmentation enabled

1 Segmentation disabled

CPUCON1

CPU Control Register 1 SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 VECSC
WDT
CTL

SGT
DIS

INT
SCXT

BP ZCJ

r r r r r r r r r rw rw rw rw rw rw

User Manual

C166S V2

Central Processing Unit

User Manual 2-31 V 1.7, 2001-01

Note: Register CPUCON1 is only changeable in supervisor mode. Supervisor mode is

finished by executing the EINIT instruction.

2.3.6.2 The CPU Configuration Register CPUCON2

This register is used to configure the C166S V2 CPU. It is an extension of the CPUCON1

register. This register is implemented for test purposes only in the first C166S V2

demonstration devices. This register will not be implemented in production devices.

Field Bits Type Description

VECSC [6:5] rw Scaling factor of Vector Table

00 Space between two vectors is 2 words

01 Space between two vectors is 4 words

10 Space between two vectors is 8 words

11 Space between two vectors is 16 words

WDTCTL [4] rw Configuration of Watch Dog Timer

0 DISWDT executable until End of Init1)

1 DISWDT/ENWDT always executable

SGTDIS [3] rw Segmentation Disable/Enable Control

0 Segmentation enabled

1 Segmentation disabled

INTSCXT [2] rw Enable Interruptibility of Switch Context

0 Switch context is not interruptible

1 Switch context is interruptible

BP [1] rw Enable Branch Prediction Unit

0 Branch prediction disabled

1 Branch prediction enabled

ZCJ [0] rw Enable Zero Cycle Jump function

0 Zero cycle jump function disabled

1 Zero cycle jump function enabled

1) The DISWDT (executed after EINIT) and ENWDT instructions are internally converted in a NOP instruction

CPUCON2

CPU Control Register SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIFODEPTH FIFOFED
BYP
PF

BYP
F

EIO
IAEN

STEN LFIC
OV

RUN
RET
ST

FAST
BL1)

1) reserved

0 SL

rw rw rw rw rw rw rw rw rw rw r rw

User Manual

C166S V2

Central Processing Unit

User Manual 2-32 V 1.7, 2001-01

Field Bits Type Description

FIFODEPTH [15:12] rw FIFO Depth configuration

0000 No FIFO (entries)

0001 One FIFO entry

...

1000 Eight FIFO entries

1001 reserved

... ...

1111 reserved

FIFOFED [11:10] rw FIFO Fed configuration

00 FIFO disabled

01 FIFO filled with up to one instruction per cycle

10 FIFO filled with up to two instructions per cycle

11 FIFO filled with up to three instruction per cycle

BYPPF [9] rw Prefetch Bypass control

0 Bypass path from prefetch to decode disabled

1 Bypass path from prefetch to decode available

BYPF [8] rw Fetch Bypass control

0 Bypass path from fetch to decode disabled

1 Bypass path from fetch to decode available

EIOIAEN [7] rw Early IO Injection Acknowledge Enable

0 Injection acknowledge by destructive read not

guaranteed

1 Injection acknowledge by destructive read

guaranteed

STEN1) [6] rw Stall Instruction Enable

0 Stall Instruction disabled

1 Stall Instruction enabled

LFIC [5] rw Linear Follower Instruction Cache

0 Linear Follower Instruction Cache disabled

1 Linear Follower Instruction Cache enabled

OVRUN [4] rw Pipeline control

0 Overrun of pipeline bubbles not allowed

1 Overrun of pipeline bubbles allowed

RETST [3] rw Enable return Stack

0 Return Stack is disabled

1 Return Stack is enabled

User Manual

C166S V2

Central Processing Unit

User Manual 2-33 V 1.7, 2001-01

Note: Register CPUCON2 is changeable in supervisor mode only. Supervisor mode is

finished by executing the EINIT instruction.

FASTBL2) [2] rw Enables the fast injection of block transfers

0 Direct injection disabled

1 Direct injection enabled

SL [0] rw Enables short loop mode

0 Short loop mode disabled

1 Short loop mode enabled

1) enables dedicated stall debug instructions:

STALLAM da,ha,dm,hm Opcode: 44 dahadmhm
STALLEW de,he,dw,hw Opcode: 45 dehedwhw d and h are 6 bit each

Stalls the corresponding pipeline stage after d cycles for h cycles.

2) The FASTBL bit is implemented, but reserved. So do not use it. The block feature is implemented in the CPU,

but not used by the Interrupt and Injection Unit.

Field Bits Type Description

User Manual

C166S V2

Central Processing Unit

User Manual 2-34 V 1.7, 2001-01

2.4 Use of General Purpose Registers

The C166S V2 CPU uses several banks of sixteen dedicated registers R0, R1, R2...

R15, called General Purpose Registers (GPR), which can be accessed in one CPU

cycle. The GPRs are the working registers of the arithmetic and logic units and many

also serve as address pointers for indirect addressing modes.

There are several banks of GPRs which are memory mapped and two special banks

which are not memory-mapped.

The banks of the memory-mapped GPRs are located in the internal DPRAM. One bank

uses a block of 16 consecutive words. A Context Pointer (CP) register determines the

base address of the current selected bank. Because of the required number of access

ports and access time, the GPRs located in the DPRAM cannot be accessed directly. To

get the required performance, the GPRs are cached in a 5-port register file for high

speed GPR accesses.

Figure 2-8 Register File

R15

R14

R10

R11

R12

R13

R3

R6

R7

R8

R9

R2

R5

R4

R1

R0

R15

R14

R10

R11

R12

R13

R3

R6

R7

R8

R9

R2

R5

R4

R1

R0

R15

R14

R10

R11

R12

R13

R3

R6

R7

R8

R9

R2

R5

R4

R1

R0

R15

R14

R10

R11

R12

R13

R3

R6

R7

R8

R9

R2

R5

R4

R1

R0

AGU Read Port

ALU Read Port 1

ALU Read Port 2

AGU Write Port

ALU Write Port

Registerfileglobal localCore-RAM

M
em

or
y

m
ap

pe
d

G
P
R

 B
an

k

CP

User Manual

C166S V2

Central Processing Unit

User Manual 2-35 V 1.7, 2001-01

The register file is split into three independent physical register banks. Because of

behavior differences, the banks can be distinguished as global and local register banks.

There are two local and one global register bank.

The memory-mapped GPR bank selected by the current CP is always cached in the

global register bank. Only one memory-mapped GPR bank can be cached at the time.

In the case of a context switch, the cache contents must be sequentially saved and

restored.

Note: The global register bank is the equivalent of the memory-mapped GPR bank of the

C166 family which is selected by the context pointer CP.

To support a very fast context switch for time-critical tasks, two independent not memory

mapped GPR banks are available. They are physically and logically located in the two

special local register banks. They cannot be accessed via a 24-bit physical memory

address.

Only one of the three physical register banks can be activated at the same time. The

bank selection is controlled by the BANK bitfield of the PSW. The BANK bitfield can be

changed explicitly by any instruction which writes to the PSW, or implicitly by a RETI

instruction, an interrupt or hardware trap. In case of an interrupt, the selection of the

register bank is configured in the Interrupt Controller ITC. Hardware traps always use the

global register bank.

User Manual

C166S V2

Central Processing Unit

User Manual 2-36 V 1.7, 2001-01

2.4.1 Memory Mapped GPR Banks and the Global Register Bank

The C166S V2 CPU uses the global register bank to cache an active memory-mapped

GPR bank selected by the Context Pointer (CP). The CP register value determines the

address of the first General Purpose Register (GPR) within the DPRAM of up to 16

wordwide and/or bytewide GPRs and selects the memory area which is automatically

cached in the global register bank.

Figure 2-9 Register Bank Selection via Register CP

The General Purpose Registers of a global register bank are memory-mapped. The

behavior is identical with a cache in which the CP is used as a tag. If the global register

bank is activated, the cache will be validated before further instructions are executed.

After validation, all further accesses to the GPRs are redirected to the global register

bank. If the global register bank is activated, there are three possible ways to access the

global register bank:

Short 4-Bit GPR Addresses (mnemonic: Rw or Rb) specify addresses relative to the

memory location pointed by the contents of the CP register, i.e. the base of contents of

the current global register bank. Both byte and word GPR accesses are possible. The

short 4-bit GPR address is logically added to the contents of register CP in the case a

byte (Rb) GPR address is specified, or multiplied by two and then added to CP; in case

of a word (Rw) GPR address (see figure below).

Note: If GPRs are used as indirect address pointers, they are always accessed

wordwise.

(CP)+2

(CP)

(CP)+30

(CP)+28

R15
º

Internal DPRAM

R14

R12

R10

R9

R13

R11

R8

R7

R6

R5

R4

R3

R2

R1

R0

 015

16-Bit Context Pointer

global local

Register File

R5
R6
R7

R4

R13
R14
R15

R12

R9
R10
R11

R8

R1
R2
R3

R0

User Manual

C166S V2

Central Processing Unit

User Manual 2-37 V 1.7, 2001-01

For some instructions, only the first four GPRs can be used as indirect address pointers.

These GPRs are specified via short 2-bit GPR addresses. The respective physical

address calculation is identical with the one for the short 4-bit GPR addresses.

Short 8-Bit Register Addresses (mnemonic: reg or bitoff) within a range from F0H to

FFH interpret the four least significant bits as short 4-bit GPR addresses, while the four

most significant bits are ignored. The respective physical GPR address is calculated

similar to the short 4-bit GPR addresses. For single bit GPR accesses, the GPR’s word

address is calculated in the same way. The accessed bit position within the word is

specified by a separate additional 4-bit value.

Figure 2-10 Implicit CP Use by logical Short GPR Addressing Modes

.

24-Bit Memory Addresses can be directly used to access GPRs. In this case, the CPU

immediately starts the memory access. At the same time, a hit detection logic checks if

the accessed memory location is cached in the global register bank. In case of a cache

hit, an additional global register bank read access is initiated. The data that is read from

cache will be used and the data that is read from memory will be discarded. This leads

to a delay of one CPU cycle (MOV R4,mem [CP<=mem<=CP+31]). In case of memory

write access, the hit detection logic determines a cache hit in advance. Nevertheless, the

address conversion needs one additional CPU cycle. The value is directly written into the

global register bank without further delay (MOV mem,R4).

Note: The 24-bit GPR addressing mode is not recommended because it requires an

extra cycle for the read and write access.

1 011

*2

+

Internal
DPRAM

*1
For word GPR
accesses

For byte GPR
accesses

Specified by reg or bitoff

12-Bit Context Pointer

1 1 1 1 4-Bit GPR
address

Must be within
the internal
DPRAM area

GPRs

User Manual

C166S V2

Central Processing Unit

User Manual 2-38 V 1.7, 2001-01

.

Note: The first 8 GPRs (R7...R0) may also be accessed bytewise.

Note: Writing to a GPR byte does not affect the other byte of the respective GPR.

Table 2-3 Addressing Modes to Access Word-GPRs

Name Physical

Address
1)

1) Addressing mode only usable if the GPR bank is memory mapped.

8-Bit

Address

4-Bit

Address

Description Reset

Value

R0 (CP)+0 F0H 0h General Purpose Word Register R0 UUUUH

R1 (CP)+2 F1H 1h General Purpose Word Register R1 UUUUH

R2 (CP)+4 F2H 2h General Purpose Word Register R2 UUUUH

R3 (CP)+6 F3H 3h General Purpose Word Register R3 UUUUH

R4 (CP)+8 F4H 4h General Purpose Word Register R4 UUUUH

R5 (CP)+10 F5H 5h General Purpose Word Register R5 UUUUH

R6 (CP)+12 F6H 6h General Purpose Word Register R6 UUUUH

R7 (CP)+14 F7H 7h General Purpose Word Register R7 UUUUH

R8 (CP)+16 F8H 8h General Purpose Word Register R8 UUUUH

R9 (CP)+18 F9H 9h General Purpose Word Register R9 UUUUH

R10 (CP)+20 FAH Ah General Purpose Word Register R10 UUUUH

R11 (CP)+22 FBH Bh General Purpose Word Register R11 UUUUH

R12 (CP)+24 FCH Ch General Purpose Word Register R12 UUUUH

R13 (CP)+26 FDH Dh General Purpose Word Register R13 UUUUH

R14 (CP)+28 FEH Eh General Purpose Word Register R14 UUUUH

R15 (CP)+30 FFH Fh General Purpose Word Register R15 UUUUH

User Manual

C166S V2

Central Processing Unit

User Manual 2-39 V 1.7, 2001-01

The respective halves of the byte-accessible registers have special names (see

Table 2-4). .

Note: Even if the local register bank is selected by BANK, an old memory-mapped GPR

bank can be cached in the global register bank. Memory accesses are still

redirected in case of a cache hit.

Table 2-4 Addressing modes to access Byte-GPRs

Name Physical

Address
1)

1) Addressing mode only usable if the GPR bank is memory mapped.

8-Bit

Address

4-Bit

Address

Description Reset

Value

RL0 (CP)+0 F0H 0h General Purpose Byte Register RL0 UUH

RH0 (CP)+1 F1H 1h General Purpose Byte Register RL1 UUH

RL1 (CP)+2 F2H 2h General Purpose Byte Register RL2 UUH

RH1 (CP)+3 F3H 3h General Purpose Byte Register RL3 UUH

RL2 (CP)+4 F4H 4h General Purpose Byte Register RL4 UUH

RH2 (CP)+5 F5H 5h General Purpose Byte Register RL5 UUH

RL3 (CP)+6 F6H 6h General Purpose Byte Register RL6 UUH

RH3 (CP)+7 F7H 7h General Purpose Byte Register RL7 UUH

RL4 (CP)+8 F8H 8h General Purpose Byte Register RL8 UUH

RH4 (CP)+9 F9H 9h General Purpose Byte Register RL9 UUH

RL5 (CP)+10 FAH Ah General Purpose Byte Register RL10 UUH

RH5 (CP)+11 FBH Bh General Purpose Byte Register RL11 UUH

RL6 (CP)+12 FCH Ch General Purpose Byte Register RL12 UUH

RH6 (CP)+13 FDH Dh General Purpose Byte Register RL13 UUH

RL7 (CP)+14 FEH Eh General Purpose Byte Register RL14 UUH

RH7 (CP)+15 FFH Fh General Purpose Byte Register RL15 UUH

User Manual

C166S V2

Central Processing Unit

User Manual 2-40 V 1.7, 2001-01

2.4.2 Local Register Bank

C166S V2 CPU has two local register banks with sixteen independent GPRs each. Both

local register banks are not memory mapped. After a switch to a local register bank, the

GPRs are directly accessible. There are two different ways to access an activated local

register bank.

Short 4-Bit GPR Addresses (mnemonic: Rw or Rb) specify addresses in the local

register banks. The local register bank is selected by the BANK bitfield of the PSW.

Depending on whether a relative word (Rw) or byte (Rb) GPR address is specified, the

short 4-bit GPR address is either multiplied by two or not before it is used to physically

access the local register bank. Thus, both byte and word GPR accesses are possible in

this way.

Note: If GPRs are used as indirect address pointers, they are always accessed
wordwise.

For some instructions, only the first four GPRs can be used as indirect address pointers.

These GPRs are specified via short 2-bit GPR addresses. The respective physical

address calculation is identical with the one for the short 4-bit GPR addresses.

Short 8-Bit Register Addresses (mnemonic: reg or bitoff) within a range from F0H to

FFH interpret the four least significant bits as short 4-bit GPR address, while the four

most significant bits are ignored. The respective physical GPR address calculation is

identical with the one for the short 4-bit GPR addresses. For single bit accesses on a

GPR, the GPR’s word address is calculated as just described, but the position of the bit

within the word is specified by a separate additional 4-bit value.

For a summary of all addressing modes usable to access GPRs, please see Table 2-3

and Table 2-4.

2.4.3 Context Switch

An interrupt service routine or a task scheduler of an operating system usually saves into

the stack all the used registers and restores them before returning. The more registers

a routine uses, the more time is wasted with saving and restoring. There are two ways

to change a context in the C166S V2 core:

• Switching the context by changing the selected register banks.

• Switching the context of the global register bank by changing the context pointer CP.

2.4.3.1 Changing the selected Physical Register Bank

The switch between the three physical register banks is the fastest possible context

switch. It is possible to switch between the current memory-mapped GPR bank located

in the global register bank and the two not memory-mapped local register banks. The

BANK bit field of the PSW register determines the selected bank.

User Manual

C166S V2

Central Processing Unit

User Manual 2-41 V 1.7, 2001-01

In case of an interrupt service, the bank switch is automatically executed by updating the

PSW. The Interrupt Controller (ITC) configuration decides which register bank will be

selected. By executing a RETI instruction, the BANK bit field of the PSW will

automatically be restored and the context will switched to the original register bank.

Figure 2-11 Context Switch by Changing the Physical Register Bank

After a switch to a local register bank, the new bank is immediately available. After

switching to the global register bank, the cached memory-mapped GPRs must be valid

before any further instructions can be executed. If the global register bank is not valid at

this time (in case if the context switch process has been interrupted), the cache

validation process is repeated automatically. For further explanation, please refer to

Section 2.4.3.2.

Note: The switch between the three physical register banks of the register file can also

be executed by writing to the BANK bitfield of the PSW. Because of pipeline
dependencies an explicit change of the PSW must cancel the pipeline.

PSW

Processor Status Word SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN
HLD

EN
BANK USR1 USR0

MUL

IP
E Z V C N

rwh rw rw rwh rwh rwh rwh rwh rwh rwh rwh rwh

Field Bits Type Description

BANK 9-8 rwh Reserved for register file bank selection

00 Global register bank

01 Reserved

10 Local register bank 1

11 Local register bank 2

Execution

Task A

Execution

Task A

Interrupt of Task B

recognized

global

Bank

local

Bank

global

Bank

Execution

Task B

Execution of

RETI

User Manual

C166S V2

Central Processing Unit

User Manual 2-42 V 1.7, 2001-01

2.4.3.2 Context Switching of the Global Register Bank

The contents of the global register bank are switched by changing the base address of

the memory mapped GPR bank. The base address is given by the contents of the

Context Pointer (CP).

The Context Pointer (CP)

The CP register is non-bit addressable. It can be updated via any instruction capable of

modifying SFRs.

Note: It is the user’s responsibility that the physical GPR address specified via CP

register plus the short GPR address must always be an internal DPRAM location.

If this condition is not met, unexpected results may occur. Do not set CP below the

internal DPRAM start address.

Note: Due to the internal instruction pipeline, a write operation to the CP register stalls

the instruction flow until the register file context switch is really executed. The

instruction immediately following the instruction that updates CP register can use

the new value of the changed CP.

The C166S V2 CPU switches the complete memory-mapped GPR bank with a single

instruction. After switching, the service routine executes within its own separate context.

The instruction “SCXT CP, #New_Bank” pushes the value of the current context pointer

(CP) into the system stack and loads CP with the immediate value “New_Bank”, which

selects a new register bank. The service routine may now use its “own registers”. This

CP

Context Pointer SFR Reset Value: FC00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 CONTEXT POINTER 0

r r r r rw r

Field Bits Type Description

1 [15:12] r CP always points in the internal DPRAM

CONTEXT POINTER [11:1] rw Modifiable Portion of register CP

Specifies the (word) base address of the current

memory-mapped register bank.

When writing a value to register CP with bits

CP[11:9] = ’000’, bits CP[11:10] are set to ’11’

by hardware.

0 [0] r CP is always word-aligned

User Manual

C166S V2

Central Processing Unit

User Manual 2-43 V 1.7, 2001-01

memory register bank is preserved when the service routine terminates, i.e. its contents

is available on the next call.

Before returning from the service routine (RETI), the previous CP is simply popped from

the system stack which returns the registers to the original bank.

Context Pointer Updating

After the CP has been update, a state machine starts to store the old contents of the

global register bank and to load the new one. An instruction “SCXT CP, #New_Bank”

takes two cycles. The store and load algorithm is executed in nineteen CPU cycles: the

execution of the cache validation process takes sixteen cycles plus three cycles to stall

an instruction execution to avoid pipeline conflicts upon the completion of the validation

process. The context switch process has two phases:

1. Store phase: The contents of the global register bank is stored back into the DPRAM

by executing eight injected STORE instructions. After the last STORE instruction the

contents of the global register bank are invalidated.

2. Load phase: The global register bank is loaded with the new context by executing

eight injected LOAD instructions. After the last LOAD instruction the contents of the

global register bank are validated.

The code execution is stopped until the global register bank is valid. A hardware interrupt

which also uses a global register bank cannot be executed until the validation process is

finished (see Figure 2-12).

Figure 2-12 Validation process and hardware interrupts using a global register

bank

But, the validation process can be interrupted by any hardware interrupt which will work

with a local register bank. After switching back to the global register bank, the validation

process must be finished. The way the validation process will be restarted depends on

the phase in which it has been interrupted.

Execution

Task A

Execution

Task A

Interrupt of Task B

recognized

global

Bank

global

Bank

global

Bank

Execution

Task B

Execution of

SCXT CP

started finished

Register Bank

validation

process

Execution of

SCXT CP

started finished

Register Bank

validation

process

Execution of

POP CP

started finished

Register Bank

validation

process

Execution

Task B

Execution of

RETI

Execution

Task B

User Manual

C166S V2

Central Processing Unit

User Manual 2-44 V 1.7, 2001-01

If the interrupt occurred before the load phase, the entire validation process is restarted

from the very beginning. If the store phase has been completed before the interrupt, only

the load phase is executed.

Note: Validation Process and Hardware Interrupts using a Local Register Bank

Note: A cache validation process of Task A can be interrupted by a Task B which uses

a local register bank. Task B itself is interrupted again by an interrupt Task C which

uses a global register bank again. In this case, the validation process of Task A

must be finished before code of Task C can be executed. This means that the

validation process of Task A does not affect the interrupt latency of Task B but the
latency of Task C. If Task C would immediately interrupt Task A, the register bank

validation process of Task A would be finished first. The worst case interrupt

latency is identical in both cases (see Figure 2-12 and Figure 2-13).

.

Figure 2-13 Validation Process and Hardware Interrupts using Local and Global

Register Bank

Execution

Task A

Execution

Task A

Interrupt of Task B
recognized

global

Bank

local

Bank

global

Bank

Execution

Task B

Execution of

SCXT CP

started stopped

Register Bank
validation

process

restarted finished

Register Bank
validation

process

Execution of

RETI

Execution

Task A

Execution

Task C

Interrupt of Task B

recognized

global

Bank

local

Bank

global

Bank

Execution

Task B

Execution of

SCXT CP

started stopped

Register Bank

validation

process

restarted finished

Register Bank
validation

process

Interrupt of Task C
recognized

Execution of

RETI

global

Bank

Execution of
RETI

local

Bank

Execution

Task B

Execution

Task A

User Manual

C166S V2

Central Processing Unit

User Manual 2-45 V 1.7, 2001-01

2.5 Data Addressing

The Address Data Unit (ADU) of the C166S V2 CPU contains two independent

arithmetic units to generate, calculate, and update addresses for data accesses. The

ADU performs the following major tasks:

• Standard Address Generation (Standard Address Generation Unit)

• DSP Address Generation (DSP Address Unit)

• Data Paging (Standard Address Unit)

• Stack Handling (Standard Address Unit)

The Standard Address Unit supports linear arithmetic for the indirect addressing modes

and also generates the address in case of all other short and long addressing modes.

The DSP Address Generation Unit contains an additional set of address pointers and

offset registers which are used in conjunction with the CoXXX instructions only.

The C166S V2 CPU provides a lot of powerful addressing modes for word, byte, and bit

data accesses (short, long, indirect). The different addressing modes use different

formats and have different scopes.

User Manual

C166S V2

Central Processing Unit

User Manual 2-46 V 1.7, 2001-01

2.5.1 Short Addressing Modes

All of these addressing modes use an implicit base offset address to specify a 24-bit

physical address.

Short addressing modes allow access to the GPR, SFR or bit addressable memory

space:

Physical Address = Base Address + ∆ * Short Address

Note: ∆ is 1 for byte GPRs, ∆ is 2 for word GPRs..

Rw, Rb: Specifies direct access to any GPR in the currently active context (global reg-

ister bank or local register bank). Both ’Rw’ and ’Rb’ require four bits in the

instruction format.The base address of the global register bank is determined

by the contents of register CP. ’Rw’ specifies a 4-bit word GPR address relative

to the base address (CP), while ’Rb’ specifies a 4-bit byte GPR address rela-

tive to the base address (CP). In case of an active local register bank this 4

bits are used directly to address the GPR.

reg: Specifies direct access to any (E)SFR or GPR in the currently active context

(global or local register bank). The ’reg’ value requires eight bits in the instruc-

tion format. Short ’reg’ addresses in the range from 00H to EFH always specify

(E)SFRs. In that case, the factor ’D’ equates 2 and the base address is

00’FE00H for the standard SFR area or 00’F000H for the extended ESFR

area. The ‘reg’ accesses to the ESFR area require a preceding EXT*R instruc-

tion to switch the base address. Depending on the opcode, either the total

word (for word operations) or the low byte (for byte operations) of an SFR can

Table 2-5 Short addressing modes

Mnemonic Physical Address Short Address

Range

Scope of Access

Rw (CP) + 2*Rw or local Rw = 0...15 GPRs(Word)

Rb (CP) + 1*Rb or local Rb = 0...15 GPRs(Byte)

reg 00’FE00H + 2*reg

00’F000H + 2*reg

(CP)+2*(reg∧0FH) or local

(CP)+1*(reg∧0FH) or local

reg = 00H...EFH

reg = 00H...EFH

reg = F0H...FFH

reg = F0H...FFH

SFRs (Word, Low byte)

ESFRs(Word, Low byte)

GPRs(Word)

GPRs(Bytes)

bitoff 00’FD00H+ 2*bitoff

00’FF00H + 2*(bitoff∧7FH)

00’F100H + 2*(bitoff∧7FH)

(CP) + 2*(bitoff∧0FH) or

local

bitoff = 00H...7FH

bitoff = 80H...EFH

bitoff = 80H...EFH

bitoff = F0H...FFH

RAM Bit word offset

SFR Bit word offset

ESFR Bit word offset

GPR Bit word offset

bitaddr Word offset as with bitoff.

Immediate bit position.

bitoff = 00H...FFH

bitpos= 0...15

Any single bit

User Manual

C166S V2

Central Processing Unit

User Manual 2-47 V 1.7, 2001-01

be addressed via ’reg’. Note that the high byte of an SFR cannot be accessed

via the ’reg’ addressing mode. Short ’reg’ addresses in the range from F0H to

FFH always specify GPRs. In that case, only the lower four bits of ’reg’ are sig-

nificant for physical address generation and, therefore, it is identical to the

address generation described for the ’Rb’ and ’Rw’ addressing modes.

bitoff: Specifies direct access to any word in the bit addressable memory space. The

’bitoff’ value requires eight bits in the instruction format. Depending on the

specified ’bitoff’ range different base addresses are used to generate physical

addresses: Short ’bitoff’ addresses in the range from 00H to 7FH use

00’FD00H as a base address to specify the 128 highest internal RAM word

locations in the range from 00’FD00Hh to 00’FDFEH. Short 'bitoff' addresses in

the range from 80H to EFH use base address 00’FF00H to specify the internal

SFR word locations in the range from 00’FF00H to 00’FFDEH or base address

00’F100H to specify the internal ESFR word locations in the range from

00’F100H to 00’F1DEH. The ‘bitoff’ accesses to the ESFR area require a pre-

ceding EXT*R instruction to switch the base address. For short 'bitoff'

addresses from F0H to FFH, only the lowest four bits are used to generate the

address of the selected word GPR.

bitaddr: Any bit address is specified by a word address within the bit addressable

memory space (see 'bitoff'), and by a bit position ('bitpos') within that word.

Therefore, 'bitaddr' requires twelve bits in the instruction format.

User Manual

C166S V2

Central Processing Unit

User Manual 2-48 V 1.7, 2001-01

2.5.2 Long and Indirect Addressing Modes

These addressing modes use one of the four DPP registers to specify a 24-bit address.

Any word or byte data within the entire address space can be accessed with these

modes.

Any long or indirect 16-bit address contain two parts that have different meanings. Bits

13...0 specify a 14-bit data page offset, while bits 15...14 specify the Data Page Pointer

(DPP) (1 of 4) register used to generate the full 24-bit address (see Figure 2-14).

The C166S V2 CPU also supports an override mechanism for the DPP addressing

scheme (EXTP(R) and EXTS(R) instructions). See following sections for details.

Figure 2-14 Interpretation of a 16-bit Long Address

Note: Word accesses on odd byte addresses are not executed. A hardware trap will be
triggered.

015 14 13

16-bit Long Address

DPP0

DPP1

DPP2

DPP3

14-bit page offset

24-bit Physical Address

User Manual

C166S V2

Central Processing Unit

User Manual 2-49 V 1.7, 2001-01

2.5.2.1 Addressing via Data Page Pointer DPP

The four non-bit addressable Data Page Pointer registers select up to four different data

pages. The lower 10 bits of each DPP register select one of the 1024 possible 16-

Kilobyte data pages while the upper 6 bits are reserved for the future use. The DPP

registers provide an access to the entire memory space in 16 Kilobytes pages.

The DPP registers are implicitly used whenever data accesses to any memory location

are made via indirect or direct long 16-bit addressing modes (except for override

accesses via EXTended instructions and PEC data transfers).

Data paging is performed by concatenating the lower 14-bits of an indirect or direct long

16-bit address with the contents of the DDP register selected by the upper two bits of the

16-bit address. The contents of the selected DPP register specifies one of the 1024

possible data pages. This data page base address together with the 14-bit page offset

forms the physical 24-bit address.

Figure 2-15 Data Page Pointer Addressing

After reset, the DPP registers select data pages 3...0 within segment 0. If the user does

not want to use any data paging, no further action is required.

09 DPP

015 14

16-Bit Data Address

023 15 14

00’0000H

01’0000H

FE’0000H

FF’0000H

Memory

DPP3 - 11

DPP2 - 10

DPP1 - 01

DPP0 - 00

selects DPP

Segment Segment offset

Page Page offset

0

254

x

255

1

User Manual

C166S V2

Central Processing Unit

User Manual 2-50 V 1.7, 2001-01

Note: In case of non-segmented memory mode, the entire DPP register is still used for

the calculation of the physical 24-bit address.

A DPP register can be updated via any instruction capable of modifying an SFR.

DPP0

Data Page Pointer 0 SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 PN

r r r r r r rw

DPP1

Data Page Pointer 1 SFR Reset Value: 0001H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 PN

r r r r r r rw

DPP2

Data Page Pointer 2 SFR Reset Value: 0002H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 PN

r r r r r r rw

DPP3

Data Page Pointer 3 SFR Reset Value: 0003H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 PN

r r r r r r rw

Field Bits Type Description

PN [9:0] rw Data Page Number of DPP

Specifies the data page selected via DPP.

User Manual

C166S V2

Central Processing Unit

User Manual 2-51 V 1.7, 2001-01

Note: Due to the internal instruction pipeline, a write operation to the DPPx registers

could stall the instruction flow until the DPP is actually updated. The instruction

that immediately follows the instruction which updates the DPP register can use

the new value of the changed DPPx.

2.5.2.2 DPP Override Mechanism in the C166S V2 CPU

The C166S V2 CPU provides an override mechanism for the temporary bypass of the

DPP addressing scheme.

The EXTP(R) and EXTS(R) instructions override this addressing mechanism. Instruction

EXTP(R) replaces the contents of the respective DPP register, while instruction

EXTS(R) concatenates the complete 16-bit long address with the specified segment

base address. The overriding page or segment may be specified directly as a constant

(#pag, #seg) or via a word GPR (Rw).

Figure 2-16 Overriding the DPP Mechanism

015 14 13

16-bit Long Address

#pag 14-bit page offset

24-bit Physical Address

015

16-bit Long Address

#seg 16-bit segment offset

24-bit Physical Address

EXTP(R):

EXTS(R):

User Manual

C166S V2

Central Processing Unit

User Manual 2-52 V 1.7, 2001-01

2.5.2.3 Long Addressing Mode

The long addressing mode uses a 16-bit constant value encoded in the instruction format

which specifies the data page offset and the DPP.

The long addressing mode is referred to by the mnemonic ‘mem’. .

Note: The long addressing may be used with the DPP overriding mechanism (EXTP(R)
and EXTS(R)).

Table 2-6 Long Addressing Modes

Mnemonic Physical Address Scope of Access

mem (DPP0) || mem∧3FFFH

(DPP1) || mem∧3FFFH

(DPP2) || mem∧3FFFH

(DPP3) || mem∧3FFFH

Any Word or Byte

mem pag || mem∧3FFFH Any Word or Byte

mem seg || mem Any Word or Byte

User Manual

C166S V2

Central Processing Unit

User Manual 2-53 V 1.7, 2001-01

2.5.2.4 Indirect Addressing Modes

These addressing modes can be considered as a combination of short and long

addressing modes. This means that long 16-bit address is provided indirectly by the

contents of a word GPR which is specified directly by a short 4-bit address (’Rw’=0 to

15). There are indirect addressing modes, which add a constant value to the GPR

contents before the long 16-bit address is calculated. Other indirect addressing modes

can decrement or increment the indirect address pointers (GPR contents) by 2 or 1

(referring to words or bytes) or by the contents of the offset registers QR0 and QR1.

The Offset Register QR0 and QR1

There are two non-bit addressable offset registers QR0 and QR1 which can be used in

conjunction with the CoXXX instructions.

Note: During initialization of the QR registers, instruction flow stalls are possible. For the
proper operation refer to Chapter 4.1.4.

In each case, one of the four DPP registers is used to specify physical 24-bit addresses.

Any word or byte data within the entire memory space can be addressed indirectly.

Note: The indirect addressing may be used with the DPP overriding mechanism

(EXTP(R) and EXTS(R)).

QR0

Offset Register ESFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QR 0

rw r

QR1

Offset Register ESFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QR 0

rw r

Field Bits Type Description

QR [15:1] rw Modifiable portion of register QRx

Specifies the 16-bit offset address for indirect

addressing modes.

0 [0] r Fixed to 0

User Manual

C166S V2

Central Processing Unit

User Manual 2-54 V 1.7, 2001-01

Some instructions only use the lowest four word GPRs (R3...R0) as indirect address

pointers, which are specified via short 2-bit addresses in that case.

Physical addresses are generated from indirect address pointers using the following

algorithm:

1) Calculate the physical address of the word GPR, which is used as indirect

address pointer, using the specified short address (’Rw’) and

- the current global register bank

 GPR Address = (CP) + 2 * Short Address

- the current local register bank

GPR Address = 2 * Short Address.

2) If required, pre-decremented indirect address pointer (‘-Rw’) by the data-type-

dependent value (D=1 for byte operations, D=2 for word operations) before

the long 16-bit address is generated:

(GPR Address) = (GPR Address) - D ; [optional step!]

3) Calculate the long 16-bit address by adding a constant value (’Rw+const16’ if

selected) to the contents of the indirect address pointer:

Long Address = (GPR Pointer) + Constant ; [+Constant is optional]

4) Calculate the physical 24-bit address using the resulting long address and the

corresponding DPP register contents (see long 'mem' addressing modes).

Physical Address = (DPPi) + Page offset

5) - If required, post-in/decrement indirect address pointers (‘Rw±’) by the data-

type-dependent value (D=1 for byte operations, D=2 for word operations).

- If required, post-in/decrement indirect address pointers (‘Rw± QRx’) by

D=QRx:

(GPR Pointer) = (GPR Pointer) ± D ; [optional step!]

User Manual

C166S V2

Central Processing Unit

User Manual 2-55 V 1.7, 2001-01

The following indirect addressing modes are provided: .

Table 2-7 Indirect Addressing Modes

Mnemonic Particularities

[Rw] Most instructions accept any GPR (R15...R0) as indirect address

pointer. Some instructions accept only the lower four GPRs (R3...R0).

[Rw+] The specified indirect address pointer is automatically post-incremented

by 2 or 1 (for word or byte data operations) after the access.

[-Rw] The specified indirect address pointer is automatically pre-decremented

by 2 or 1 (for word or byte data operations) before the access.

[Rw+#data16] The specified 16-bit constant is added to the indirect address pointer,

before the long address is calculated.

[Rw-] The specified indirect address pointer is automatically post-

decremented by 2 (word data operations) after the access.

[Rw+QRx] The specified indirect address pointer is automatically post-incremented

by QRx (word data operations) after the access.

[Rw-QRx] The specified indirect address pointer is automatically post-

decremented by QRX (word data operations) after the access.

User Manual

C166S V2

Central Processing Unit

User Manual 2-56 V 1.7, 2001-01

2.5.3 DSP Addressing

In addition to the Standard Address Generation Unit, the DSP Address Generation Unit

provides an additional set of pointer and offset registers. An independent arithmetic unit

allows the update of these dedicated pointer registers in parallel with the GPR-Pointer

modification of the Standard Address Generation Unit. The DSP Address Generation

Unit only supports indirect addressing modes that use the special pointer registers IDX0

and IDX1.

The Pointer Register IDX0 and IDX1

The additional set of pointer registers IDX0 and IDX1 allows the execution of DSP

specific CoXXX instruction in one CPU cycle.

Note: During the initialization of the IDX registers, instruction flow stalls are possible. For

the proper operation, refer to the Section 4.1.4.

The address pointers can be used for arithmetic operations as well as for the special

CoMOV instruction. But, the generation of the 24 bit memory address is different.

In case of arithmetic CoXXX operations, the IDX pointers are automatically zero

extended to a 24-bit memory address. The IDX address pointers should point to the

internal DPRAM area. Even if the IDX address pointers do not point to the internal

IDX0

Address Pointer SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDX 0

rw r

IDX1

Address Pointer SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDX 0

rw r

Field Bits Type Description

IDX [15:1] rw Modifiable portion of register IDXx

Specifies the 16-bit value of a dedicated address

pointer.

0 [0] r Fixed to 0

User Manual

C166S V2

Central Processing Unit

User Manual 2-57 V 1.7, 2001-01

DPRAM area, the address is mapped into the DPRAM area. The leading four bits of the

IDX pointers are not taken into account as shown in Figure 2-17.

Figure 2-17 Arithmetic MAC Operations and Addressing via the IDX Pointers

For CoMOV MAC operation, the IDX pointers are concatenated with the Data Page

Pointers, just like normal GPR-Pointers as described in Section 2.5.2.1. The IDX pointer

can address the entire C166S V2 memory area without any restrictions.

015 12 11

16-Bit IDX Pointer

023 15 12 11

Memory

00000000 1111

DPRAM in Data Page 3

00’0000H

01’0000H

02’0000H

0

1

2

User Manual

C166S V2

Central Processing Unit

User Manual 2-58 V 1.7, 2001-01

Figure 2-18 CoMOV Operations and Addressing via the IDX Pointers

There are indirect addressing modes which allow parallel data move operations before

the long 16-bit address is calculated. Other indirect addressing modes allow

decrementing or incrementing the indirect address pointers (IDXx contents) by 2 or by

the contents of the offset registers. There are two non-bit addressable offset registers

QX0 and QX1 which can be used in conjunction with the CoXXX instructions.

09 DPP

015 14

16-Bit Data Address (IDXx)

023 15 14

00’0000H

01’0000H

FE’0000H

FF’0000H

Memory

DPP3 - 11

DPP2 - 10

DPP1 - 01

DPP0 - 00

selects DPP

Segment Segment offset

Page Page offset

0

254

x

255

1

User Manual

C166S V2

Central Processing Unit

User Manual 2-59 V 1.7, 2001-01

The Offset Register QX0 and QX1

These two non-bit addressable registers are used only for CoXXX operations which

access operands using indirect addressing mode. The QX offset registers are used in

conjunction with the IDX pointers.

Note: During the initialization of the QX registers, instruction flow stalls are possible. For

the proper operation, refer to the Section 4.1.4.

Physical addresses are generated from indirect address pointers IDX via the following

algorithm:

1) Determine the used IDXx pointer

2) An intermediate long address is calculated for the parallel data move opera-

tion of CoXXXM instructions before the long 16-bit address is generated

[optional step!]:

- If required, indirect address pointers (‘IDXx±’) are de/incremented by D=2.

- If required, indirect address pointers (‘IDXx± QXx’) are de/incremented by

D= QXx.

QX0

Offset Register ESFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QX 0

rw r

QX1

Offset Register ESFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QX 0

rw r

Field Bits Type Description

QX [15:1] rw Modifiable portion of register QXx

Specifies the 16-bit offset address for indirect

addressing modes.

0 [0] r Fixed to 0

User Manual

C166S V2

Central Processing Unit

User Manual 2-60 V 1.7, 2001-01

Intermediate Address = (IDXx Address) ± D ; [optional step!]

3) Calculate long 16-bit address:

Long Address = (IDXx Pointer)

4) Calculate the physical 24-bit address using the resulting long address and the

corresponding DPP register contents (see long ’mem’ addressing modes and

DPPi override mechanism for arithmetic CoXXX instructions).

Physical Address = (DPPi) + Page offset

5) - If required, indirect address pointers (‘IDXx±’) are in/decremented by D=2 for

word operations.

- If required, indirect address pointers (‘IDXx± QXx’) are in/decremented by

D= QXx for word operations.

(IDX Pointer) = (IDX Pointer) ± D; [optional step!]

The following indirect addressing modes are provided: .

Table 2-8 DSP Addressing Modes

Mnemonic Particularities

[IDXx] Most CoXXX instructions accept IDXx (IDX0, IDX1) as an indirect

address pointer.

[IDXx+] The specified indirect address pointer is automatically post-incremented

by 2 after the access.

with parallel

data move

In case of a CoXXXM instruction, the address stored in the specified

indirect address pointer is automatically pre-decremented by 2 for the

parallel move operation. The pointer itself is not pre-decremented.

Then, the specified indirect address pointer is automatically post-

incremented by 2 after the access.

[IDXx-] The specified indirect address pointer is automatically post-

decremented by 2 after the access.

User Manual

C166S V2

Central Processing Unit

User Manual 2-61 V 1.7, 2001-01

The example in Figure 2-19 shows the complex operation of CoXXX instructions with a

parallel move operation based on the descriptions about addressing modes given in

Section 2.5.2.4 (Indirect Addressing Modes) and Section 2.5.3 (DSP Addressing

Modes).

with parallel

data move

In case of a CoXXXM instruction, the address stored in the specified

indirect address pointer is automatically pre-incremented by 2 for the

parallel move operation. The pointer itself is not pre-incremented. Then,

the specified indirect address pointer is automatically post-decremented

by 2 after the access.

[IDXx+QXx] The specified indirect address pointer is automatically post-incremented

by QXx after the access.

with parallel

data move

In case of a CoXXXM instruction, the address stored in the specified

indirect address pointer is automatically pre-decremented by QXx for

the parallel move operation. The pointer itself is not pre-decremented.

Then, the specified indirect address pointer is automatically post-

incremented by QXx after the access.

[IDXx-QXx] The specified indirect address pointer is automatically post-

decremented by QXx after the access.

with parallel

data move

In case of a CoXXXM instruction, the address stored in the specified

indirect address pointer is automatically pre-incremented by QXx for the

parallel move operation. The pointer itself is not pre-incremented. Then,

the specified indirect address pointer is automatically post-decremented

by QXx after the access.

Table 2-8 DSP Addressing Modes (cont’d)

Mnemonic Particularities

User Manual

C166S V2

Central Processing Unit

User Manual 2-62 V 1.7, 2001-01

Figure 2-19 Arithmetic MAC Operations with Parallel Move

CoXXXMxx [IDX0+],[R2+]

1)

R2 Address = CP + 2*2
(global register bank)

calculate pointer addresses

IDXx = IDX0

2) intermediate address of write pointer

Intermediate Address = (IDX0) - 2

3)

Long Address 1 = (IDX0)

for the parallel mov operation

calculate long 16bit address

Long Address 2 = (R2)

4)

Physical Address 1 = Page3 + Page offset

calculate 24bit physical address

Physical Address 2 = (DPPi) + Page offset

5) post modify address pointer

(IDX0)new = (IDX0) + 2 (R2)new = (R2) + 2

Address operations

Data operations

1) Read operands

op1 = (Physical Address 1) op2 = (Physical Address 2)

2) Write operand op1

(Intermediate Address) = op1

(IDX0) (read pointer)
op1

Intermediate Address

(IDX0)new (updated pointer)

parallel
move

(R2) (read pointer)
op2

(R2)new (updated pointer)

(write pointer for parallel move)

User Manual

C166S V2

Central Processing Unit

User Manual 2-63 V 1.7, 2001-01

2.5.4 The CoREG Addressing Mode

The CoSTORE instruction utilizes the special CoREG addressing mode for immediate

storage of the MAC-Unit register after a MAC operation. The address of the MAC-Unit

register is coded in the CoSTORE instruction format as described in the following table:
 .

Table 2-9 Coding of the CoREG Addressing Mode

Mnemonic Register Coding of wwww:w bits [31:27]

MSW MAC-Unit Status Word 00000

MAH MAC-Unit Accumulator High Word 00001

MAS Limited MAC-Unit Accumulator High

Word

00010

MAL MAC-Unit Accumulator Low Word 00100

MCW MAC-Unit Control Word 00101

MRW MAC-Unit Repeat Word 00110

User Manual

C166S V2

Central Processing Unit

User Manual 2-64 V 1.7, 2001-01

2.5.5 The System Stack

The C166S V2 CPU supports a system stack of 64 kBytes. The stack can be located

internally in one of the on-chip memories or externally. The 16-bit Stack Pointer (SP)

register addresses the stack within a 64 kByte segment. The Stack Pointer Segment

Register (SPSG) selects the segment in which the stack is located. A virtual stack

(usually bigger then 64 kBytes) can be implemented by software. This mechanism is

supported by registers STKOV and STKUN (see descriptions below).

The Stack Pointer Register SP

The non-bit addressable Stack Pointer SP register is used to point to the top of the

system stack (TOS). The SP register is pre-decremented whenever data is to be pushed

onto the stack, and it is post-incremented whenever data is to be popped from the stack.

Therefore, the system stack grows from higher toward lower memory locations.

The SP register can be updated via any instruction capable of modifying an 16-bit SFR.

Note: Due to the internal instruction pipeline, a stack pointer initialization stalls the
instruction flow until the operation is finished. A POP and RETURN instruction can

immediately follow an instruction updating the SP.

SP

Stack Pointer SFR Reset Value: FC00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SP 0

rwh r

Field Bits Type Description

SP [15:1] rwh Modifiable portion of register SP

Specifies the top of the system stack.

0 [0] r Fixed to 0

User Manual

C166S V2

Central Processing Unit

User Manual 2-65 V 1.7, 2001-01

The Stack Pointer Segment Register SPSEG

This non-bit addressable register selects the segment being used at run-time to access

system stack. The lower eight bits of register SPSEG select one of up 256 segments of

64-kilobytes each, while the higher 8 bits are reserved for future use.

System stack addresses are generated by directly extending the 16-bit contents of the

SP register by the contents of the SPSG register as shown in Figure 2-20.

The system stack cannot cross a 64k byte segment boundary.

Figure 2-20 Addressing via the Stack Pointer

In case of a non-segmented memory mode, the SPSG register is also used to generate

the physical address. If a non-segmented memory model is selected, extreme care

should be taken when changing the contents of the SPSG register. Improper SPSG

change may result in erroneous system behavior. The SPSG register can be updated via

any instruction capable of modifying an SFR.

SPSEG

Stack Pointer Segment SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 SPSEGNR

r r r r r r r r rw

Field Bits Type Description

SPSEGNR [7:0] rw Stack Pointer Segment Number

Specifies the segment where the stack is located.

SPSEGNR 015 SP

023

0
00’0000H

1
01’0000H

254
FE’0000H

255
FF’0000H

Stack Pointer Segment 0

16 15

715

SPSEG

User Manual

C166S V2

Central Processing Unit

User Manual 2-66 V 1.7, 2001-01

Note: Due to the internal instruction pipeline, a write operation to the SPSG register

stalls the instruction flow until the SPSG register is really updated. The instruction

immediately following the instruction updating the SPSG register can use the new

value.

The Stack Overflow Pointer STKOV

This non-bit addressable STKOV register is compared with the SP register before each

implicit write operation which decrements the contents of the SP register. If the contents

of the SP register are equal to the contents of the STKOV register, a stack overflow trap

will occur.

The STKOV register can be updated via any instruction capable of modifying a SFR.

Note: The Stack Pointer Segment Register SPSG is not taken into account for the stack

pointer comparison. The system stack cannot cross a 64k segment.

This checking mechanism is triggered before every implicit write access. The contents

of the stack pointer is compared with the contents of the overflow register, whenever the

SP is to be decremented either by a CALLA, CALLI, CALLR, CALLS, PCALL, TRAP,

SCXT or PUSH instruction.

Note: If the Stack Pointer was explicitly changed as a result of move or arithmetic

instruction, SP is not compared to the contents of the STKOV. Therefore, if the

modified Stack Pointer is below the limit set by STKOV register, the stack violation

will not be detected. The stack overflow can be detected only if the contents of SP
are equal to (not less than) the contents of the STKOV and only in case of implicit

SP modification. This means that SP may be explicitly set to the value below

permitted SP range and even be operated there without triggering any traps.

However, if SP crosses the limit of the permitted SP range from outside the range

as a result of implicit change (PUSH for example), the event (SP) = (STKOV) will

STKOV

Stack Overflow Pointer SFR Reset Value: FA00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKOV 0

rw r

Field Bits Type Description

STKOV [15:1] rw Modifiable portion of register STKOV

Specifies the segment offset address of the lower

limit of the system stack.

0 [0] r Fixed to 0

User Manual

C166S V2

Central Processing Unit

User Manual 2-67 V 1.7, 2001-01

trigger the corresponding trap. Note that event (SP) = (STKOV) resulting from an

explicit SP modification does not trigger the trap.

The Stack Overflow Trap is triggered when (SP) = (STKOV) and if SP is to be implicitly

decremented. This trap may be used in two different ways:

• Fatal error indication treats the stack overflow as a system error and executes

associated trap service routine. Under these circumstances, data in the bottom of the

stack may have been overwritten by the status information stacked upon servicing the

stack overflow trap.

• Automatic system stack flushing allows the system stack to be used as a ’Stack

Cache’ for a bigger external user stack.

The Stack Underflow Pointer STKUN

This non-bit addressable register STKUN is compared with the SP register before each

implicit read operation that increments the contents of the SP register. If the contents of

the SP register are equal to the contents of the STKUN register, a stack underflow

hardware trap will occur.

The STKUN register can be updated via any instruction capable of modifying a SFR.

Note: The Stack Pointer Segment Register SPSG is not taken into account for the stack
pointer comparison. The system stack cannot cross a 64 k segment.

This checking mechanism is triggered before each implicit read access. The contents of

the stack pointer are compared to the contents of the underflow register, whenever the

SP will be incremented either by a RET, RETS, RETP, RETI or POP instruction.

Note: If the Stack Pointer was explicitly changed as a result of move or arithmetic

instruction, SP is not compared to the contents of the STKUN register. Therefore,

if the modified Stack Pointer is above the limit set by STKUN register, the stack

STKUN

Stack Underflow Pointer SFR Reset Value: FC00H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STKUN 0

rw r

Field Bits Type Description

STKUN [15:1] rw Modifiable portion of register STKUN

Specifies the segment offset address of the upper

limit of the system stack.

0 [0] r Fixed to 0

User Manual

C166S V2

Central Processing Unit

User Manual 2-68 V 1.7, 2001-01

violation will not be detected. The stack underflow can be detected only if the

contents of SP are equal to (not higher than) the contents of the STKUN and only

in case of implicit SP modification. This means that SP may be explicitly set to the

value above the permitted SP range and even be operated there without triggering
any traps. However, if SP crosses the limit of the permitted SP range from outside

the range as a result of an implicit change (POP instruction, for example), the

event (SP) = (STKUN) will trigger the corresponding trap. Note that event (SP) =

(STKUN) resulting from an explicit SP modification does not trigger the trap.

The Stack Underflow Trap is triggered when (SP) = (STKUN) and if SP is to be implicitly

incremented. This trap may be used in two different ways:

Fatal error indication treats the stack underflow as a system error and executes

associated trap service routine.

• Automatic system stack refilling allows use of the system stack as a ’Stack Cache’

for a bigger external user stack.

Scope of Stack Limit Control

The stack limit control implemented by the register pair STKOV and STKUN detects

cases in which the Stack Pointer (SP) crosses the defined stack area as a result of

implicit change.

Note: If a stack overflow or underflow event occurs in an ATOMIC/EXT sequence, the

stack operations that are part of the sequence are completed. The trap is issued

after the completion of the entire ATOMIC/EXT sequence.

2.6 Data Processing

All standard arithmetic, shift and logical operations are performed in the 16-bit ALU. In

addition to the standard arithmetic and logic unit, the ALU of the C166S V2 CPU includes

bit manipulation, multiply and divide unit. Most internal execution blocks have been

optimized to perform operations on either 8-bit or 16-bit numbers. After the pipeline has

been filled, most instructions are completed in one CPU cycle. The status flags are

automatically updated in the PSW register after each ALU operation (see Section 2.6.6).

These flags allow branching upon specific conditions. Support of both signed and

unsigned arithmetic is provided by the user selectable branch test. The status flags are

also preserved automatically by the CPU upon entry into an interrupt or trap routine.

2.6.1 Data Types

The C166S V2 CPU supports operations on booleans/bits, bit strings, characters,

integers, and signed fraction numbers. Most instructions operate with specific data

types, while others are useful for manipulating several data types.

User Manual

C166S V2

Central Processing Unit

User Manual 2-69 V 1.7, 2001-01

The C166S V2 CPU data formats are able to support all ANSI C data types. Additional

to the ANSI C data types, some C-Compilers support new types that allow efficient use

of the bit manipulation instructions in embedded control applications.. .

Table 2-10 ANSI C Data Types

ANSI C Data Types Size (bytes) Range CPU Data Format

bit 1 bit 0 or 1 BIT

sfrbit 1 bit 0 or 1 BIT

esfrbit 1 bit 0 or 1 BIT

signed char 1 -128 to +127 BYTE

unsigned char 1 0 to 255U BYTE

sfr 1 0 to 65535U WORD

esfr 1 0 to 65535U WORD

signed short 2 -32768 to 32767 WORD

unsigned short 2 0 to 65535U WORD

bitword 2 0 to 65535U WORD or BIT

signed int 2 -32768 to 32767 WORD

unsigned int 2 0 to 65535U WORD

signed long 4 -2147483648 to

+2147483647

Not directly supported

unsigned long 4 0 to 4294967295UL Not directly supported

float 4 +/-1,176E-38 to

+/-3,402E+38

Not directly supported

double 8 +/- 2,225E-308 to

+/- 1,797E+308

Not directly supported

long double 8 +/- 2,225E-308 to

+/- 1,797E+308

Not directly supported

near pointer 2 16/14 bits

depending on

memory model

WORD

far pointer 4 14 bits (16 k) in any

page

Not directly supported

User Manual

C166S V2

Central Processing Unit

User Manual 2-70 V 1.7, 2001-01

2.6.2 Constants

In addition to the powerful addressing modes, the C166S V2 CPU instruction set also

supports the use of wordwide or bytewide immediate constants. For optimum utilization

of the available code storage, these constants are represented in the instruction formats

by either 3, 4, 8, or 16 bits. The short constants are always zero-extended, while the long

constants are truncated if necessary, to match the data format required for the particular

operation (see table below): .

Note: Immediate constants are always signified by a leading sign ’#’.

2.6.3 16-bit Adder/Subtracter, Barrel Shifter, and 16-bit Logic Unit

All standard arithmetic and logical operations are performed by the 16-bit ALU. In case

of byte operations, signals from bits 6 and 7 of the ALU result are used to control the

condition flags. Multiple precision arithmetic is supported by a “CARRY-IN” signal to the

ALU from previously calculated portions of the desired operation.

A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotations and

arithmetic shifts are also supported.

2.6.4 Bit Manipulation Unit

C166S V2 CPU offers a large number of instructions for bit processing. The special bit

manipulation unit was implemented for this purpose. The bit manipulation instructions

enable efficient control and testing of peripherals. Unlike other microcontrollers,

Table 2-11 CPU Data Formats

CPU Data Format Size (bytes) Range

BIT 1 bit 0 or 1

BYTE 1 0 to 255U or -128 to +127

WORD 2 0 to 65535U or -32768 to 32767

Table 2-12 Constant Formats

Mnemonic Word Operation Byte Operation

#data3 0000H + data3 00H + data3

#data4 0000H + data4 00H + data4

#data8 0000H + data8 data8

#data16 data16 data16 ∧ FFH

#mask 0000H + mask mask

User Manual

C166S V2

Central Processing Unit

User Manual 2-71 V 1.7, 2001-01

C166S V2 CPU features instructions that provide direct access to two operands in the

bit addressable space without requiring them to be moved to temporary locations.

The same logical instructions that are available for words and bytes can also be used for

bits. The user can compare and modify a control bit for a peripheral in one instruction.

Multiple bit shift instructions have been included to avoid long instruction streams of

single bit shift operations. These instruction require a single CPU cycle. Additionally, bit

field instructions enable are able to modify the multiple bits in one operand in a single

instruction.

All instructions that manipulate single bits or bit groups internally use a read-modify-write

sequence that accesses the whole word containing the specified bit(s).

This method has several consequences:

• Bits can be modified only within the internal address areas, i.e. internal RAM and

SFRs. External locations cannot be used with bit instructions.

The upper 256 bytes of the SFR area, the ESFR area, and the internal RAM are bit

addressable, i.e. those register bits located within the respective sections can be directly

manipulated using bit instructions. The other SFRs must be accessed byte/word wise.

Note: All GPRs are bit addressable independent of the allocation of the register bank via
the Context Pointer (CP). Even GPRs allocated to not bit addressable RAM

locations provide this feature.

• The read-modify-write approach may be critical with hardware-effected bits. In such

cases, the hardware may change specific bits while the read-modify-write operation is

in progress, where the write back would overwrite the new bit value generated by the

hardware. The solution is either the implemented hardware protection (see below) or

realized through special programming (see Section 4.1).

Protected bits are not changed during the read-modify-write sequence, that is, when

hardware sets something like an interrupt request flag between the read and the write of

the read-modify-write sequence. The hardware protection logic guarantees that only the

intended bit(s) is/are effected by the write-back operation.

Note: If a conflict occurs between a bit manipulation generated by hardware and an

intended software access, the software access has priority and determines the

final value of the respective bit.

2.6.5 Multiply and Divide Unit

The C166S V2 CPU multiply and divide unit has two separated parts. One is the fast

16x16-bit multiplier that executes a multiplication in one CPU cycle. The other one is a

division sub-unit which performs the division algorithm in 21 CPU cycles maximum.

According to the data and division types, the division length varies between 18 and 21

cycles. The divide instruction requires four CPU cycles to be executed. For performance

reasons, the rest of the division algorithm runs in the background during the following

User Manual

C166S V2

Central Processing Unit

User Manual 2-72 V 1.7, 2001-01

seventeen CPU cycles, while further instructions are executed in parallel. If another

instruction tries to use the unit while a division is still running, the execution of this new

instruction is stalled until the division is finished.

Interrupt tasks can also be started and executed immediately without any delay. The

previous division will be finished in the background. If an instruction of the interrupt task

uses the multiply and divide unit before the previous division process is finished, the

instruction flow will be stalled as well. To avoid these stalls, the multiply and division unit

should not be used during the first fourteen CPU cycles of the interrupt tasks. This

requires up to fourteen one-cycle instructions to be executed between the interrupt entry

and the first instruction which uses the multiply and divide unit again (worst case).

The Multiply/Divide High Register MDH

The sixteen bit, non-bit addressable MDH register contains the high word of the 32-bit

multiply/divide MD register used by the CPU when it performs a multiplication or a

division using implicit addressing (DIV, DIVL, DIVLU, DIVU, MUL, MULU). After an

implicitly addressed multiplication, this register represents the high order sixteen bits of

the 32-bit result. For long divisions, the MDH register must be loaded with the high order

sixteen bits of the 32-bit dividend before the division has started. After any division, the

MDH register represents the 16-bit remainder.

Whenever this register is updated via software, the Multiply/Divide Register In Use

(MDRIU) flag in the Multiply/Divide Control register (MDC) is set to 1.

The Multiply/Divide Low Register MDL

The sixteen bit, non-bit addressable MDL register contains the low word of the 32-bit

multiply/divide MD register used by the CPU when it performs a multiplication or a

division using implicit addressing (DIV, DIVL, DIVLU, DIVU, MUL, MULU). After a

MDH

Multiply Divide High Word SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MDH

rwh

Field Bits Type Description

MDH [15:0] rwh High part of MD

The high order sixteen bits of the 32-bit multiply and

divide register MD.

User Manual

C166S V2

Central Processing Unit

User Manual 2-73 V 1.7, 2001-01

multiplication, this register represents the low order sixteen bits of the 32-bit result. For

long divisions, the MDL register must be loaded with the low order sixteen bits of the

32-bit dividend before the division has started. After any division, the MDL register

represents the 16-bit quotient.

Whenever this register is updated via software, the Multiply/Divide Register In Use

(MDRIU) flag in the Multiply/Divide Control register (MDC) is set to 1. The MDRIU flag is

cleared whenever the MDL register is read via software.

The Divide Control Register MDC

This bit addressable 16-bit register is implicitly used by the CPU when it performs a

division or multiplication in the ALU.

MDL

Multiply Divide Low Word SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MDL

rwh

Field Bits Type Description

MDL [15:0] rwh Low part of MD

The low order 16 bits of the 32-bit multiply and

divide register MD.

MDC

Multiply Divide Control SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0
MDR

IU
0 0 0 0

r r r r r r r r r r r rwh r r r r

Field Bits Type Description

MDRIU [4] rwh Multiply/Divide Register In Use

0: Cleared when MDL is read via software.

1: Set when MDL or MDH is written via

software, or when a multiply or divide

instruction is executed.

User Manual

C166S V2

Central Processing Unit

User Manual 2-74 V 1.7, 2001-01

The MDRIU flag is the only portion of the MDC register used for multiplication and

division within the C166S V2 CPU. This bit indicates the usage of the MDL and MDH

register. It must be stored prior to a new multiplication or division operation. The

remaining portions of the MDC register are never used by the dedicated multiplication

and division hardware.

2.6.6 The Processor Status Word PSW

This bit addressable register reflects the current status of the microcontroller. Two

groups of bits represent the current ALU status and the current CPU interrupt status.

Two separate bits (USR0 and USR1) within register PSW are provided as general

purpose flags.

PSW

Processor Status Word SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN
HLD

EN
BANK

USR

1

USR

0

MUL

IP
E Z V C N

rwh rw rw rwh rwh rwh r rwh rwh rwh rwh rwh

Field Bits Type Description

ILVL [15:12] rwh CPU Priority Level

0H Lowest Priority

... ...

FH Highest Priority

IEN [11] rw Interrupt/PEC Enable Bit (globally)

0 Interrupt/PEC requests are disabled

1 Interrupt/PEC requests are enabled

HLDEN [10] rw Hold Enable

0 external bus arbitration disabled

1 external bus arbitration enabled

BANK [9:8] rwh Reserved for Register File Bank Selection

00 Global register bank

01 Reserved

10 Local register bank 1

11 Local register bank 2

USR1 [7] rwh General Purpose Flag

May be used by application

USR0 [6] rwh General Purpose Flag

May be used by application

User Manual

C166S V2

Central Processing Unit

User Manual 2-75 V 1.7, 2001-01

ALU Status (N, C, V, Z, E, MULIP)

The condition flags (N, C, V, Z, E) within the PSW indicate the ALU status resulting from

the last performed ALU operation. They are set by the majority of instructions according

to the specific rules depending on the ALU operation or data movement.

After execution of an instruction which explicitly updates the PSW register, the condition

flags may no longer represent an actual CPU status. An explicit write operation to the

PSW register supersedes the condition flag values implicitly generated by the CPU. An

explicit read access to the PSW register returns the value of the PSW register after

execution of the immediately preceding instruction.

Note: After reset, all of the ALU status bits are cleared.

• N-Flag: For the majority of ALU operations, the N-flag is set to 1, if the most significant

bit of the result contains a 1; otherwise, it is cleared. In the case of integer operations,

the N-flag can be interpreted as the sign bit of the result (negative: N = 1, positive: N

= 0). Negative numbers are always represented as the 2s complement of the

corresponding positive number. The range of signed numbers extends from '–8000H'

to '+7FFFH' for the word data type, or from '–80H' to '+7FH' for the byte data type. For

Boolean bit operations with only one operand, the N-flag represents the previous state

of the specified bit. For Boolean bit operations with two operands, the N-flag

represents the logical XORing of the two specified bits.

MULIP [5] r Multiplication/Division in progress

Always set to 0

E [4] rwh End of Table Flag

0 Source operand is neither 8000h nor 80h

1 Source operand is 8000h or 80h

Z [3] rwh Zero Flag

0 ALU result is not zero

1 ALU result is zero

V [2] rwh Overflow Flag

0 No Overflow produced

0 Overflow produced

C [1] rwh Carry Flag

0 No carry/borrow bit produced

1 Carry/borrow bit produced

N [0] rwh Negative Result

0 ALU result is not negative

1 ALU result is negative

Field Bits Type Description

User Manual

C166S V2

Central Processing Unit

User Manual 2-76 V 1.7, 2001-01

• C-Flag: After an addition, the C-flag indicates that a “Carry” from the most significant

bit of the specified word or byte data type has been generated. After a subtraction or

a comparison, the C-flag indicates a “Borrow” which represents the logical negation of

a “Carry” for the addition.

This means that the C-flag is set to 1, if no carry from the most significant bit of the

specified word or byte data type has been generated during a subtraction. Subtraction

is performed by the ALU as a 2s complement addition. The C-flag is cleared when this

complement addition causes a “Carry”.

The C-flag is always cleared for logical, multiply and divide ALU operations, because

these operations cannot cause a “Carry” flag to be set.

For shift and rotate operations, the C-flag represents the value of the bit shifted out

last. If a shift count of zero is specified, the C-flag will be cleared. The C-flag is also

cleared for a Prioritize operation, because a 1 is never shifted out of the MSB during

the normalization of an operand.

For Boolean bit operations with only one operand, the C-flag is always cleared. For

Boolean bit operations with two operands, the C-flag represents the logical ANDing of

the two specified bits.

• V-Flag: The addition, subtraction and 2's complement operations set the V-flag to '1'

if the result exceeds the range of 16 bit signed numbers for word operations ('–8000H'

to '+7FFFH'), or 8 bit signed numbers for byte operations ('–80H' to '+7FH'). Otherwise,

the V-flag is cleared. Note, that the result of an integer addition, integer subtraction,

or 2's complement is not valid if the V-flag indicates an arithmetic overflow.

For multiplication and division the V-flag is set to 1 if the result can not be represented

in a word data type, otherwise it is cleared. Note that a division by zero will always

cause an overflow. Unlike the division result, the result of multiplication is valid

regardless of V-flag value.

Since the logical ALU operations cannot produce an invalid result, the V-flag is cleared

by these operations.

The V-flag is also used as 'Sticky Bit' for rotate right and shift right operations. Using

only the C-flag, a rounding error caused by a shift right operation can be estimated as

up to one half of the LSB of the result. In conjunction with the V-flag, the C-flag allows

evaluation of the rounding error with a finer resolution (see table below).

For Boolean bit operations with only one operand, the V-flag is always cleared. For

Boolean bit operations with two operands, the V-flag represents the logical ORing of

the two specified bits.

Shift Right Rounding Error Evaluation

• Z-Flag: The Z-flag is normally set to 1 if the result of an ALU operation equals zero;

otherwise, it is cleared.

User Manual

C166S V2

Central Processing Unit

User Manual 2-77 V 1.7, 2001-01

For addition and subtraction with “Carry”, the Z-flag is only set to 1 if the Z-flag already

contains a 1 as a result from previous operation and the result of the current ALU

operation also equals zero. This mechanism supports the multiple precision

calculations.

For Boolean bit operations with only one operand, the Z-flag represents the logical

negation of the previous state of the specified bit. For Boolean bit operations with two

operands, the Z-flag represents the logical NORing of the two specified bits. For the

Prioritize operation, the Z-flag indicates whether the second operand was zero or not.

• E-Flag: End of table flag. The E-flag can be altered by the instructions which perform

ALU or data movement operations. The E-flag is cleared by those instructions that

cannot be reasonably used for table search operations. In all other cases, the E-flag

value depends on the value of the source operand to signify whether the end of a

search table is reached or not. If the value of the source operand of an instruction

equals the lowest negative number which depends on the data format of the

corresponding instruction ('8000H' for the word data type, or '80H' for the byte data

type), the E-flag is set to 1; otherwise, it is cleared.

• MULIP-Flag: The MULIP-flag always sticks to 0.

Note: The MULIP flag is a part of the C166 task environment. For compatibility reasons,

the bit is still implemented even if not used. A multiply and divide ALU operation

of the C166S V2 CPU is no longer interruptible.

• BANK: The BANK bitfield of the PSW registers indicates which one of the three

physical register banks is activated. The BANK field is updated by hardware upon

entry into an interrupt service routine, but it can be also modified by software. The

BANK field can be changed explicitly by any instruction which can write to the PSW.

Also, it is implicitly updated by the RETI instruction.

• HLDEN: Refer to EBC Chapter 6.4.1.

CPU Interrupt Status (IEN, ILVL)

The Interrupt Enable bit allows global enable (IEN=1) or disable (IEN=0) of interrupts.

The 4-bit Interrupt Level field (ILVL) specifies the priority of the current CPU activity. The

interrupt level is updated by hardware upon entry into an interrupt service routine, but it

can also be modified via software to prevent other interrupts from being acknowledged.

In case an interrupt level '15' has been assigned to the CPU, it has the highest possible

C-Flag V-Flag Rounding Error Quantity

0

0

1

1

0

1

0

1

No rounding error

0 < Rounding error < 1/2 LSB

Rounding error = 1/2 LSB

Rounding error > 1/2 LSB

User Manual

C166S V2

Central Processing Unit

User Manual 2-78 V 1.7, 2001-01

priority, and thus the current CPU operation cannot be interrupted except by hardware

traps or external non-maskable interrupts. For details please, refer to Section 5

“Interrupt and Trap Functions”.

After reset, all interrupts are globally disabled and the lowest priority (ILVL=0) is

assigned to the initial CPU activity.

2.7 Parallel Data Processing

The new CoXXX arithmetic instructions are performed in the MAC unit. The MAC unit

provides single instruction-cycle, non-pipelined, 32-bit additions; 32-bit subtraction; right

and left shifts; 16-bit by 16-bit multiplication; and multiplication with cumultative

subtraction/addition. The MAC unit includes the following major components, shown in

Figure 2-21:

• 16-bit by 16-bit signed/unsigned multiplier with signed result1)

• Concatenation Unit

• Scaler (one-bit left shifter) for fractional computing

• 40-bit Adder/Subtracter

• 40-bit Signed Accumulator

• Data Limiter

• Accumulator Shifter

• Repeat Counter

1) The same hardware-multiplier is used in the ALU.

User Manual

C166S V2

Central Processing Unit

User Manual 2-79 V 1.7, 2001-01

Figure 2-21 Functional MAC Unit Block Diagram

The working register of the MAC Unit is a dedicated 40-bit wide Accumulator register. A

set of consistent flags is automatically updated in the MSW register (see Section 2.7.10)

after each MAC operation. These flags allow branching on specific conditions. Unlike the

PSW flags, these flags are not preserved automatically by the CPU upon entry into an

interrupt or trap routine. All dedicated MAC registers must be saved on the stack if the

MAC unit is shared between different tasks and interrupts.

2.7.1 Representation of Numbers and Rounding

The C166S V2 CPU supports the 2s complement representation of binary numbers. In

this format, the sign bit is the MSB of the binary word. This is set to zero for positive

numbers and set to one for negative numbers. Unsigned numbers are supported only by

multiply/multiply-accumulate instructions which specify whether each operand is signed

or unsigned.

In 2s complement fractional format, the N-bit operand is represented using the 1.[N-1]

format (1 signed bit, N-1 fractional bits). Such a format can represent numbers between

-1 and +1-2-[N-1]. This format is supported when MP of MCW is set.

Round+Saturation

40-bit Adder/Subtracter

Signed
Ext.

40-bit Signed Accumulator

ACCU-Shifter

16-bit input operands

signed/unsigned

Multiplier

Concatenation

Unit

Repeat Counter

MCW Register

MSW Register

Limiter

16-bit

32-bit

40-bit

User Manual

C166S V2

Central Processing Unit

User Manual 2-80 V 1.7, 2001-01

The C166S V2 CPU implements 2s complement rounding’. With this rounding type, one

is added to the bit to the right of the rounding point (bit 15 of MAL), before truncation

(MAL is cleared).

2.7.2 The 16-bit by 16-bit signed/unsigned Multiplier and Scaler

The multiplier executes 16-bit by 16-bit parallel signed/unsigned fractional and integer

multiplication in one CPU-cycle. The multiplier allows the multiplication of unsigned and

signed operands. The result is always presented in a signed fractional or integer format.

The result of the multiplication feeds a one-bit Scaler to allow compensation for the extra

sign bit gained in multiplying two 16-bit 2s complement numbers.

2.7.3 Concatenation Unit

The Concatenation Unit enables the MAC unit to perform 32-bit arithmetic operations in

one CPU cycle. The Concatenation Unit concatenates two 16-bit operands to a 32-bit

operand before the 32-bit arithmetic operation is executed in the 40-bit adder/subtracter.

The second required operand is always the current Accumulator contents. The

Concatenation Unit is also used to pre-load the Accumulator with a 32-bit value.

2.7.4 One-bit Scaler

The One-bit scaler can shift the result of the concatenation unit or the output of the

multiplier one bit to the left. The scaler is controlled by the executed instruction for the

concatenation or by the MP control bit.

The product is shifted one bit to the left to compensate for the extra sign bit gained in

multiplying two 16-bit 2s complement numbers. The enabled automatic shift is performed

only if both input operands are signed.

MCW

MAC Control Word SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 MP MS 0 0 0 0 0 0 0 0 0

r r r r r rw rw r r r r r r r r r

Field Bits Type Description

MP [10] rw One-bit scaler control

0 Multiplier product shift disabled

1 Multiplier product shift enabled

User Manual

C166S V2

Central Processing Unit

User Manual 2-81 V 1.7, 2001-01

• MP-Control Bit: If the MP mode bit is set and both multiplier operands are signed

types, the multiplier output is automatically shifted left by one bit. In the case of a

multiply and accumulate operation, the output of the multiplier is shifted before being

added to the accumulator.

2.7.5 The 40-bit Adder/Subtracter

The 40-bit adder/Subtracter allows intermediate overflows in a series of multiply/

accumulate operations. The adder/Subtracter has two input ports. The 40-bit port is the

feedback of the Accumulator output through the ACCU-Shifter to the Adder/Subtracter.

The 32-bit port is the input port for the operand coming from the One-bit Scaler. The

32-bit operands are signed and extended to 40-bits before the addition/subtraction is

performed.

The output of the Adder/Subtracter goes to the Accumulator. It is also possible to round

the result and to saturate it on a 32-bit value automatically after every accumulation. The

round operation is performed by adding 00’00008000H to the result. Automatic

saturation is enabled by setting the saturation bit, the MAC Control Word (MCW).

• MS-Control Bit: If the MS mode bit is set, the accumulator will be automatically

saturated to 32-bits. The MAC Unit supports signed saturation.

When the accumulator is in the overflow saturation mode and an overflow occurs, the

accumulator is loaded with either the most positive or the most negative value

representable in a 32-bit value, depending on the direction of the overflow as well as the

arithmetic used. The value of the accumulator upon saturation is 00’7fff’ffffh (positive) or

ff’8000’0000h (negative).

2.7.6 The Data Limiter

Saturation arithmetic is also provided to selectively limit overflow when reading the

accumulator by means of a CoSTORE <destination>., MAS instruction. Limiting is

MCW

MAC Control Word SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 MP MS 0 0 0 0 0 0 0 0 0

r r r r r rw rw r r r r r r r r r

Field Bits Type Description

MS [9] rw Saturation control

0 Saturation disabled

1 Saturation enabled

User Manual

C166S V2

Central Processing Unit

User Manual 2-82 V 1.7, 2001-01

performed on the MAC-Unit accumulator. If the contents of the Accumulator can be

represented in the destination operand size without overflow, then the data limiter is

disabled and the operand is not modified. If the contents of the accumulator cannot be

represented without overflow in the destination operand size, the limiter will substitute a

“limited” data as explained in the next table:

Notice that in this particular case, both the accumulator and the status register are not

affected. MAS is readable by means of a CoSTORE instruction only.

2.7.7 The Accumulator Shifter

The accumulator shifter is a parallel shifter with a 40-bit input and a 40 bit output. The

source accumulator shifting operation are:

• No shift (Unmodified)

• Up to 16-bit Arithmetic Left Shift

• Up to 16-bit Arithmetic Right Shift

Notice that the ME, MSV, and MSL bits from MSW are affected by left shifts; therefore,

if the saturation mechanism is enabled (MS), the behavior is similar to the one of the

Adder/Subtracter.

Note: Certain precautions are required in case of left shift with saturation enabled.

Generally, if MAE contains significant bits, then the 32-bit value in the accumulator

is to be saturated. However, it is possible that left shift may move some significant

bits out of the Accumulator. The 40-bit result will be misinterpreted and will be

either not saturated or saturated incorrectly. There is a chance that the result of
left shift may produce a result which can saturate an original positive number to

the minimum negative value, or vice versa.

2.7.8 The 40-bit Signed Accumulator Register

The 40-bit Accumulator consists of three smaller registers, MAH, MAL, and MAE. MAH

and MAL are 16 bits wide; MAE is 8 bits wide. MAE is the Most Significant Byte of the

40-bit accumulator. This byte performs a guarding function. MAE is accessed as the

Least Significant Byte of MSW.

When MAH is written, the value in the accumulator is automatically adjusted to signed

extended 40-bit format. That means MAE will be automatically loaded by zeros for the

positive number (MAH has 0 in the most significant bit). In the case of the negative

Table 2-13 Limiter Output

ME-flag MN-flag Output of Limiter

0 x unchanged

1 0 7FFFH

1 1 8000H

User Manual

C166S V2

Central Processing Unit

User Manual 2-83 V 1.7, 2001-01

number (MAH has 1 in the most significant bit), the MAE will be loaded with ones,

representing the extended 40-bit negative number in 2s compliment notation. One may

see that the extended 40-bit value is equal to 32-bit value without extension. In other

words, after this extension, MAE does not contain significant bits. Generally, this

condition is present when the highest 9 bits of the 40-bit signed result are the same.

During the accumulator operations, an overflow may happen and the result may not fit

into 32-bits and the MAE will change. The extension flag “E”, which is the part of the most

significant byte of MSW, is set when the signed result in the accumulator has overflowed

the 32-bit boundary. This condition is present when the highest 9 bits of the 40-bit signed

result are not the same, i.e. MAE contains significant bits.

Most CoXXX operations specify the 40-bit accumulator register as a source and/or a

destination operand.

The MAC Unit Accumulator Extension Byte MAE

The MAE register is a part of the 40-bit MAC unit accumulator register. MAE is accessed

as the Least Significant Byte of MSW. It is implicitly used by the MAC unit for MAC

operation. In case a word operand is written into MAH, the MAE register becomes sign-

extended. It can be accessed via any instruction capable of accessing an SFR.

The MAC Unit Accumulator High Word MAH

The MAH register is a part of the 40-bit MAC unit accumulator register. It is implicitly used

by the MAC unit for MAC operation. In case the word operand is written into MAH, MAL

acquires the zero value and the MAE register becomes sign-extended. It can be

accessed via any instruction capable of accessing an SFR.

MSW

MAC Status Word SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MV MSL ME MSV MC MZ MN MAE

r rwh rwh rwh rwh rwh rwh rwh rwh

Field Bits Type Description

MAE [7:0] rwh The most significant bits of the 40-bit Accumulator

User Manual

C166S V2

Central Processing Unit

User Manual 2-84 V 1.7, 2001-01

The MAC Unit Accumulator Low Word MAL

The MAL register is a part of the 40-bit MAC unit accumulator register. It is implicitly used

by the MAC Unit for MAC operation. In case of explicit write access to MAH, MAL

receives a zero value. It can be accessed via any instruction capable of accessing an

SFR.

2.7.9 The Repeat Counter MRW

The Repeat Counter MRW controls the number of repetitions a loop must be executed.

The register must be pre-loaded before it can be used with -USRx CoXXX operations.

MAC operations are able to decrement this counter. When an -USRx CoXXX instruction

is executed, the MRW is checked on the zero value before the MRW is decremented. If

MAH

Accumulator High Word SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAH

rwh

Field Bits Type Description

MAH [15:0] rwh High part of Accumulator

The middle (bits 31 to 16) word of the 40-bit MAC

Accumulator.

MAL

Accumulator Low Word SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAL

rwh

Field Bits Type Description

MAL [15:0] rwh Low part of Accumulator

The low order 16 bits of the 40-bit MAC

Accumulator.

User Manual

C166S V2

Central Processing Unit

User Manual 2-85 V 1.7, 2001-01

the MRW equals zero, the USRx bit is set and MRW is not further decremented. The

MRW can be accessed via any instruction capable of accessing a SFR.

All CoXXX instructions have a 3-bit wide repeat control field ’rrr’ in the operand field to

control the MRW repeat counter. It is located within CoXXX instructions at bit positions

[31:29].

– ‘000’ -> regular CoXXX instruction.

– ‘001’ -> RESERVED

– ‘010’ -> ‘- USR0 CoXXX’ instruction, decrements repeat counter.

– ‘011’ -> ‘- USR1 CoXXX’ instruction, decrements repeat counter.

– ’1xx’ -> RESERVED.

The following example shows a loop which is executed 20 times. Every time the

CoMACM instruction is executed, the MRW counter is decremented.

mov MRW, #19

loop01:

- USR1 CoMACM [IDX0+], [R0+]

ADD R2,#2

JMPA cc_nusr1, loop01

Because correctly predicted JMPA is executed in 0-cycle, it offers the functionality of a

repeat instruction.

Note: The USR0 bit should be used carefully because this bit was pre-existing and,

therefore, may have been used by programmer or compiler.

2.7.10 The MAC Unit Status Word MSW

The MSW bit addressable register shows the current MAC Unit state. Two groups of bits

represent the current MAC Unit status and the eight additional extension bits belonging

to the MAC accumulator.

MRW

MAC Repeat Word SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REPEAT COUNT

rwh

Field Bits Type Description

REPEAT COUNT [15:0] rwh 16-bit loop counter

User Manual

C166S V2

Central Processing Unit

User Manual 2-86 V 1.7, 2001-01

MAC Unit Status (MV, MN, MZ, MC, MSV, ME, MSL)

The condition flags (MV, MN, MZ, MC, MSV, ME, MSL) within the MSW indicate the

MAC resulting from the most recently performed MAC operation. These flags are

controlled by the majority of the MAC instructions according to specific rules. Those rules

depend on the instruction managing the MAC or data movement operation.

After execution of an instruction which explicitly updates the MSW register, the condition

flags may no longer represent an actual MAC status. An explicit write operation to the

MSW register supersedes the condition flag values implicitly generated by the MAC unit.

An explicit read access to the MSW register returns the value of the MSW register after

execution of the immediately preceding instruction. The MSW register can be accessed

via any instruction capable of accessing an SFR.

Note: After reset, all MAC status bits are cleared.

MSW

MAC Status Word SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MV MSL ME MSV MC MZ MN MAE

r rwh rwh rwh rwh rwh rwh rwh rwh

Field Bits Type Description

MAE [7:0] rwh The most significant bits of the 40-bit Accumulator

MN [8] rwh Negative Result

0 MAC result is positive

1 MAC result is negative

MZ [9] rwh Zero Flag

0 MAC result is not zero

1 MAC result is zero

MC [10] rwh Carry Flag

0 No carry/borrow produced

1 Carry/borrow produced

MSV [11] rwh Sticky Overflow Flag

0 No Overflow occurred

1 Overflow occurred

User Manual

C166S V2

Central Processing Unit

User Manual 2-87 V 1.7, 2001-01

• Accu Extension MAE: These 8 bits are part of the 40-bit accumulator register. The

MAC Unit implicitly uses these bits during a MAC operation. When writing to the MAH,

the MAE is automatically signed extended with the most significant bit of the MAH

register.

• MN-Flag: For the majority of the MAC operations, the MN-flag is set to 1 if the most

significant bit of the result contains a 1; otherwise, it is cleared. In the case of integer

operations, the MN-flag can be interpreted as the sign bit of the result (negative:

MN=1, positive: MN=0). Negative numbers are always represented as the 2s

complement of the corresponding positive number. The range of signed numbers

extends from '8000000000H' to '7FFFFFFFFFH'.

• MZ-Flag: The MZ-flag is normally set to 1 if the result of a MAC operation equals zero;

otherwise, it is cleared.

• MC-Flag: After a MAC addition, the MC-flag indicates that a “Carry” from the most

significant bit of the accumulator extension MAE has been generated. After a MAC

subtraction or a MAC comparison, the MC-flag indicates a “Borrow” representing the

logical negation of a “Carry” for the addition. This means that the MC-flag is set to 1,

if no “Carry” from the most significant bit of the Accumulator has been generated

during a subtraction. Subtraction is performed by the MAC Unit as a 2s complement

addition and the MC-flag is cleared when this complement addition caused a “Carry”.

For left shift MAC operations, the MC-flag represents the value of the bit shifted out

last. Right shift MAC operations always clear the MC-flag. The arithmetic right shift

MAC operation can set the MC-flag if the enabled round operation generates a “Carry”

from the most significant bit of the Accumulator extension MAE.

• MSV-Flag: The addition, subtraction, 2s complement, and round operations always

set the MSV-flag to 1 if the MAC result overflows the maximum range of 40-bit signed

ME [12] rwh MAC Extension Flag

0 MAE does not contain significant bits

1 MAE contains significant bits

MSL [13] rwh Sticky Limit Flag

0 Result was not saturated

1 Result was saturated

MV [14] rwh Overflow Flag

0 No Overflow produced

1 Overflow produced

Field Bits Type Description

User Manual

C166S V2

Central Processing Unit

User Manual 2-88 V 1.7, 2001-01

numbers. If the MSV-flag indicates an arithmetic overflow, the MAC result of an

operation is not valid. The MSV-flag is a ’Sticky Bit’. Once set, other MAC operations

cannot affect the status of the MSV-flag. Only a direct write operation can clear the

MSV-flag.

• ME-Flag: The ME-flag is set if the accumulator extension MAE contains significant

bits. The ME-flag is set if the nine highest accumulator bits are not all equal.

• MSL-Flag: The MSL-flag is set if an automatic saturation of the accumulator has

happened. The automatic saturation is enabled if the MS-bit of the MAC Control Word

register MCW is set. The MSL-Flag can be also set by instructions which limit the

contents of the accumulator. If the accumulator has been limited, the MSL-Flag is set.

The MSL-Flag is a 'Sticky Bit'. Once set, it cannot be affected by the other MAC

operations. Only a direct write operation can clear the MSL-flag.

• MV-Flag: The addition, subtraction, and accumulation operations set the MV-flag to 1

if the result exceeds the maximum range of signed numbers (80’00000000H to

7F’FFFFFFFFH); otherwise, the MV-flag is cleared. Note that if the MV-flag indicates

an arithmetic overflow, the result of the integer addition, integer subtraction, or

accumulation is not valid.

2.7.11 The MAC Unit Control Word MCW

This bit addressable register controls the operation of the MAC Unit. It can be accessed

via any instruction capable of addressing an SFR.

MCW

MAC Control Word SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 MP MS 0 0 0 0 0 0 0 0 0

r r r r r rw rw r r r r r r r r r

Field Bits Type Description

MP [10] rw One-bit scaler control

0 Multiplier product shift disabled

1 Multiplier product shift enabled

MS [9] rw Saturation control

0 Saturation disabled

1 Saturation enabled

User Manual

C166S V2

Central Processing Unit

User Manual 2-89 V 1.7, 2001-01

• MS-Control Bit: If the MS mode bit is set, the accumulator will be automatically

saturated to 32 bits. The MAC Unit supports signed saturation.

• MP-Control Bit: If the MP mode bit is set and both multiplier operands are of signed

types, the multiplier output is automatically shifted left by one bit. In the case of a

multiply and accumulate operation, the output of the multiplier is shifted before being

added to the accumulator.

2.8 Dedicated CSFRs

The Constant Zeros Register ZEROS

All bits of this bit addressable register are fixed to 0 by hardware. This register is read-

only. Register ZEROS can be used as a register-addressable constant of all zeros for bit

manipulation or mask generation. It can be accessed via any instruction which is capable

of accessing an SFR.

ZEROS

Constant Zeros Register SFRb Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r r r r r r r r r r r r r r r r

Field Bits Type Description

0 [all] r Fixed to Zero

User Manual

C166S V2

Central Processing Unit

User Manual 2-90 V 1.7, 2001-01

The Constant Ones Register ONES

All bits of this bit addressable register are fixed to 1 by hardware. This register is read-

only. Register ONES can be used as a register-addressable constant of all ones for bit

manipulation or mask generation. It can be accessed via any instruction capable of

accessing an SFR.

CPU Identification Register CPUID

This 16-bit register contains the module and revision number of the implemented

C166S V2 core module.

ONES

Constant Ones Register SFRb Reset Value: FFFFH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r r r r r r r r r r r r r r r r

Field Bits Type Description

1 [all] r Fixed to One

CPUID

CPU Identification Register ESFR Reset Value: 03??H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODULE NUMBER VERSION NUMBER

r r

Field Bits Type Description

MODULE NUMBER [15:8] r Module Number

03H C166S V2 core module number

VERSION NUMBER [7:0] r Version Number

Version Number

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-91 V 1.7, 2001-01

3 C166S V2 Memory Organization

The memory space of the C166S V2 CPU is configured in a “Von Neumann”

architecture. This means that code and data are accessed within the same linear

address space. All of the physically separated memory areas, including internal ROM/

Flash/DRAM (if integrated into a specific derivative), internal RAM, internal Special

Function Register Areas (SFRs and ESFRs), and external memory are mapped into a

single common address space.

The C166S V2 CPU provides a total addressable memory space of 16 MBytes. This

address space is arranged as 256 segments of 64 KBytes each. Each segment is again

subdivided into four data pages of 16 KBytes each (see Figure 3-1).

Most internal memory areas are mirrored into the system segment, segment 0. The

upper 4 KBytes of segment 0 (00’F000H...00’FFFFH) hold the Special Function Register

Areas (SFR and ESFR) and the DPRAM areas.

Data may be stored in any part of the internal memory areas. Code may be stored in any

part of the internal memory areas except the SFR blocks, the DPRAM, and Internal

SRAM and internal IO area as these areas may be used for control/data, but not for

instructions.

The 64 KByte memory area of segment 191 (BF’0000H...BF’FFFFH) cannot be used to

store code and data. It is reserved for “on chip” boot and debug/monitor program

memories.

Accesses to internal memory areas on devices without the appropriate internal

memories will produce unpredictable results.

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-92 V 1.7, 2001-01

00’4000H

00’8000H

00’C000H

Data Page 0

Data Page 1

Data Page 2

Data Page 3

00’F000H

00’FFFFH

RAM /
SFR

System Segment 0
64KByte

16MByte

Data Page 1023Segment

255

Segment

1

Segment

0

00´0000H

01´0000H

02´0000H

FF´FFFFH

Data Page 3

Data Page 0

FF´0000H

External
Memory

00´0000H

internal-IO
Area

Internal
SRAM

00’E000H

Segment

64

40´0000H

41´0000H

Segment

32

20´0000H

21´0000H

Figure 3-1 Memory Areas and Address Space

Internal
SRAM

Segment

2

03´0000H

~
2
 M

B
y
te

4

M
B

y
te

 i
n

t.
 p

ro
g

ra
m

 m
e

m
o
ry

 e
x
t.
 I
O

2
M

B
y
te

 e
x
t.
 m

e
m

o
ry

Segment

191

BF´0000H

C0´0000H

8
M

B
y
te

e
x
t.

 m
e
m

o
ry

reserved

...

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-93 V 1.7, 2001-01

3.1 Data Organization in Memory

Bytes are stored at even or odd byte addresses. Words are stored in ascending memory

locations with the low byte at an even byte address followed by the high byte at the next

odd byte address. Instruction double words are stored in ascending memory locations

as two subsequent words, without any restrictions (non aligned). Single bits are always

stored in the specified bit position at a word address. The memory and registers store

data and instructions in little endian byte order (the least significant bytes are at lower

addresses) The byte ordering is illustrated in Figure 3-2. Bit position 0 is the least

significant bit of the byte at an even byte address, and bit position 15 is the most

significant bit of the byte at the next odd byte address. Bit addressing is supported for a

part of the Special Function Registers, a part of the internal RAM, and for the General

Purpose Registers.

Note: Byte units forming a single word must always be stored within the same physical
(internal, external, ROM, RAM) and organizational (page, segment) memory area.

3.2 Internal Program Memory

The C166S V2 CPU reserves an address area of 4 MBytes for Internal Program

Memory. The internal memory can be ROM, SRAM, Flash or DRAM. Devices with

Figure 3-2 Storage of Words, Bytes and Bits in a Byte Organized Memory

º

Double Word (Low Byte)

Double Word (Second)

Double Word (Third)

Double Word (High)

Word (Low Byte)

Word (High Byte)

Byte

Byte

067

1 1 8... Bits ...

... Bits ...

º

xxxx’xxxFH

xxxx’xxx0H

xxxx’xxx1H

xxxx’xxx2H

xxxx’xxx3H

xxxx’xxx4H

xxxx’xxx5H

xxxx’xxx6H

xxxx’xxx7H

xxxx’xxx8H

xxxx’xxx9H

xxxx’xxxAH

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-94 V 1.7, 2001-01

Internal Program Memory expand the Internal Program Memory area from the beginning

of segment 192, i.e. starting at address C0’0000H.

The Internal Program Memory can be used for both code (instructions) and data

(constants, tables, etc.) storage.

Code fetches are always made on even word addresses. The highest possible code

storage location in the Internal Program Memory is either xx’xxFEH for single word

instructions, or xx’xxFCH, for double word instructions.

Any word and byte data read access may use the indirect or long 16-bit addressing mode.

There is no short addressing mode for Internal Program Memory operands. Any word

data access is made to an even byte address. Any double word access is made to a

modulo 4 address (even word address). The highest possible word data storage location

in the Internal Program Memory is xxxx’xxFEH, the highest double word location

xxxx’xxFCH.

The Internal Program Memory is not provided for single bit storage, and therefore is not

bit addressable.

Note: The ‘x’ in the locations above depend on the available Internal Program Memory.

3.3 DPRAM, Internal SRAM, and SFR Areas

The C166S V2 CPU differentiates between various internal memory types and internal

peripheral areas. These data memories and the IO/SFR areas are located within data

page 3 and provide fast accesses using one dedicated Data Page Pointer (see Figure 3-

3).

Note: Code access is not possible from the DPRAM, the Internal RAM, or the IO/SFR

areas.

3.3.1 Data Memories

Two dedicated volatile memories are available for data storage:

• The DPRAM can be used for:

– General Purpose Register Banks (GPRs)

– Variable and other data storage, especially for MAC operands

– System Stack (not recommended if Internal SRAM is integrated)

• The Internal SRAM can be used for:

– Variable and other data storage

– System Stack (recommended if Internal SRAM is integrated)

A 3 kByte memory area (00‘F200H...000’FE00H) is reserved for the DPRAM. The upper

256 Bytes of the DPRAM (00’FD00H...00’FDFFH) and the GPRs of the current bank are

provided for single bit storage, and thus are bit addressable (see shaded blocks in

Figure 3-3). Any word or byte data in the DPRAM can be accessed via indirect or long

16-bit addressing modes, if the selected DPP register points to data page 3. Any word

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-95 V 1.7, 2001-01

data access is made on an even byte address. The highest possible word data storage

location in the DPRAM is 0000’FDFEH.

A 24 kByte memory area (00‘8000H...000’DFFFH) is reserved for the Internal SRAM. Any

word and byte data in the Internal SRAM can be accessed via indirect or long 16-bit

addressing modes, if the selected DPP register points to data page 3 or data page 2. Any

word data access is made on an even byte address. The highest possible word data

storage location in the Internal SRAM is 0000’DFFEH.

00’4000H

00’8000H

00’C000H

Data Page 0

Data Page 1

Data Page 2

Data Page 3

00’F000H

System Segment 0
64KByte

External
Memory

00´0000H

00’E000H 00’FE00H

00’F200H

00’F000H

00’FD00H

internal
IO

Intenal
SRAM

Intenal
SRAM

IO
Area

RAM/SFR
Area

DPRAM

DPRAM

SFR
Area

ESFR
Area

Figure 3-3 RAM and SFR Areas

00’FFFFH 00’FFFFH

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-96 V 1.7, 2001-01

3.3.2 Special Function Register Areas

The functions of the CPU, the bus interface, the IO ports, and the on-chip peripherals of

the C166S V2 device are controlled via a number of so-called Special Function

Registers (SFRs). These SFRs are arranged within two areas of 512 Bytes each. The

first register block, the SFR area, is located in the 512 Bytes above the DPRAM

(00’FE00H...00’FFFFH). The second register block, the Extended SFR (ESFR) area, is

located in the 512 Bytes below the DPRAM (00’F000H...00’F1FFH).

Special Function Registers can be addressed via indirect and long 16-bit addressing

modes. Using an 8-bit offset together with an implicit base address allows word SFRs

and their respective low bytes to be addressed. However, this does not work for the

respective high bytes!

Note: High byte access of SFRs using the 8-bit offset addressing mode is not possible.

Note: Writing to any byte of an SFR causes the non-addressed complementary byte to

be cleared!

Note: GPRs can be accessed using the 8-bit offset addressing mode, but they are not

mapped into the SFR and ESFR memory area. an internal peripheral bus access

is executed using the respective long address instead of a GPR access.

The upper half of each register block (except the 16 highest words, refer to Section 2.5.1

) is bit-addressable, so the respective control/status bits can be directly modified or

checked using bit addressing.

When accessing registers in the ESFR area using 8-bit addresses or direct bit

addressing, the Extend Register (EXTR) instruction is required to switch the short

addressing mechanism from the standard SFR area to the Extended SFR area before

accessing registers in the ESFR area. This is not required for 16-bit and indirect

addresses. GPRs R15...R0 are duplicated, i.e. they are accessible within both register

blocks via short 2-, 4- or 8-bit addresses without switching.

Example:

EXTR #4 ;Switch to ESFR area for the next four instructions

MOV ODP2, #data16 ;ODP2 (ESFR register) uses 8-bit register addressing

BFLDL DP6, #mask, #data8;DP6 (ESFR register) bit addressing for bit fields

BSET DP6.7 ;DP6 (ESFR register) bit addressing for single bits

MOV T8REL, R1 ;T8REL uses 16-bit address, R1 is duplicatedº

;...and also accessible via the ESFR mode

;(EXTR is not required for this access)

;------- ;------------------- ;The scope of the EXTR #4 instruction ends here!

MOV T8REL, R1 ;T8REL uses 16-bit address, R1 is duplicatedº

;...and does not require switching

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-97 V 1.7, 2001-01

To minimize the switching of SFR banks, the ESFR area contains registers that are

mainly required for initialization and mode selection. Registers that need to be accessed

frequently are allocated to the standard SFR area wherever possible.

Note: The tools are equipped to monitor accesses to the ESFR area and will

automatically insert EXTR instructions, switch the SFR bank address, or issue a

warning in case of missing or excessive EXTR instructions.

3.3.3 IO Area

Some parts of the C166S V2 CPU memory area are marked as IO. These memory areas

have the following special properties:

– Accesses are not buffered and cached

The write back buffers and caches of the C166S V2 CPU are not used to store IO

read and write accesses.

– Special handling of destructive reads

The pipeline of the C166S V2 CPU allows speculative reads. Memory locations of

the IO area are not read until all speculations are solved. Destructive read accesses

are delayed.

– Write before read execution

The pipeline length of the C166S V2 CPU enables a read instruction to read a

memory location before a preceding write instruction has executed its write access.

Data forwarding guarantees the correct instruction flow execution. In case of an IO

read access, the read access will be delayed until all IO writes pending in the

pipeline are executed. In case of a write access, peripherals will change their

internal states. Write accesses must actually be executed before the next read

access is initiated.

Note: The bit manipulation instructions (BSET, BCLR...) use the read-modify-write

approach. The IO read access of this instructions will be stalled until all IO write
accesses are finished.

The following memory areas are marked as IO:

– 2 Mbytes of external IO located to 20’0000H to 3F’FFFFH

– SFR and ESFR areas located from 00’FE00H to 00’FFFFH and from 00’F000H to

00’F1FFH respectively

– 4 kByte internal IO located from 00’E000H to 00’EFFFH

Note: All external IO areas support real byte accesses. All internal IO areas do not

support real byte transfers. For more details on the exception of (E)SFR areas

refer to Section 3.3.2.

3.3.4 PEC Source and Destination Pointers

The source and destination pointers for data transfers on the PEC channels are located

in the 4-kByte internal IO area. Each channel uses a pair of pointers stored in two

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-98 V 1.7, 2001-01

subsequent word registers, with the source pointer (SRCPx) on the lower and the

destination pointer (DSTPx) on the higher word address (x = channel number). The PEC

registers are part of the PEC itself and are addressed via the internal peripheral bus.

In contrast to the C166 family, the pointers are not located in the internal RAM. The

pointers are located in the 4 kByte internal IO.

If a PEC channel is not used, the corresponding pointer locations are not available and

cannot be used for word and byte storage.

Writing to any byte of the PEC pointers does cause the non-addressed complementary

byte to be cleared!

For more detail about use of the source and destination pointers for PEC data transfer,

see the “Interrupt and Exception Execution” section.

3.4 External Memory Space

The C166S V2 CPU is capable of using an address space of up to 16 MBytes. Only

portions of this address space are occupied by internal memory areas. All addresses not

used for on-chip memory or for registers may reference external memory locations. This

external memory is accessed via the external bus interface. This interface may further

limit the amount of addressable external memory.

External word and byte data can be accessed only via indirect or long 16-bit addressing

modes using one of the four DPP registers. There is no short addressing mode for

external operands. Any word data access is made to an even byte address and double

word accesses to modulo 4 byte addresses (even word address).

The external memory is not provided for single bit storage and therefore is not bit

addressable.

3.4.1 Boot and Debug/Monitor Program Memories

The 64 KByte memory area of segment 191 (BF’0000H...BF’FFFFH) is reserved for boot

and debug/monitor program memories. These “on chip” memories are accessed using

the EBC and are a part of the EBC‘s external memory space. Accesses are not visible

at the port pins of the EBC even if these memories are part of the external memory

space. During normal code execution, this segment is not accessible for the C166S V2

CPU. In case of a read access, the EBC will deliver the predefined 0000H value and write

access will not be executed. Only in special boot and emulation modes can the

memories of segment 191 be accessed.

Note: Segment 191 (BF’0000H...BF’FFFFH) is not usable for the system application.

External memories and peripherals located in this segment will never be
accessed.

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-99 V 1.7, 2001-01

3.5 Crossing Memory Boundaries

The address space of the C166S V2 CPU is implicitly divided into logical memory areas

and equally sized blocks of different granularity. Crossing the boundaries between these

areas or blocks (code or data) requires special attention to ensure that the controller

executes the desired operations.

Memory Areas are partitions of the address space that represent different kinds of

memory (if provided at all). These memory areas are the internal RAM areas, the internal

IO areas, the internal Program Memories (if available), and the external memory.

Accessing subsequent data locations that belong to different memory areas is not fully

supported and may therefore lead to erroneous results. There is no problem if the

memory boundaries are word aligned. However, when executing code, the different

memory areas (Internal Program Memory areas and external memory) must be switched

explicitly via branch instructions. Sequential boundary crossing is not supported and may

leads to erroneous results.

Segments are contiguous blocks of 64 KBytes each. They are referenced via the Code

Segment Pointer (CSP) for code fetches and via an explicit segment number for data

accesses overriding the standard DPP scheme.

During code fetching, segments are not changed automatically, but rather must be

switched explicitly. The instructions JMPS, CALLS, and RETS will do this. Larger

sequential programs make sure that the highest used code location of a segment

contains an unconditional branch instruction to the respective following segment, to

prevent the prefetcher from trying to leave the current segment.

Data Pages are contiguous blocks of 16 KBytes each. They are referenced via the data

page pointers DPP3...0 and via an explicit data page number for data accesses

overriding the standard DPP scheme. Each DPP register can select one of the possible

1024 data pages. The DPP register that is used for the current access is selected via the

two upper bits of the 16-bit data address. Subsequent 16-bit data addresses that cross

the 16 KByte data page boundaries will use different data page pointers, while the

physical locations need not be subsequent within memory.

3.6 System Stack

The system stack may be defined within the internal RAM, but can be also located

externally. The size of the system stack is limited to 64 kBytes and must be located in

one segment. For all system stack operations, the stack memory is accessed via a 24 bit

stack pointer. The Stack Pointer register (SP) represents the low order 16 bits of the

24 bit stack pointer, also referred to as Stack Pointer Offset. The Stack Segment Pointer

(SPSEG) represents the high order 8 bits of the stack pointer, also referred to as Stack

Segment.

The system stack implementation in the C166S V2 CPU is from high to low memory. The

system stack grows downward as it is filled. The SP register is decremented first each

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-100 V 1.7, 2001-01

time data is pushed on the system stack, and incremented after each time the data is

pulled from the system stack. Only word accesses are supported to the system stack.

The 24 bit stack pointer points to the address of the latest system stack entry, rather than

to the next available system stack address.

A stack overflow (STKOV) register and a Stack Underflow (STKUN) register are

provided to control the lower and upper limits of the selected stack area. These two stack

boundary registers can be used for protection against data destruction.

3.6.1 Data Organization in Global General Purpose Registers

The C166S V2 CPU differentiates between global memory mapped General Purpose

Register (GPR) banks and local not mapped GPR banks. In addition to the memory

mapped register banks, the C166S V2 CPU has two local not memory mapped GPR

register banks for very fast context switching (see Section 2.4).

Note: The local GPR banks are not memory mapped and the GPRs cannot be accessed

using a long or indirect memory address.

The C166S V2 CPU supports register bank (context) switching. Multiple global memory

mapped register banks can physically exist within the DPRAM at the same time;

however, only the global register bank selected by the Context Pointer register (CP) is

active at a given time. Selecting a new active global register bank is done by simply

updating the CP register.

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-101 V 1.7, 2001-01

Mapping of the global General Purpose Registers to DPRAM Addresses is shown here:

A particular Switch Context (SCXT) instruction performs register bank switching and an

automatic save of the previous context. The number of implemented register banks

(arbitrary sizes) is limited only by the size of the available DPRAM.

The memory mapped GPRs use a block of sixteen consecutive words within DPRAM

Segment 0. The Context Pointer (CP) register determines the base address of the

currently active register bank. This register bank may consist of up to sixteen word GPRs

(R0, R1, .. R15), and/or of up to sixteen byte GPRs (RL0, RH0, º, RL7, RH7). The sixteen

byte GPRs are mapped onto the first eight word GPRs (see table above).

In contrast to the system stack, a register bank grows from lower towards higher address

locations and occupies a maximum space of 32 bytes. The GPRs are accessed via short

2-, 4- or 8-bit addressing modes using the Context Pointer (CP) register as base address

(independent of the current DPP register contents). Additionally, each bit in the currently

active register bank can be accessed individually.

DPRAM Address Byte Registers Word Register

<CP> + 1EH --- R15

<CP> + 1CH --- R14

<CP> + 1AH --- R13

<CP> + 18H --- R12

<CP> + 16H --- R11

<CP> + 14H --- R10

<CP> + 12H --- R9

<CP> + 10H --- R8

<CP> + 0EH RH7RL7 R7

<CP> + 0CH RH6RL6 R6

<CP> + 0AH RH5RL5 R5

<CP> + 08H RH4RL4 R4

<CP> + 06H RH3RL3 R3

<CP> + 04H RH2RL2 R2

<CP> + 02H RH1RL1 R1

<CP> + 00H RH0RL0 R0

User Manual

C166S V2

C166S V2 Memory Organization

User Manual 3-102 V 1.7, 2001-01

User Manual

C166S V2

Instruction Pipeline

User Manual 4-103 V 1.7, 2001-01

4 Instruction Pipeline

The pipeline of the C166S V2 CPU has seven stages. Each stage processes its

individual task. The first two stages form the instruction fetch pipeline and the remaining

five stages constitute the instruction processing pipeline. The instruction fetch pipeline is

used to pre-fetch instructions and to store them into an instruction FIFO. The

preprocessing of branch instructions in combination with the instruction FIFO allows

filling of the execution pipeline with a continuous flow of instructions. In the case of an

incorrectly predicted instruction flow, the instruction fetch pipeline is bypassed to reduce

the number of dead cycles. All instructions must pass through each of the five stages of

the instruction processing pipeline regardless of the need of some stages to complete

an execution of certain instructions. The following illustrates the pipeline stages

operation.

1st -> PREFETCH:

This stage pre-fetches instructions from the PMU in the predicted order. The instructions

are pre-processed in the branch detection unit to detect branches. The prediction logic

decides if the branches are assumed to be taken or not.

2st -> FETCH:

The instruction pointer of the next instruction to be fetched is calculated according to the

branch prediction rules. For zero-cycle branch execution, the Branch Folding Unit pre-

processes and combines detected branches with the preceding instructions. Pre-fetched

instructions are stored in the instruction FIFO. At the same time, instructions are

transported out of the instruction FIFO to be executed in the instruction processing

pipeline.

3st -> DECODE:

The instructions are decoded and, if required, the register file is accessed to read the

GPR used in indirect addressing modes.

4st -> ADDRESS:

All the operand addresses are calculated. The SP register is de/incremented for all

instructions which implicitly access the system stack.

5st -> MEMORY:

All the required operands are fetched.

6st -> EXECUTE:

An ALU or MAC-Unit operation is performed on the previously fetched operands. The

Condition flags are updated. All explicit write operations to CPU-SFR registers and all

auto-in/decrement operations of GPRs used as indirect address pointers are performed.

7st -> WRITE BACK:

User Manual

C166S V2

Instruction Pipeline

User Manual 4-104 V 1.7, 2001-01

All external operands and the remaining operands within the internal DPRAM space are

written back. Operands located in the internal SRAM are buffered in the Write Back

Buffer.

There are C166S V2 CPU-specific so-called injected instructions. These instructions are

generated internally by the machine to provide the time needed to process instructions

requiring more than one CPU cycle for processing. They are automatically injected into

the decode stage of the pipeline, then they pass through the remaining stages like every

standard instruction. Program interrupt, PEC transfer, and OCE operations are also

performed by means of injected instructions. Although these internally injected

instructions will not be noticed in reality, they are introduced here to ease the explanation

of the pipeline operation.

Because up to five different instructions are processed simultaneously, additional

hardware has been dedicated in the C166S V2 CPU to deal with dependencies which

may exist between instructions in different pipeline stages. This extra hardware supports

’forwarding’ of the operand read and write values and resolves most of the possible

conflicts—such as multiple usage of buses—in a time optimized way without

performance loss. This makes the pipeline unnoticeable for the user in most cases.

However, there are some rare cases in which the C166S V2 CPU pipeline requires

attention by the programmer. In these cases, the delays caused by the pipeline conflicts

can be used for other instructions to optimize performance.

Note: The C166S V2 CPU has a fully interlocked pipeline. Instruction re-ordering is only

required for performance reasons.

The following examples describe the pipeline behavior in special cases and give

principle rules to improve the performance by re-ordering the execution of instructions.

4.1 Instruction Dependencies in Different Pipeline Stages

Bandwidth limitations and data dependencies between instructions can dramatically

decrease the performance of CPUs. The C166S V2 CPU has dedicated hardware to

detect and to resolve different kind of dependencies. Some of those dependencies are

described in the following section.

4.1.1 The General Purpose Registers

The GPRs are the working registers of the C166S V2 CPU and there are a lot of possible

dependencies between instructions using GPRs. A high speed five port register file

prevents bandwidth conflicts. The dedicated hardware is implemented to detect and

resolve the data dependencies. Special forwarding busses are used to forward GPR

values from one pipeline stage to another. This allows the execution of instructions

without any delay despite of data dependencies.

In ADD R0,R1

In+1 ADD R3,R0

User Manual

C166S V2

Instruction Pipeline

User Manual 4-105 V 1.7, 2001-01

In+2 ADD R6,R0

In+3 ADD R6,R1

In+4

.

Only in the case in which a GPR is updated in the ALU and then directly used in one of

the following instructions as an address pointer will the detection unit force the pipeline

to stall. None of the instructions using indirect addressing modes are capable of

using a GPR, which is to be updated by one of the two immediately preceding

instructions. The new value of the GPR is calculated in the execute stage, while the

instruction using an indirect addressing mode accesses the GPR already in the Decode

Stage. The instruction is stalled in the address stage until the operation in the ALU is

executed and the result is forwarded to the address stage.

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
ADD R0,R1

In+1=
ADD R3,R0

In+2=
ADD R6,R0

In+3=
ADD R6,R1

In+4 In+5

ADDRESS In-1 In=
ADD R0,R1

In+1=
ADD R3,R0

In+2=
ADD R6,R0

In+3=
ADD R6,R1

In+4

MEMORY In-2 In-1 In=
ADD R0,R1

In+1=
ADD R3,R0

In+2=
ADD R6,R0

In+3=
ADD R6,R1

EXECUTE In-3 In-2 In-1 In=
ADD R0,R1

In+1=
ADD R3,R0

In+2=
ADD R6,R0

WRITE BACK In-4 In-3 In-2 In-1 In=
ADD R0,R1

In+1=
ADD R3,R0

User Manual

C166S V2

Instruction Pipeline

User Manual 4-106 V 1.7, 2001-01

In-1

In ADD R0,R1

In+1 MOV R3,[R0]

In+2 ADD R6,R0

In+3 ADD R6,R1

In+4

To avoid stalls, one multicycle or two single cycle instructions may be inserted. These

instructions must not update the GPR used for indirect addressing.

In-1

In ADD R0,R1

In+1 ADD R6,R0

In+2 ADD R6,R1

In+3 MOV R3,[R0]

In+4

4.1.2 Indirect Addressing Modes

In the case of read accesses using indirect addressing modes, the Address Generation

Unit uses a speculative addressing mechanism. The read data path to one of the

different memory areas (DPRAM, Internal SRAM, etc.) is selected according to a history

table before the address is decoded. This history table has one entry for each of the

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
ADD R0,R1

In+1=
MOV R3,[R0]

In+2 In+2 In+2 In+3

ADDRESS In-1 In=
ADD R0,R1

In+1=
MOV R3,[R0]

In+1=
MOV R3,[R0]

In+1=
MOV R3,[R0]

In+2

MEMORY In-2 In-1 In=
ADD R0,R1

In+1=
MOV R3,[R0]

EXECUTE In-3 In-2 In-1 In=
ADD R0,R1

WRITE BACK In-4 In-3 In-2 In-1 In=
ADD R0,R1

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
ADD R0,R1

In+1=
ADD R6,R0

In+2=
ADD R6,R1

In+3=
MOV R3,[R0]

In+4 In+5

ADDRESS In-1 In=
ADD R0,R1

In+1=
ADD R6,R0

In+2=
ADD R6,R1

In+3=
MOV R3,[R0]

In+4

MEMORY In-2 In-1 In=
ADD R0,R1

In+1=
ADD R6,R0

In+2=
ADD R6,R1

In+3=
MOV R3,[R0]

EXECUTE In-3 In-2 In-1 In=
ADD R0,R1

In+1=
ADD R6,R0

In+2=
ADD R6,R1

WRITE BACK In-4 In-3 In-2 In-1 In=
ADD R0,R1

In+1=
ADD R6,R0

User Manual

C166S V2

Instruction Pipeline

User Manual 4-107 V 1.7, 2001-01

GPRs. The entries store the information of the last accessed memory area using the

corresponding GPR. In the case of an incorrect prediction of the memory area, the read

access must be restarted.

It is recommended that the GPR used for indirect addressing point to the same memory

area. If an updated GPR points to a different memory area, the next read operation will

access the wrong memory area. The read access must be repeated, which leads to

pipeline stalls.

In-1........

In ADD R3,[R0] , points to DPRAM

In+1 MOV R0,R4

.....

Ii MOV DPPX,... ,change DPPx

.....

Im ADD R6,[R0] , points to SRAM

Im+1 ADD R6,R1

Im+2

4.1.3 Memory Bandwidth Conflicts

Memory bandwidth conflicts can occur if instructions in the pipeline access the same

memory area at the same time. Special access mechanisms are implemented in the

C166S V2 CPU to minimize conflicts. The internal DPRAM of the C166S V2 CPU has

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
MOV R3,[R0]

In+1=
MOV R0,R4

In+2 In+3 In+4 In+5

ADDRESS In-1 In=
MOV R3,[R0]

In+1=
MOV R0,R4

In+2 In+3 In+4

MEMORY In-2 In-1 In=
MOV R3,[R0]

In+1=
MOV R0,R4

In+2 In+3

EXECUTE In-3 In-2 In-1 In=
MOV R3,[R0]

In+1=
MOV R0,R4

In+2

WRITE BACK In-4 In-3 In-2 In-1 In=
MOV R3,[R0]

In+1=
MOV R0,R4

Tm Tm+1 Tm+2 Tn+3 Tn+4 Tn+5

DECODE Im=
MOV R6,[R0]

Im+1=
ADD R6,R1

Im+1=
ADD R6,R1

Im+2 Im+3 Im+4

ADDRESS Im-1 Im=
MOV R6,[R0]

Im=
MOV R6,[R0]

Im+1=
ADD R6,R1

Im+2 Im+3

MEMORY Im-2 Im-1 Im=
MOV R6,[R0]

Im+1=
ADD R6,R1

Im+2

EXECUTE Im-3 Im-2 Im-1 Im=
MOV R6,[R0]

Im+1=
ADD R6,R1

WRITE BACK Im-4 Im-3 Im-2 Im-1 Im=
MOV R6,[R0]

User Manual

C166S V2

Instruction Pipeline

User Manual 4-108 V 1.7, 2001-01

two independent read/write ports; this allows parallel read and write operation without

delays. Write accesses to the internal SRAM can be buffered in a Write BACK Buffer until

read accesses are finished.

• Bandwidth conflicts in the DPRAM Area

All instructions except the CoXXX instructions can read only one memory operand per

cycle. A conflict between the read and one write access cannot occur because the

DPRAM has two independent read/write ports.

In-1

In ADD op1,R1

In+1 ADD R6,R0

In+2 ADD R6,op2

In+3 MOV R3,[R0]

In+4

Note: Only other pipeline stall conditions can generate a DPRAM bandwidth conflict.

The DPRAM is a synchronous pipelined memory. The read access starts with the

valid addresses on the address stage. The data are delivered in the Memory

stage. If a memory read access is stalled in the Memory stage and the following

instruction on the Address stage tries to start a memory read, the new read access
must be delayed as well. But, this conflict is hidden by an already existing stall of

the pipeline.

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
ADD R6,op2

In+3=
MOV R3,[R0]

In+4 In+5

ADDRESS In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
ADD R6,op2

In+3=
MOV R3,[R0]

In+4

MEMORY In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
ADD R6,op2

In+3=
MOV R3,[R0]

EXECUTE In-3 In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
ADD R6,op2

WRITE BACK In-4 In-3 In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

User Manual

C166S V2

Instruction Pipeline

User Manual 4-109 V 1.7, 2001-01

• Bandwidth conflicts in the DPRAM Area

The CoXXX instructions are the only instructions able to read two memory operands

per cycle. A conflict between the two read and one pending write access can

occur if all three operands are located in the DPRAM areas. This is especially

important for performance in the case of executing a filter routine. One of the operands

should be located in the internal SRAM to guarantee a single cycle execution time of

the CoXXX instructions.

In-1

In ADD op1,R1

In+1 ADD R6,R0

In+2 CoMAC [IDX0],[R0]

In+3 MOV R3,[R0]

In+4

.

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
CoMAC

In+3=
MOV R3,[R0]

In+4 In+4

ADDRESS In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
CoMAC

In+3=
MOV R3,[R0]

In+3=
MOV R3,[R0]

MEMORY In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
CoMAC

In+2=
CoMAC

EXECUTE In-3 In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

WRITE BACK In-4 In-3 In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

User Manual

C166S V2

Instruction Pipeline

User Manual 4-110 V 1.7, 2001-01

• Internal SRAM

The internal SRAM is a single port memory with one read/write port. To reduce the

number of bandwidth conflict cases, a Write Back Buffer is implemented. It has three

entries for buffer data buffering. Only if the buffer is filled and a read and write

accesses occur at the same time, must the read access be stalled while one of

the buffer entries is written back.

In-1

In ADD op1,R1

In+1 ADD R6,R0

In+2 ADD R6,op2

In+3 MOV R3,R2

In+4

.

4.1.4 CPU-SFRs and the Pipeline

CPU-SFRs control the CPU functionality and behavior. Changes and updates of CSFRs

influence the instruction flow in the pipeline. Therefore, special care is required to ensure

that instructions in the pipeline always work with the correct CSFRs values. CSFRs are

updated late on the Executed stage of the pipeline. Meanwhile, without conflict

detection, the instructions in the Decode, Address, and Memory stages would still

work without updated register values. The C166S V2 CPU detects conflict cases and

stalls the pipeline to guarantee a correct execution. For performance reasons, the CPU

differentiates between different classes of CPU-SFRs. The flow of instructions through

the pipeline can be improved by following the given rules used for instruction re-ordering.

There are three classes of CPU-SFRs:

• The harmless CSFRs (CPUID, ONES, ZEROS, MCW) do not generate pipeline

conflict cases. The MCW can be changed without stalling the pipeline. The MCW is

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
ADD R6,op2

In+3=
MOV R3,R2

In+4 In+4

ADDRESS In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
ADD R6,op2

In+3=
MOV R3,R2

In+3=
MOV R3,R2

MEMORY In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

In+2=
ADD R6,op2

In+2=
ADD R6,op2

EXECUTE In-3 In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

WRITE BACK In-4 In-3 In-2 In-1 In=
ADD op1,R1

In+1=
ADD R6,R0

Write Back
Buffer

full full full full full full

User Manual

C166S V2

Instruction Pipeline

User Manual 4-111 V 1.7, 2001-01

updated in the Execute Stage and is not used for control purposes in the previous

stages. CPUID, ONES, and ZEROS are not changeable at all.

In-1

In MOV MCW,#16

In+1 ADD R6,R0

In+2 ADD R6,R1

In+3 MOV R3,[R0]

In+4

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
MOV MCW,#16

In+1=
ADD R6,R0

In+2=
ADD R6,R1

In+3=
MOV R3,[R0]

In+4 In+5

ADDRESS In-1 In=
MOV MCW,#16

In+1=
ADD R6,R0

In+2=
ADD R6,R1

In+3=
MOV R3,[R0]

In+4

MEMORY In-2 In-1 In=
MOV MCW,#16

In+1=
ADD R6,R0

In+2=
ADD R6,R1

In+3=
MOV R3,[R0]

EXECUTE In-3 In-2 In-1 In=
MOV MCW,#16

In+1=
ADD R6,R0

In+2=
ADD R6,R1

WRITE BACK In-4 In-3 In-2 In-1 In=
MOV MCW,#16

In+1=
ADD R6,R0

User Manual

C166S V2

Instruction Pipeline

User Manual 4-112 V 1.7, 2001-01

• The CSFR result registers MDH, MDL, MSW, MAH, MAL, MRW of the ALU and MAC-

Unit are updated late in the Execute stage of the pipeline. If an instruction (except

CoSTORE) accesses explicitly these registers in the memory stage, the value cannot

be forwarded. The instruction must be stalled for one cycle on the Memory stage.

In-1

In MUL R0,R1

In+1 MOV R6,MDL

In+2 ADD R6,R1

In+3 MOV R3,[R0]

In+4

By reordering instructions, the bubble in the pipeline can be filled with an instruction not

using this resource.

In-1

In MUL R0,R1

In+1 MOV R3,[R0]

In+2 MOV R6,MDL

In+3 ADD R6,R1

In+4

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
MUL R0,R1

In+1=
MOV R6,MDL

In+2=
ADD R6,R1

In+3=
MOV R3,[R0]

In+3=
MOV R3,[R0]

In+4

ADDRESS In-1 In=
MUL R0,R1

In+1=
MOV R6,MDL

In+2=
ADD R6,R1

In+2=
ADD R6,R1

In+3=
MOV R3,[R0]

MEMORY In-2 In-1 In=
MUL R0,R1

In+1=
MOV R6,MDL

In+1=
MOV R6,MDL

In+2=
ADD R6,R1

EXECUTE In-3 In-2 In-1 In=
MUL R0,R1

In+1=
MOV R6,MDL

WRITE BACK In-4 In-3 In-2 In-1 In=
MUL R0,R1

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
MUL R0,R1

In+1=
MOV R3,[R0]

In+2=
MOV R6,MDL

In+3=
ADD R6,R1

In+4 In+5

ADDRESS In-1 In=
MUL R0,R1

In+1=
MOV R3,[R0]

In+2=
MOV R6,MDL

In+3=
ADD R6,R1

In+4

MEMORY In-2 In-1 In=
MUL R0,R1

In+1=
MOV R3,[R0]

In+2=
MOV R6,MDL

In+3=
ADD R6,R1

EXECUTE In-3 In-2 In-1 In=
MUL R0,R1

In+1=
MOV R3,[R0]

In+2=
MOV R6,MDL

WRITE BACK In-4 In-3 In-2 In-1 In=
MUL R0,R1

In+1=
MOV R3,[R0]

User Manual

C166S V2

Instruction Pipeline

User Manual 4-113 V 1.7, 2001-01

• The third class are CSFRs which affect the whole CPU or the pipeline before the

Memory stage. The CPU-SFRs CPUCON1, CP, SP, STKUN, STKOV, VECSEG,

TFR, and PSW affect the overall CPU functioning while the C-SFRs IDX0, IDX1, QX1,

QX0, DPP0, DPP1, DPP2 and DPP3 only affect the Decode, Address, and Memory

stage when they are modified explicitly.

If this kind of CSFR has been modified, the pipeline behavior depends on the

instruction and addressing modes used to modify the CSFR.

– In the case of modification of these CSFRs by “POP CSFR” or by instructions using

the reg,#data16 addressing mode, a special mechanism is implemented to improve

performance during the initialization.

For further explanation, the instruction which modifies the CSFR can be called

“instruction_modify_CSFR”. This special case is detected in the Decode stage

when the instruction_modify_CSFR enters the processing pipeline. Further on,

instructions described in the following list are held in the decode stage. All other

instructions are not held.

- Instructions using long addressing mode (mem)

- Instructions using indirect addressing modes ([Rw],]Rw+]......), except JMPI and

CALLI

- ENWDT, DISWDT, EINIT

- All CoXXX instructions

If the CPUCON1, CP, SP, STKUN, STKOV, VECSEG, TFR, or the PSW are

modified and the instruction_modify_CSFR reaches the execute stage, the pipeline

is canceled. The modification affects the entire pipeline and the instruction prefetch.

A clean cancel and restart mechanism is required to guarantee a correct instruction

flow. In case of modification of IDX0, IDX1, QX1, QX0, DPP0, DPP1, DPP2 or

DPP3 only the Decode, Address, and Memory stages are affected and the pipeline

must not be canceled. The modification does not affect the instructions in the

Address, Memory stage because they are not using this resource. Other kinds of

instructions are held in the Decode stage until the CSFR is modified.

The following example shows a case in which the pipeline is stalled. The instruction

MOV R6,R1 after the MOV IDX1,#12 instruction which modifies the CSFR will be

held in Decode Stage until the IDX1 register is updated. The next example shows

an optimized initialization routine.

User Manual

C166S V2

Instruction Pipeline

User Manual 4-114 V 1.7, 2001-01

In-1

In MOV IDX1,#12

In+1 MOV R6,mem

In+2 ADD R6,R1

In+3 MOV R3,[R0]

In+4

In-1

In MOV IDX1,#12

In+1 MOV MAH,#23

In+2 MOV MAL,#25

In+3 MOV R3,#08

In+4

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
MOV IDX1,#12

In+1=
MOV R6,mem

In+1=
MOV R6,mem

In+1=
MOV R6,mem

In+1=
MOV R6,mem

In+2=
ADD R6,R1

ADDRESS In-1 In=
MOV IDX1,#12

In+1=
MOV R6,mem

MEMORY In-2 In-1 In=
MOV IDX1,#12

EXECUTE In-3 In-2 In-1 In=
MOV IDX1,#12

WRITE BACK In-4 In-3 In-2 In-1 In=
MOV IDX1,#12

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE In=
MOV IDX1,#12

In+1=
MOV MAH,#23

In+2=
MOV MAL,#25

In+3=
MOV R3,#08

In+4 In+5

ADDRESS In-1 In=
MOV IDX1,#12

In+1=
MOV MAH,#23

In+2=
MOV MAL,#25

In+3=
MOV R3,#08

In+4

MEMORY In-2 In-1 In=
MOV IDX1,#12

In+1=
MOV MAH,#23

In+2=
MOV MAL,#25

In+3=
MOV R3,#08

EXECUTE In-3 In-2 In-1 In=
MOV IDX1,#12

In+1=
MOV MAH,#23

In+2=
MOV MAL,#25

WRITE BACK In-4 In-3 In-2 In-1 In=
MOV IDX1,#12

In+1=
MOV MAH,#23

User Manual

C166S V2

Instruction Pipeline

User Manual 4-115 V 1.7, 2001-01

– For all the other instructions that modify this kind of CSFR, a simple stall and cancel

mechanism guarantees the correct instruction flow.

A possible explicit write-operation to this kind of CSFRs is detected on the Memory

stage of the pipeline. The following instructions on the Address and Decode Stage

are stalled. If the instruction reaches the execute stage, the entire pipeline and the

Instruction FIFO of the IFU are canceled. The instruction flow is completely re-

started.
In-1

In MOV PSW,R4

In+1 MOV R6,R1

In+2 ADD R6,R1

In+3 MOV R3,[R0]

In+4

Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6

DECODE In+1=
MOV R6,R1

In+2=
ADD R6,R1

In+2=
ADD R6,R1

In+1=
MOV R6,R1

ADDRESS In=
MOV PSW,R4

In+1=
MOV R6,R1

In+1=
MOV R6,R1

MEMORY In-1 In=
MOV PSW,R4

EXECUTE In-2 In-1 In=
MOV PSW,R4

WRITE BACK In-3 In-2 In-1 In=
MOV PSW,R4

User Manual

C166S V2

Instruction Pipeline

User Manual 4-116 V 1.7, 2001-01

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-117 V 1.7, 2001-01

5 Interrupt and Exception Handling

The Interrupt and Exception Handler is responsible for managing all system and core

exceptions. Four kinds of exceptions are executed in a similar manner:

• Interrupts generated by the Interrupt Controller ITC

• DMA transfers issued by the Peripheral Event Controller PEC.

• Software Traps caused by the TRAP instruction

• Hardware Traps issued by faults or specific system states

Normal Interrupt Processing

The CPU temporarily suspends current program execution and branches to an interrupt

service routine to service a device requesting an interrupt. The current program status

(IP and PSW; in segmentation mode, also CSP) is saved in the internal system stack. A

prioritization scheme with sixteen priority levels specifies the order for handling multiple

interrupt requests.

Software and Hardware Traps

Trap functions are activated in response to special conditions that occur during the

execution of instructions. A trap can also be caused externally by the Non-Maskable

Interrupt pin, NMI. Several hardware trap functions are provided to handle erroneous

conditions and exceptions that arise during program execution. Hardware traps always

have the highest priority and cause immediate system response. The software trap

function is invoked by the TRAP instruction that generates a software interrupt for a

specified interrupt vector. For all types of traps, the current program status is saved in

the system stack.

Interrupt Processing via the Peripheral Event Controller (PEC)

A faster alternative to normal interrupt processing uses the C166S V2 CPU's integrated

Peripheral Event Controller (PEC) to service an interrupt requesting device. Triggered

by an interrupt request, the PEC performs a single word or byte data transfer between

any two memory locations. During a PEC transfer, the normal program execution of the

CPU is halted. No internal program status information needs to be saved. The same

prioritization scheme is used for PEC service as for normal interrupt processing.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-118 V 1.7, 2001-01

5.1 Interrupt System and Control

5.1.1 General Interrupt System Structure

The C166S V2 CPU can provide up to 128 separate interrupt nodes that may be

assigned to sixteen interrupt priority levels with four sub-priorities inside each level

(group priority) for up to 64 interrupt nodes or with eight sub-priorities inside each level

(group priority) in the case of more than 64 interrupt nodes. To support modular and

consistent software design techniques, most sources of an interrupt or PEC request are

supplied with separate interrupt control registers and interrupt vectors. The control

register contains an interrupt request flag, an interrupt enable bit, and an interrupt priority

of the associated source. Each source request is activated by one specific event,

determined by the selected operating mode of the requesting device. In some cases,

multi-source interrupt nodes are incorporated for efficient use of system resources.

These nodes can be activated by various source requests.

The C166S V2 CPU provides a vectored interrupt system. This system reserves specific

vector locations in the memory space for the reset, trap, and interrupt service functions.

Whenever a request occurs, the CPU branches to the location associated with the

respective interrupt source. The reserved vector locations build a jump table in the

address space of the C166S V2 CPU.

All pending interrupt requests are arbitrated. The arbitration winner is sent to the CPU

together with its priority level and action request. The CPU triggers the corresponding

action based on the required functionality (normal interrupt, PEC, jump table cache, etc.)

of the arbitration winner.

An action request will be accepted by the CPU if the requesting source has a higher

priority than the current CPU priority level and interrupts are globally enabled. If the

requesting source has a lower (or equal) interrupt level priority than the current CPU

task, it remains pending.

The basic functionality of the interrupt and peripheral event controller can be seen in

Figure 5-1:

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-119 V 1.7, 2001-01

Figure 5-1 Block Diagram of the Interrupt and PEC Controller

Interrupt and Peripheral Event Controller

Interrupt

Request

Lines

irq0

irq1

irq2

irq3

irq n-3

irq n-2

Arbitration

Arbitration

Control

(Interrupt

Control
Registers)

Peripheral

Event

Controller

(PEC)

Arbitr.

Winner

PEC

Control

(PEC

Control
Registers)

irq0IC

irq1IC

irq126IC

PECC0

PECC1

PECC7

PEC Pointer

SRCP0

SRCP1

SRCP7

DSTP0

DSTP1

DSTP7

PECSEG0

PECSEG1

PECSEG7

Interrupt

Handler

Interrupt

Request

EOP

INT
2)

Interrupt

Handler

Control

EOPIC PECISNC

Fast Bank
Switching

BNKSEL0

BNKSEL3

Interrupt Jump

Table Cache

FINT0CSP

FINT0ADDR

FINT1CSP

FINT1ADDR

Injection

Control

(CPU Action

Request)

PEC Request

Interrupt

Request

Request

Control

C166S V2
CPU

In
je

c
tio

n

In
te

rfa
c
e

OCE/

OCDS

End of PEC Interrupt (EOPINT) is connected to interrupt request line irq n-1.

Therefore, only n-1 interrupt lines (irq n-2...0) are available for peripheral request

handling.

2)

Request

Control

OCE

Injection
Request &

Control

irq n-1

1) number of interrupt nodes n (upto 128)

1)

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-120 V 1.7, 2001-01

5.1.2 Interrupt Arbitration

The C166S V2 interrupt arbitration system can handle interrupt requests from up to 128

sources. Interrupt requests may be triggered either by the C166S V2 peripherals or by

external inputs. The “End of PEC” interrupt for supporting enhanced PEC functionality is

connected internally to one interrupt request line.

The arbitration process starts with an enabled interrupt request and stays active as long

as an interrupt request is pending. If nothing is pending, the arbitration logic switches to

the idle state to save power.

Each interrupt request line is controlled by its interrupt control register xxIC (here and

below ‘xx’ stands for the mnemonic of the respective interrupt source). An interrupt

request event sets the interrupt request flag in the corresponding interrupt control

register (bit xxIC.xxIR). The interrupt request can also be triggered by the software if the

program sets the respective interrupt request bit. This feature is specifically used by

operating systems.

If the request bit has been set and the corresponding interrupt request is enabled by the

interrupt enable bit of the same control register (bit xxIC.xxIE), an arbitration cycle starts

with the next clock cycle. However, if an arbitration cycle is currently in progress, the new

interrupt request will be delayed until the next arbitration cycle. If an interrupt request (or

PEC request) is accepted by the core, the respective interrupt request flag is cleared

automatically.

All interrupt requests pending at the beginning of a new arbitration cycle are considered

simultaneously. Within the arbitration cycle, the arbitration is independent of the actual

request time.

C166S V2 uses a three-stage interrupt prioritization scheme for interrupt arbitration as

shown in Figure 5-2.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-121 V 1.7, 2001-01

Figure 5-2 Interrupt Arbitration

The first arbitration stage compares the priority levels of interrupt request lines. The

priority level of each requestor consists of interrupt priority level and group priority level.

An interrupt priority level is programmed for each interrupt request line by the 4-bit bit

field ILVL of the respective xxIC register. The group priority level is programmed for each

interrupt request line by the 2-bit bit field GLVL—and, in the case of more than 64

interrupt nodes, by the extension bit GPX of the register xxIC. GPX and GLVL combined

form the 3-bit (extended) group priority level XGLVL, controlling up to eight interrupt sub-

priorities within one of the sixteen interrupt levels.

Note: All interrupt request sources that are enabled and programmed to the same

interrupt priority level (ILVL) must have different group priority levels. Otherwise,

an incorrect interrupt vector may be generated.

The second arbitration stage compares the priority of the first stage winner with the

priority of OCDS service requests. C166S V2 OCDS service requests bypass the first

stage of arbitration and go directly to the CPU Action Control Unit. The CPU Action

Control Unit disregards the group priority level of interrupt/PEC requests and deals only

with interrupt priority levels (ILVL). For comparison with an OCDS service request priority

programmed with a 5-bit value, the 4-bit ILVL of the interrupt/PEC request is extended

to a 5-bit value with MSB=0. This means that any OCDS request with MSB=1 will always

Request

Lines
Arbitration

OCDS
or

OCE

CPU

Action
Control

CPU
Arbitration

PSW

PEC/

Interrupt
Handler

Hardware
Traps

CPU

Interrupt

Request
Lines

Interrupt

Arbitration

Stage 1:

Compared 4-bit ILVL+ 2/3-bit XGLVL
priority levels of interrupt sources

(64/128 priority levels)

xxxx (ILVL) +

x.xx (XGLVL)

Stage 2:

4-bit IRQ/PEC priority level
compared with

5-bit OCDS priority level

0xxxx
(ILVL

extended with
0 in MSB)

xxxxx
(OCDS service
request priority

level)

Stage 3:

5-bit request priority level
compared with

4-bit PSW priority level

xxxxx

(request
priority level)

0xxxx
(ILVL. PSW

extended with
0 in MSB)

OCDS break

request

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-122 V 1.7, 2001-01

win the second stage arbitration. However, if there is a OCDS request with MSB=0

conflicting with the same priority interrupt/PEC request, the latter is sent to the CPU.

On the third arbitration stage, the priority level of the second stage winner is compared

with the priority of the current CPU task. An action request will be accepted by the CPU

if the requesting source has a priority level higher than the current CPU priority level (bits

ILVL of the PSW register) and for interrupt and PEC requests if they are globally enabled

by the global interrupt enable flag IEN in PSW. The CPU denies all interrupt/PEC

requests in case of a cleared IEN flag and an injection level between 0 to 15. To compare

with the 5-bit priority level of the second stage winner, the 4-bit ILVL.PSW is extended

to a 5-bit value with MSB=0. This means that any request with MSB=1 will always

interrupt the current CPU task. If the requester has a priority level lower than or equal to

the current CPU task, the request remains pending.

Note: Priority level 0000B is the default level of the CPU. Therefore, a request on

interrupt priority level 0000B will be arbitrated, but the CPU will never accept an

action request on this level. However, every enabled interrupt request (including

all denied interrupt requests as well as priority level 0000B requests) triggers a

CPU wake-up from idle state independent of the setting of the global interrupt
enable bit PSW.IEN.

Both the OCDS break requests and the hardware traps bypass the arbitration scheme

and go directly to the core.

5.1.3 Interrupt Control

All interrupt control registers are organized identically. The lower eight bits of an interrupt

control register contain the complete interrupt control and status information of the

associated source required during one round of prioritization (arbitration cycle). The

upper eight bits of the respective register are reserved. All interrupt control registers are

bit addressable and all bits can be read or written via software. Therefore, each interrupt

source can be programmed or modified with just one instruction. In the case of reading

the interrupt control registers with instructions that operate with word data types, the

upper 7 bits (15...9) will return zeroes. It is recommended to always write zeroes to these

bit positions. The layout of the interrupt control registers shown below is applicable to all

xxIC registers.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-123 V 1.7, 2001-01

The arbitration scheme allows nesting of up to fifteen interrupt service routines of

different priority levels (Level 0 cannot be used; see note above).

Note: To reduce power, the arbitration is stopped when no interrupt request is active.

xxIC

Interrupt Control Register SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 GPX xxIR xxIE ILVL GLVL

r r r r r r r rw rwh rw rw rw

Field Bits Type Description

GPX [8] rw Group Priority Extension

Defines the value of high-order group level bit

xxIR1)

1) Bit xxIR supports bit-protection

[7] rwh Interrupt Request Flag

0 No request pending

1 This source has raised an interrupt request

xxIE [6] rw Interrupt Enable Control Bit

(individually enables/disables a specific source)

0 Interrupt request is disabled

1 Interrupt request is enabled

ILVL [5:2] rw Interrupt Priority Level

FH Highest priority level

... ...

0H Lowest priority level

GLVL [1:0] rw Group Priority Level

3H Highest priority level

... ...

0H Lowest priority level

XGLVL [8],[1:0] Extended Group Priority Level

7H Highest priority level

... ...

0H Lowest priority level

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-124 V 1.7, 2001-01

5.1.4 Interrupt Vector Table

The C166S V2 provides a vectored interrupt system. This system reserves the specific

vector locations in the memory space for the reset, trap, and interrupt service functions.

Whenever a request occurs, the CPU branches to the location associated with the

respective interrupt source. This vector position directly identifies the source causing the

request.

Note: Class B hardware traps all share the same interrupt vector. The status flags in the

Trap Flag Register (TFR) are used to determine which exception caused the trap.

For details, see Section 5.3.

The reserved vector locations are assembled into a vector table located in the address

space of the C166S V2. The vector table contains the appropriate jump instructions that

transfer control to the interrupt or trap service routines. These routines may be located

anywhere within the address space. The location and organization of the vector table is

programmable. The vector table can be located in all segments with exception of the

reserved segment 191. The Vector Segment register VECSEG specifies the segment of

the Vector Table.

The reset value of VECSEG can be configured during system reset or can be set

depending on the particular product. The C166S V2 supports the following reset values:

– Start from Internal Program Memory (C0’0000H)

– Start from Boot memory (BF’0000H)

– Start from external memory (00’0000H)

– Start from a segment specified from the system (xx’0000H)1)

The VECSC bit field of the CPUCON1 register controls the number of word locations

separating two vectors. The space between two vectors can be programmed to 2, 4, 8,

or 16 words.

VECSEG

Vector Segment Pointer bSFR Reset Value: xxxxH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 VECSEG

r r r r r r r r rwh

Field Bits Type Description

VECSEG [7:0] rwh Segment number of the Vector Table

1) The current startup routine does not support this reset configuration.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-125 V 1.7, 2001-01

Each vector location has an offset address to the segment base address of the vector

table. The address can be easily calculated. The segment part is given by the VECSEG

register and the offset is the trap number shifted by the space programmed in the

VECSC bit field.

Note: For a summary of the CPUCON1 register, please refer to Chapter 2.3.6.

5.1.5 Interrupt Jump Table Cache

The mechanism that uses the vector table location as the entry point for the interrupt

service routines can be overwritten by the Interrupt Controller (ITC). For a very fast

interrupt response time, the C166S V2 offers a new feature of the interrupt system—

Interrupt Jump Table Cache (also called “fast interrupt”). The ITC can transfer a 24-bit

vector to the CPU that is used directly as a start address for the service routine. This

feature skips the path through the vector table which normally saves the execution of at

least one branch. Due to the random nature of interrupt requests, execution of these

branches requires several CPU cycles, especially if memories with a high latency are

used, such as DRAMs. Therefore, avoiding the vector table may significantly improve

interrupt response time. However, the number of 24-bit vectors in the ITC is limited.

Fast interrupt is available for two interrupt sources with interrupt priority levels greater

than or equal to 12. The Interrupt Jump Table Cache skips the instruction fetches from

the interrupt vector table and executes a direct jump to the interrupt service routines

entry point. This feature is controlled by a set of two interrupt jump table cache registers

(FINTxCSP, FINTxADDR) for each of the two jump table entries.

Every interrupt jump table cache entry contains an enable bit, an associated arbitration

priority level (ILVL and GLVL), and the 24-bit address of the interrupt service routine.

Note that only the two lower bits of the interrupt priority level are selectable in the

CPUCON1

CPU Control Register SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 VECSC
WDT

CTL

SGT

DIS
INT

SCXT
BP ZCJ

r r r r r r r r r rw rw rw rw rw rw

Field Bits Type Description

VECSC [6:5] rw Scaling factor of Vector Table

00 Space between two vectors is 2 words

01 Space between two vectors is 4 words

10 Space between two vectors is 8 words

11 Space between two vectors is 16 words

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-126 V 1.7, 2001-01

respective control registers. The two upper bits of the interrupt priority level are set to

‘11B’, which limits the allowed interrupt priority level to be greater than or equal to 12.

FINT0CSP

Fast Interrupt Control Register 0 XSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN 0 0 GPX ILVL GLVL SEG

rw r r rw rw rw rw

FINT1CSP

Fast Interrupt Control Register 1 XSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN 0 0 GPX ILVL GLVL SEG

rw r r rw rw rw rw

Field Bits Type Description

EN [15] rw Fast Interrupt Enable

0 The interrupt jump table cache is disabled.

No fast interrupt is used.

1 The interrupt jump table cache is enabled.

A fast interrupt (direct jump to the interrupt

service routine) is used instead of the

normal fetch from the interrupt vector table.

GPX [12] rw Group Priority Extension

This bit enables group extension for fast interrupts.

(hardwired to 0 for fewer than 64 interrupt nodes)

ILVL [11:10] rw Interrupt Priority Level

This bit field selects the lower two bits of the

interrupt priority level associated with this interrupt

jump table cache entry.

Note: The two upper bits of the interrupt priority

level are set to ‘11B’, which ends in an

interrupt priority level greater than or equal
to 12.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-127 V 1.7, 2001-01

5.2 Status and Switch Context Control

5.2.1 Interrupt Control Functions in the PSW

The Processor Status Word (PSW) is functionally divided into two parts: the lower byte

of the PSW represents the arithmetic status of the CPU, the upper byte of the PSW

controls the interrupt system of the C166S V2 CPU.

Note: For a summary of the PSW register, please refer to Section 2.6.6

GLVL [9:8] rw Group Priority Level

This bit field selects the group priority level of the

associated interrupt jump table cache entry.

SEG [7:0] rw Segment Number of Interrupt Service Routine

This bit field specifies address bits 23:16 of the

interrupt service routine´s entry point.

FINT0ADDR

Fast Interrupt Address Register 0 XSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR 0

rw r

FINT1ADDR

Fast Interrupt Address Register 1 XSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR 0

rw r

Field Bits Type Description

ADDR [15:1] rw Address of Interrupt Service Routine

This bit field specifies address bits 15:1 of the

interrupt service routine’s entry point.

0 [0] r Interrupt Service Routine Address Bit 0

LSB of the interrupt service routine’s entry point

address is 0 because of word alignment.

Field Bits Type Description

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-128 V 1.7, 2001-01

CPU Priority ILVL defines the current level for the CPU operation, thus, this bit field

reflects the priority level of the currently executed routine. When the CPU enters an

interrupt service routine this bit field is set to the priority level of the request that is being

serviced. The previous PSW is saved in the system stack before entering interrupt

service routine. To be serviced, any interrupt request must have a higher priority level

than the current CPU priority level. Any request of the same or a lower level will not be

acknowledged.

The current CPU priority level may be adjusted via software to select interrupt request

sources that can be serviced.

PEC transfers do not really interrupt the CPU, but rather “steal” some CPU cycle, so PEC

services do not influence the ILVL field in the PSW.

Hardware traps set the CPU level to the maximum priority (15). Therefore, no interrupt

or PEC requests will be acknowledged while an exception trap service routine is being

executed.

The TRAP instruction does not change the CPU level, so software trap service routines

may be interrupted by higher requests.

Register Bank BANK defines the currently used register bank for the CPU operation.

When the CPU enters an interrupt service routine, this bit field is updated to select the

register bank associated with the serviced request.

PSW

Processor Status Word bSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILVL IEN
HLD

EN
BANK USR1 USR0

MUL

IP
E Z V C N

rwh rw rw rwh rwh rwh r rwh rwh rwh rwh rwh

Field Bits Type Description

ILVL [15:12] rwh CPU Priority Level

0H Lowest Priority

... ...

FH Highest Priority

IEN [11] rw Interrupt/PEC Enable Bit (globally)

0 Interrupt/PEC requests are disabled

1 Interrupt/PEC requests are enabled

BANK [9:8] rwh Reserved for register file bank selection

00 Global register bank

01 Reserved

10 Local register bank 1

11 Local register bank 2

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-129 V 1.7, 2001-01

Note: The TRAP instruction does not change the register bank.

Note: Hardware traps always use the global register bank.

Interrupt Enable bit IEN globally enables or disables interrupts and PEC operations.

When IEN is cleared, no new interrupt requests are accepted by the CPU after IEN was

set to 0. However, requests that have already entered the pipeline will be completed. If

IEN is set to 1, then all interrupt sources are globally enabled.

Note: To generate requests, interrupt sources must be also enabled by the interrupt

enable bits in their associated control register.

Note: Traps are non-maskable and, therefore, are not controlled by the IEN bit.

5.2.2 Saving the Status during Interrupt Service

Before an operating system or ITC can actually service a task switch request or interrupt,

the CPU must save the current task status. The C166S V2 CPU saves the CPU status

(PSW) along with the return address in the system stack. The return address defines the

point at which the execution of the interrupted task is to be resumed after returning from

the service routine. This return address is specified by the Instruction Pointer (IP) and,

in the case of a segmented memory model, also by the Code Segment Pointer (CSP).

Bit SGTDIS in the CPUCON1 register defines which memory model is used and,

therefore, controls how the return address is stored.

In the case of non-segmented mode, the system stack stores PSW first and then IP. In

segmented mode, PSW is followed by CSP and the IP. This order optimizes the use of

the system stack if segmentation is disabled.

The CPU priority field (ILVL in PSW) is updated with the priority of the interrupt request

that is to be serviced, so the CPU now executes on the new level.

The BANK field in the PSW register is changed to select the register bank associated

with the interrupt request. The associations between interrupt requests and register

banks are programmed in the Interrupt Controller (ITC).

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-130 V 1.7, 2001-01

.

Figure 5-3 Task Status Saved on the System Stack

After accepting an interrupt request, the C166S V2 CPU sends an acknowledge to the

ITC that the requested interrupt is being serviced. The vector associated with the

requesting source is loaded into the IP and CSP and the first instruction of the service

routine is fetched. All other CPU resources, such as data page pointers and the context

pointer, are not affected.

When the CPU returns from the interrupt service routine (RETI is executed), the status

information is popped from the system stack in reverse order. The status information

contents depend on the SGTDIS bit value (see Figure 5-3).

5.2.3 Context Switching

An interrupt service routine usually saves all the registers it uses in the stack, and

restores them before returning. The more registers a routine uses, the more time is

wasted by saving and restoring. The C166S V2 CPU allows the complete bank of CPU

registers (GPRs) to be switched, so the service routine executes within its own separate

context. There are two ways to switch a context in the C166S V2 core (for details, see

Section 2.4.3):

1. Switching Context by Changing the Selected Register Banks

Selection of the register bank used in the interrupt task is programmed in the Interrupt

Controller. During the execution of the interrupt entry procedure, the change of the

register bank is automatically executed. After switching to one of the two local register

banks, the service routine may now use its “own registers” directly. This local register

bank is preserved when the service routine is terminated; thus, its contents are

available on the next call.

When switching to the global register bank, the service routine must also switch the

context of the global register bank (see the next section) to get a private set of GPRs.

--

--
--

SP

1. System Stack before

Interrupt Entry

--

IP

PSW

SP

2. System Stack after

Interrupt Entry

(Unsegmented)

IP

CSP

PSW

SP

3. System Stack after

Interrupt Entry

(Segmented)

Status of

Interrupted Task

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-131 V 1.7, 2001-01

2. Switching Context of the Global Register Bank by Changing Context Pointer

The C166S V2 CPU allows the complete global register bank of CPU registers

(GPRs) to be changed with a single instruction; so, the service routine executes within

its own separate context. The instruction “SCXT CP, #New_Bank” pushes the

contents of the context pointer (CP) into the system stack and loads CP with the

immediate value “New_Bank”. The new CP value sets a new global register bank. The

service routine may now use its “own registers”. This global register bank is preserved

when the service routine is terminated; thus, its contents are available for the next call.

Before returning (RETI), the previous CP is simply popped from the system stack;

thus, returning the registers to the original global register bank.

Note: Resources used by the interrupting program must eventually be saved and

restored, such as the DPPs and the registers of the MUL/DIV unit.

There are certain timing restrictions during context switching that are associated
with pipeline behavior. For details, see Section 2.4.3.2.

5.2.4 Fast Bank Switching

The interrupt handler of the C166S V2 CPU supports an additional enhanced feature

(compared to other members of the C166 family) for normal interrupts called Fast Bank

Switching. To speed up interrupt handling, the core can use fast General Purpose

Register (GPR) bank switching for interrupts with an interrupt level greater or equal 12.

For every arbitration priority level with ILVL = ‘15D’-‘12D’ and XGLVL = ‘7D’-‘0D’, the

register bank can be selected via two bits. These bits are located in the two register bank

selection registers BNKSELx (x = 0,..,3). The BNKSEL2 and BNKSEL3 registers are

only implemented in configurations using the GPX extension bit.

Note: The GPRSELx value of the current triggered interrupt is automatically transferred

into the Program Status Word (PSW).

BNKSELx (x = 0... 3)

Register Bank Selection Register x XSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GPRSEL7 GPRSEL6 GPRSEL5 GPRSEL4 GPRSEL3 GPRSEL2 GPRSEL1 GPRSEL0

rw rw rw rw rw rw rw rw

Field Bits Type Description

GPRSELx (x = 0... 7) [x+1:x] rw Register Bank Selection

00 Global register bank

01 Reserved

10 Local register bank 1

11 Local register bank 2

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-132 V 1.7, 2001-01

Table 5-1 identifies the arbitration priority level assignment to the respective bit fields

within the four register bank selection registers:

5.3 Traps

A software trap is initiated by the TRAP instruction. The TRAP instruction can call an

interrupt service routine by its associated vector number. The trap number specified in

the operand field of the trap instruction determines which vector location of the vector

table will be used.

5.3.1 Software Traps

The TRAP instruction is used to cause a software call to an interrupt service routine. The

trap number specified in the operand field of the trap instruction determines which vector

location of the vector table will be used.

Table 5-1 Register Bank Assignment

Interrupt

Priority

Level

(ILVL)

Group

Priority

Level

(XGLVL)

Assigned

GPRSELx

Register

Interrupt

Priority

Level

(ILVL)

Group

Priority

Level

(XGLVL)

Assigned

GPRSELx

Register

15 7 BNKSEL3.GPRSEL7 13 7 BNKSEL2.GPRSEL7

15 6 BNKSEL3.GPRSEL6 13 6 BNKSEL2.GPRSEL6

15 5 BNKSEL3.GPRSEL5 13 5 BNKSEL2.GPRSEL5

15 4 BNKSEL3.GPRSEL4 13 4 BNKSEL2.GPRSEL4

15 3 BNKSEL1.GPRSEL7 13 3 BNKSEL0.GPRSEL7

15 2 BNKSEL1.GPRSEL6 13 2 BNKSEL0.GPRSEL6

15 1 BNKSEL1.GPRSEL5 13 1 BNKSEL0.GPRSEL5

15 0 BNKSEL1.GPRSEL4 13 0 BNKSEL0.GPRSEL4

14 7 BNKSEL3.GPRSEL3 12 7 BNKSEL2.GPRSEL3

14 6 BNKSEL3.GPRSEL2 12 6 BNKSEL2.GPRSEL2

14 5 BNKSEL3.GPRSEL1 12 5 BNKSEL2.GPRSEL1

14 4 BNKSEL3.GPRSEL0 12 4 BNKSEL2.GPRSEL0

14 3 BNKSEL1.GPRSEL3 12 3 BNKSEL0.GPRSEL3

14 2 BNKSEL1.GPRSEL2 12 2 BNKSEL0.GPRSEL2

14 1 BNKSEL1.GPRSEL1 12 1 BNKSEL0.GPRSEL1

14 0 BNKSEL1.GPRSEL0 12 0 BNKSEL0.GPRSEL0

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-133 V 1.7, 2001-01

The TRAP instruction has an effect similar to an interrupt request at the same vector.

PSW, CSP (in segmentation mode), and IP are pushed into the system stack and then

a jump is taken to the specified vector location. When a software trap is executed, the

CSP for the trap service routine is loaded with the value of the VECSEG register. No

Interrupt Request flags are affected by the TRAP instruction. The interrupt service

routine called by a TRAP instruction must be terminated with a RETI (return from

interrupt) instruction to ensure correct operation.

Note: The CPU priority level and the selected register bank in PSW register are not

modified by the TRAP instruction; so, the service routine is executed with the

same priority level as the interrupt task. Therefore, the service routine entered by

the TRAP instruction can be interrupted by other traps or by higher priority

interrupts, unless triggered by a real hardware event. The service routine also

works with an unchanged register bank. If the hardware triggers the same service
routine, register bank can be selected by the ITC and may be different.

5.3.2 Hardware Traps

Hardware Traps are issued by faults or specific system states that occur during runtime

(not identified at compile time). The C166S V2 CPU distinguishes eight different

hardware trap functions. When a hardware trap condition has been detected, the CPU

branches to the trap vector location for the respective trap condition. The instruction

causing the trap event is completed before the trap handling routine is entered.

Hardware traps are not-maskable and always have a priority higher than any other CPU

task. If several hardware trap conditions are detected within the same instruction cycle,

the highest priority trap is serviced. In case of a hardware trap, the injection unit injects

an ITRAP instruction into the pipeline.

The ITRAP instruction performs the following actions:

– Pushes PSW, CSP (in segmented mode) and IP into the System Stack

– Sets CPU level in the PSW register to the highest possible priority level, which

disables all interrupts and DMA transfers

– Selects the global register bank for the trap service routine

– Branches to the trap vector location specified by the trap number of the trap condition

The eight hardware functions of the C166S V2 CPU are divided in two classes: Class A

and Class B.

Class A traps are:

– External Non-Maskable Interrupts NMI

– Stack Overflow

– Stack Underflow

– Software Break

These traps share the same trap priority, but have an individual vector address.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-134 V 1.7, 2001-01

Class B traps are:

– Undefined Opcode

– Parity Fault

– Protection Fault

– Illegal Word Operand Access

The Class B traps share the same interrupt node and interrupt vector. The bit

addressable Trap Flag Register (TFR) allows a trap service routine to identify the trap

that caused the exception.

The Trap Flag Register TFR

Each trap function is indicated by a separate request flag. When a hardware trap occurs,

the corresponding request flag in register TFR is set to 1.

TFR

Trap Flag Register bSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NMI
STK

OF

STK

UF

SOFT

BRK
0 0 0 0

UND

OPC
0 0

PAR

FLT

PRT

FLT

ILL

OPA
0 0

rwh rwh rwh rwh r r r r rwh r r rwh rwh rwh r r

Field Bits Type Description

NMI1) [15] rwh Non maskable interrupt flag

0 No non-maskable interrupt detected

1 Non-maskable interrupt detected

STKOF1) [14] rwh Stack overflow flag

0 No stack overflow event detected

1 Stack overflow event detected

STKUF1) [13] rwh Stack underflow flag

0 No stack underflow event detected

1 Stack underflow event detected

SOFTBRK1) [12] rwh Software Break

0 No software break event detected

1 Software break event detected

UNDOPC1) [7] rwh Undefined Opcode

0 No undefined opcode event detected

1 Undefined opcode event detected

PARFLT1) [4] rwh Parity Fault2)

0 No parity fault event detected

1 Parity fault event detected

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-135 V 1.7, 2001-01

Note: The trap service routine must clear the respective trap flag; otherwise, a new trap
will be requested after exiting the service routine. Setting a trap request flag by

software causes the same effects as if it had been set by hardware.

The reset functions (hardware, software, watchdog) may be also regarded as a type of

trap. Reset functions have the highest priority (trap priority III). Class A traps have the

second highest priority (trap priority II). At the third rank are Class B traps (trap priority I);

thus, a Class A trap can interrupt a Class B trap.

Class A Trap

Class A traps are generated by the high priority system NMI or by special CPU events

such as the software break, a stack overflow, or an underflow event. Class A traps are

PRTFLT1) [3] rwh Protection Fault

0 No protection fault event detected

1 Protection fault event detected

ILLOPA1) [2] rwh Illegal word operand access

0 No illegal word operand access event

detected

1 Illegal word operand access event detected

1) This Bit supports bit-protection

2) Parity fault on instruction fetch interface, usable for memories with parity check.

Table 5-2 Hardware Trap Summary

Exception Condition Trap

Flag

Trap

Vector

Trap

Number

Trap

Priority

Reset Functions:

Hardware Reset

Software Reset

Watchdog Timer Overflow

RESET

RESET

RESET

00H

00H

00H

III

III

III

Class A Hardware Traps:

Non-Maskable Interrupt

Stack Overflow

Stack Underflow

Software Break

NMI

STKOF

STKUF

SOFTBRK

NMITRAP

STOTRAP

STUTRAP

SBRKTRAP

02H

04H

06H

08H

II.3

II.2

II.1

II.0

Class B Hardware Traps:

Undefined Opcode

Parity Fault

Protection Fault

Illegal Word Operand Access

UNDOPC

PARFLT

PRTFLT

ILLOPA

BTRAP

BTRAP

BTRAP

BTRAP

0AH

0AH

0AH

0AH

I

I

I

I

Field Bits Type Description

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-136 V 1.7, 2001-01

not used to indicate hardware failures. After a Class A event, a dedicated service routine

is called to react to the events. Each Class A trap has its own vector location in the vector

table. After finishing the service routine, the instruction flow must be further correctly

executed. This explains why Class A traps cannot interrupt atomic/extend sequences

and I/O accesses in progress. For example, an interrupted extend sequence cannot be

restarted.

All Class A traps are generated in the pipeline during the execution of instructions, with

an exception of NMI, which is an asynchronous external event. It is not possible for two

different instructions in the pipeline to generate traps in the same CPU cycle. Class A

trap events can be generated only during the memory stage of execution. The execution

of instructions which caused a Class A trap event is always completed. In the case of a

Class A trap, the pipeline is directly canceled and the IP of the instruction following the

last executed one is pushed into the stack. In the case of an atomic/extend sequence or

I/O read access in progress, the execution continues till the sequence completion. Upon

completion of the sequence, the IP of the instruction following the last one executed is

pushed into the stack. Therefore, in the case of a Class A trap, the stack always contains

the IP of the first not-executed instruction in the instruction flow.

Note: The Branch Folding Unit allows an execution of branch instructions in parallel with

the preceding instruction. The pre-processed branch instruction is combined with

the preceding instruction. The branch is executed together with the instruction

which caused the Class A trap. The IP of the first following not-executed

instruction in the instruction flow is then pushed on the stack.

If more than one Class A trap occurs at a same time, they are prioritized internally. The

NMI trap has the highest priority and the software break has the lowest.

Note: In the case of two different Class A traps occurring simultaneously, both trap flags
are set. The IP of the instruction following the last one executed is pushed into the

stack. The trap with the higher priority is executed. After return from the service

routine, the IP is popped from the stack and immediately pushed again because

of the other pending Class A trap (unless the trap related to the second trap flag

in TFR has been cleared by the first trap service routine).

Class B Trap

Class B traps are generated by unrecoverable hardware failures. In the case of a

hardware failure, the CPU must immediately start a failure service routine. Class B traps

can interrupt an atomic/extend sequence and an I/O read access. After finishing the

Class B service routine, a restoration of the interrupted instruction flow is not possible.

All Class B traps have the same priority (trap priority I). When several Class B traps

become active at the same time, the corresponding flags in the TFR register are set and

the trap service routine is entered. Because all Class B traps have the same vector, the

priority of service of simultaneously occurring Class B traps is determined by the

software in the trap service routine.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-137 V 1.7, 2001-01

The Parity Fault is an asynchronous external event while all other Class B traps are

generated in the pipeline during the execution of instructions. It is not possible for two

different instructions in the pipeline to generate Class A and Class B traps in the same

CPU cycle. Class B trap events can be generated only during memory stage execution.

Instructions which caused a Class B trap event are always executed. In the case of a

class B trap, the pipeline is directly canceled and the IP of the instruction following the

one which caused the trap is pushed on the stack. Therefore, the stack always contains

the IP of the first following not-executed instruction in the instruction flow.

Note: The Branch Folding Unit allows the execution of branch instructions in parallel with

the preceding instruction. The pre-processed branch instruction is combined with
the preceding instruction. The branch is executed together with the instruction

causing the Class B trap. The IP of the first following not-executed instruction in

the instruction flow is pushed into the stack.

During execution of a Class A trap service routine, any Class B trap will not be serviced

until the Class A trap service routine is exited with a RETI instruction. In this case, the

Class B trap condition is stored in the TFR register, but the IP value of the instruction

which caused this trap will be lost.

Note: If a Class A trap occurs simultaneously with a Class B trap, both trap flags are set.

The IP of the instruction following the one which caused the trap is pushed into the
stack, and the Class A trap is executed. If this occurs during execution of an

atomic/extend sequence or I/O read access in progress, then the presence of the

Class B trap breaks the protection of atomic/extend operations and the class A

trap will be executed immediately without waiting for the sequence completion.

After return from the service routine, the IP is popped from the system stack and

immediately pushed again because of the other pending Class B trap. In this
situation, the restoration of the interrupted instruction flow is not possible.

• External NMI Trap: Whenever a high to low transition on the dedicated external NMI

pin (Non-Maskable Interrupt) is detected, the NMI flag in register TFR is set and the

CPU will enter the NMI trap routine.

• Stack Overflow Trap: Whenever the stack pointer is implicitly decremented and the

stack pointer is equal to the value in the stack overflow register STKOV, the STKOF

flag in register TFR is set and the CPU will enter the stack overflow trap routine.

• Stack Underflow Trap: Whenever the stack pointer is implicitly incremented and the

stack pointer is equal to the value in the stack underflow register STKUN, the STKUF

flag is set in register TFR, and the CPU will enter the stack underflow trap routine.

• Software Break Trap: When the instruction currently being executed by the CPU is

a SBRK instruction, the SOFTBRK flag is set in register TFR and the CPU enters the

software break debug routine. The flag generation of the software break instruction

can be disabled by an On-chip Emulation Module. In this case, the instruction only

breaks the instruction flow and signals this event to the debugger. The flag is not set

and the trap will not be executed.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-138 V 1.7, 2001-01

• Undefined Opcode Trap: When the instruction currently being decoded by the CPU

does not contain a valid C166S V2 CPU opcode, the UNDOPC flag is set in register

TFR and the CPU enters the undefined opcode trap routine. The instruction that

causes the undefined opcode trap is executed as a NOP.

• Parity Fault Trap: When a parity error is detected in the system, the PARFLT flag is

set in register TFR and the CPU enters the parity fault trap routine. For the C166S V2

CPU, the parity fault is an asynchronous system event. There is no link between the

fault and the instruction flow itself.

• Protection Fault Trap: Whenever one of the special protected instructions is

executed where the opcode of that instruction is not repeated twice in the second word

of the instruction and the byte following the opcode is not the complement of the

opcode, the PRTFLT flag in register TFR is set and the CPU enters the protection fault

trap routine. The protected instructions include DISWDT, EINIT, IDLE, PWRDN,

SRST, ENWDT and SRVWDT. The instruction that causes the protection fault trap is

executed like a NOP.

• Illegal Word Operand Access Trap: Whenever a word operand read or write access

is attempted to an odd byte address, the ILLOPA flag in register TFR is set and the

CPU enters the illegal word operand access trap routine.

5.4 Peripheral Event Controller

The Peripheral Event Controller (PEC) makes a decision about the CPU action required

to manage an interrupt request. It may be either normal interrupt service or fast data

transfer between two memory locations. The C166S V2 PEC controls eight fast data

transfer channels.

If normal interrupt is requested, the CPU temporarily suspends the current program

execution and branches to an interrupt service routine. The current program status and

context must be preserved.

If a PEC channel is selected for servicing an interrupt request, a single word or byte data

transfer between any two memory locations is to be performed. During a PEC transfer,

the normal program execution of the CPU is halted. No internal program status

information needs to be saved. The PEC transfer is the fastest possible interrupt

response. In many cases, a PEC transfer is sufficient to service the peripheral request

(serial channels, for example).

The PEC channels can perform the following actions:

• Byte or word transfer

• Continuous data transfer

• PEC channel-specific interrupt request upon data transfer completion or common for

all channels “End of PEC” interrupt for enhanced handling

• Automatic increment of source or/and destination pointers with support of memory to

memory transfer

Note: PEC transfer is executed if its priority level is higher than current CPU priority level.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-139 V 1.7, 2001-01

5.4.1 PEC Control Registers

Each PEC channel is controlled by the respective PEC channel Control register (PECCx)

and a set of source and destination pointers (SRCPx, DSTPx and PECSEGx), where ‘x’

stands for the PEC channel number. The PECCx registers control the arbitration priority

level assignment to the PEC channels and the action to be performed.

PECCx

PEC Channel Control Register (x=7-0) SFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
EOP

INT
PLEV CL INC BWT COUNT

r rw rw rw rw rw rwh

Field Bits Type Description

EOPINT [14] rw End of PEC Interrupt Selection

0 End of PEC interrupt with the same level as

the PEC transfer is trigger

1 End of PEC interrupt is serviced by a

separate interrupt node with programmable

interrupt level (EOPIC) and interrupt sharing

control register (PECISNC)

PLEV [13:12] rw PEC Level Selection

This bit field controls the PEC channel assignment

to an arbitration priority level.

(see section below)

CL [11] Channel Link Control

0 PEC channels work independently

1 Pairs of PEC channels are linked together

[10:9] rw Increment Control

(Modification of source and destination pointer

after PEC transfer)

00 No modification

01 Increment of destination pointer DSTPx

by 1 (BWT = 1) or by 2 (BWT = 0)

10 Increment of source pointer SRCPx

by 1 (BWT = 1) or by 2 (BWT = 0)

11 Increment of destination pointer DSTPx and

source pointer SRCPx

by 1 (BWT = 1) or by 2 (BWT = 0)

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-140 V 1.7, 2001-01

The Byte/Word Transfer bit (BWT) of the PECCx register determines if a byte or a word

is to be moved during a PEC service cycle and defines an increment step size for the

pointer(s) to be modified.

The PEC Transfer Count field (COUNT) of the PECCx directly controls the action of the

respective PEC channel. The contents of the bit field COUNT may specify a certain

number of PEC transfers, unlimited transfers, or no PEC service at all.

– If the PEC transfer counter COUNT value is set to 00H, the normal interrupt requests

are processed instead of PEC data transfers and the corresponding PEC channel

remains idle.

– Continuous data transfers are selected by setting the bit field COUNT to FFH value.

In this case, COUNT is not decremented by the transfers and the respective PEC

channel can serve unlimited number of PEC requests until it is modified by the

program.

– If the bit field COUNT is set to service a specified number of requests by the respective

PEC channel, it is decremented with each PEC transfer and the request flag is cleared

to indicate that the request has been serviced. When COUNT reaches 00H, it

immediately activates the interrupt service routine that has the same priority level

(EOPINT = 0) or triggers the “End of PEC” interrupt with a different priority level

(EOPINT = 1). When COUNT is decremented from 01H to 00H after a data transfer,

the request flag will be cleared if EOPINT is set to 1. If EOPINT is 0, the request flag

will not be cleared and another interrupt request will be generated on the same priority

level. The respective PEC channel remains idle and the associated interrupt service

routine is activated instead of PEC transfer because COUNT contains the 00H value.

(see Section 5.4.3).

The EOPIC register is the interrupt control register of the End Of PEC interrupt.

The Register PECISNC contains flags of the “End of PEC” interrupt node. This node is

used when enhanced “End of PEC” interrupt feature was invoked and control bit EOPINT

is set to 1 in the corresponding PECCx.

Figure 5-4 shows the usage of the “End of PEC” interrupt subnode:

BWT [8] rw Byte/Word Transfer Selection

0 Transfer a word

1 Transfer a byte

COUNT [7:0] rwh PEC Transfer Count

Counts PEC transfers and influences the

channel´s action (see section below)

Field Bits Type Description

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-141 V 1.7, 2001-01

EOPIC

Interrupt Control Register1) bESFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 GPX EOP
IR

EOP
IE ILVL GLVL

r r r r r r r rw rwh rw rw rw

1) The EOPIC register is assigned to one of the interrupt nodes. The assignment is product specific.

Field Bits Type Description

GPX [8] rw Group Priority Extension

Defines the value of high-order group level bit

EOPIR1) [7] rwh Interrupt Request Flag

0 No request pending

1 The source has raised an interrupt request

EOPIE [6] rw Interrupt Enable Control Bit

0 Interrupt request is disabled

1 Interrupt request is enabled

ILVL [5:2] rw Interrupt Priority Level

FH Highest priority level

... ...

0H Lowest priority level

GLVL [1:0] rw Group Priority Level

3H Highest priority level

... ...

0H Lowest priority level

XGLVL [8],[1:0] Extended Group Priority Level

7H Highest priority level

... ...

0H Lowest priority level

1) Bit EOPIR supports bit-protection

PECISNC

PEC Interrupt Sub Node Control bSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C7IR C7IE C6IR C6IE C5IR C5IE C4IR C4IE C3IR C3IE C2IR C2IE C1IR C1IE C0IR C0IE

rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw rwh rw

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-142 V 1.7, 2001-01

Field Bits Type Description

CxIR 15, 13,

11, 9,

7, 5, 3,

1

rwh Interrupt Sub Node Request Flag of PEC

Channel x 1) 2)

0 No special end of PEC interrupt request is

pending for PEC channel x

1 PEC channel x has raised an end of PEC

interrupt request

CxIE 14, 12,

10, 8,

6, 4, 2,

0

rw Interrupt Sub Node Enable Control Bit

of PEC Channel x 1) 3)

(individually enables/disables a specific source)

0 End of PEC interrupt request of PEC

channel x is disabled

1 End of PEC interrupt request of PEC

channel x is enabled
1) x = 7...0
2) NOTE:

The “End of PEC” sub-node interrupt request flags are not cleared by hardware when entering the interrupt
service routine (interrupt has been accepted by the CPU), unlike the interrupt request flags of the interrupt
nodes (request flags xxIC.xxIR). The interrupt service routine must check the request flags and clear them
before executing the RETI instruction.

3) It is recommended to clear an interrupt request flag (CxIR) before setting the respective enable flag (CxIE).
Otherwise, former requests still pending will immediately trigger an interrupt request after setting the enable bit.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-143 V 1.7, 2001-01

Figure 5-4 End of PEC Interrupt Sub Node

Table 5-3 summarizes the values the bit field COUNT and the corresponding PEC

channel actions.

PECISNC

0

C0IE

15

C0IRC1IEC1IRC5IEC5IR C3IRC4IEC4IR C2IEC2IRC3IEC6IEC6IRC7IEC7IR

015

00
EOP

IR
GPX0 ILVL

EOP

IE
0000

8 7

GLVL

EOPIC

Interrupt Request
Pulse Generator

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-144 V 1.7, 2001-01

The Increment Control Field (INC) of the PECCx register defines when ether one or

both of the PEC pointers must be incremented after the PEC transfer. If the pointers are

not to be modified (INC=‘00’), the respective channel will always move data from the

same source to the same destination.

Channel Link Mode (CL bit)

Channel linking allows to perform PEC data transfers via a pair of two PEC channels,

that are switched rotationaly, to provide the possibility of data chaining. The linked

transfer is in principal the same as described for standard PEC but if the transfer of a

linked channel has finished by decrementing the transfer count to zero the PEC

controller automatically switches to the partner channel of the pair. While the data

Table 5-3 PEC Channel Actions

Previous

COUNT Field

Value

Modified

COUNT Field

Value

Action of PEC Channel

and Comments

FFH FFH Move a Byte/Word

Continuous transfer mode; COUNT is not modified

FEH...02H FDH...01H Move a Byte/Word and decrement COUNT

01H 00H Move a Byte/Word

Depending on bit EOPINT, one of two different

actions are taken:

EOPINT = 0 (compatible mode)

The service request flag (xxIR) of the respective

interrupt remains set (it is cleared for all other

COUNT values). Therefore, an additional interrupt

request is triggered on the next arbitration cycle with

a COUNT field value of ‘00H’ (see next raw)

EOPINT = 1

The service request flag (xxIR) of the respective

interrupt is cleared. Additionally, the interrupt

request flag of the EOP sub node (PECISNC.CxIR)

is set. Furthermore, the interrupt request flag of the

end of PEC interrupt node (EOPIC.EOPIR) is

automatically set if the sub node request is enabled

(PECISNC.CxIE = 1).

(see also Section 5.4.3)

00H 00H No PEC action

A normal interrupt is requested instead of a PEC

data transfer (see also Section 5.4.3).

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-145 V 1.7, 2001-01

transfers are then controlled by the partner channel the finished channel can be

reconfigured. The termination of the transfers of a linked channel is indicated by the

triggering of an interrupt. If the channel link bit CL of the active channel or the EOPINT

flag is set a End of PEC interrupt is called. Otherwise, the standard interrupt connected

to the even channel is requested.

The switch to the PEC channel partner is only possible if channel linking is enabled by

setting the PECCx.CL bit of the current channel x. If for a channel the link bit is set but

its count value is zero no switch is performed but the normal interrupt of the PEC channel

calling node is requested when a new interrupt request occurs for the corresponding

node. So the complete linked transfer is terminated if either in the active channel the

count value is 0 or the CL flag is 0. Possible channel pairs are only the combinations of

channels 0/1, 2/3, 4/5 and 6/7. The PEC channel assignment of the odd numbered

channels is ignored if at least one of the channel linking bits (CL) of the channel pair is

set. This means an interrupt request connected to the odd channel triggers only the

standard interrupt, but no PEC transfer. So, the channel pair is assigned to the interrupt

and group level of the even numbered channel partner. After the first initialization for

linked transfer the transfer is started with the even numbered channel. The channels

toggle as long as CL bit of the currently active channel is set on the transition of the PEC

transfer count value from 1 to 0. The even channel is automatically selected if both CL

flags are 0 or both transfer counts are 0. In all other cases the last active channel stays

selected. A reset of the CL bits during a programmed channel link mode may cause a

corruption of the sequence.

A chained PEC sequence should be programmed so that as long the sequence is not

finished, the CL bit is set, together with a new transfer count value. For the transfer

before the last transfer, the called END of PEC interrupt routine should not reconfigure

the count value and should not reset the CL bit. The last transfer channel should not have

the CL bit set. So, at the end of the complete transfer, either a standard or an END of

PEC trap can be selected by the EOPINT bit of the last channel.

5.4.2 The PEC Source and Destination Pointer

The PEC channels source and destination pointers specify the locations between which

the data is to be moved. All pointers are 24-bits wide. The 24-bit source address is stored

in the register SRCPx (lower 16 bits of address) and in the high byte of register

PECSEGx (highest 8 address bits).

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-146 V 1.7, 2001-01

Figure 5-5 PEC Pointer Address Handling

The 24-bit destination address is stored in the register DSTPx (lower 16 bits of address)

and in the low byte of register PECSEGx (highest 8 address bits). Only the lower 16 bits

of the PEC address pointers (segment offset) can be modified (incremented) by the PEC

transfer mechanism. The highest 8 bits, which represent the segment number, are not

modified by hardware. Therefore, the PEC pointers may be incremented within the

address space of one segment and may not cross the segment border. If the offset

address pointer gets the ‘FFFFH’ value in the case of byte transfers (BWT = 1) or ‘FFFEH’

in the case of word transfers (BWT = 0), the next increment will be disregarded. The

address register will keep one of these maximum values and no overflow will happen.

The described behavior protects the memory from unintentional overwriting. No explicit

error event is generated by the system in case of address pointer(s) saturation;

therefore, it is the user’s responsibility to prevent this condition.

Note: PEC data transfers do not use the data page pointers DPP3...DPP0.

Note: If a word data transfer is selected for a specific PEC channel (BWT = 0), the

respective source and destination pointers must both contain a valid word address

015

SRCSEGx DSTSEGx

PECSEGx

015

DSTPx

DSTPx

015

SRCPx

SRCPx

0

Source Pointer

23 0

Destination Pointer

23

Segment Address Segment Offset Segment Address Segment Offset

Data Transfer

16 15 16 15

8 7

x = 7...0, depending on PEC channel number

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-147 V 1.7, 2001-01

that points to an even byte boundary. Otherwise, the Illegal Word Access trap will

be invoked when this channel is used.

5.4.3 PEC Handler Interrupt Actions Summary

As described above, two different kinds of interrupts can be triggered by the PEC handler

depending on the status of the bitfield COUNT.

SRCPx

PEC Source Pointer (x=7-0) XSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRCPx

rwh

Field Bits Type Description

SRCPx [15:0] rwh Source Pointer Address of Channel x

Source Address bits 15-0

DSTPx

PEC Destination Pointer (x=7-0) xSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DSTPx

rwh

Field Bits Type Description

DSTPx [15:0] rwh Destination Pointer Address of Channel x

Destination Address bits 15-0

PECSEGx

PEC Segment Pointer (x=7-0) xSFR Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRCSEGx DSTSEGx

rw rw

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-148 V 1.7, 2001-01

• PEC channel is enabled1) and the bit field COUNT has a value higher than ‘01H’.

a) Control bit EOPINT = 0 or 1

ACTIONS:

– PEC request is proceeded

– No other interrupt activity

• PEC channel is enabled and the bit field COUNT gets a decrement from ‘01H’ to ‘00H’

triggered by a service request.

a) Control bit EOPINT = 0 (compatible with C166)

ACTIONS:

– PEC request is proceeded

– Interrupt request flag (xxIR) of the requesting interrupt node (arbitration winner) is

not cleared, participates on the next arbitration cycle, and triggers a normal interrupt

on the same level as the PEC request is served.

b) Control bit EOPINT = 1 (enhanced end of PEC interrupt feature)

ACTIONS:

– PEC request is proceeded

– Interrupt request flag (xxIR) of requesting interrupt node (arbitration winner) is

cleared and will not trigger more actions.

– Interrupt request flag of the end of PEC interrupt subnode will be set

(PECISNC.CxIR = 1)

– If the respective interrupt enable flag of the end of PEC interrupt subnode was set

before by software (PECISNC.CxIE = 1), an end of PEC interrupt is requested

(EOPIC.EOPIR = 1). This end of PEC interrupt participates on the next arbitration

cycle with its priority (selected via EOPIC.ILVL and EOPIC.GLVL), if this interrupt

source was enabled before by software (EOPIC.EOPIR = 1). With this behavior, an

end of PEC interrupt can be triggered on a level lower than the respective PEC

requests have been serviced.

• PEC channel is disabled if the bit field COUNT is cleared (either by hardware or by

software).

Field Bits Type Description

SRCSEGx [15:8] rw Source Pointer Segment Address of Channel x

Source Address bits 23-16

DSTSEGx [7:0] rw Destination Pointer Segment Address of

Channel x

Destination Address bits 23-16

1) Every PEC channel is automatically enabled when its COUNT value is greater than 00H.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-149 V 1.7, 2001-01

a) Control bit EOPINT = 0 or 1

ACTIONS:

– A normal interrupt service routine is requested on the PEC channel priority level.

5.4.4 PEC Channel Assignment and Arbitration

The C166S V2 PEC channels can be assigned to a certain arbitration priority level. All

requests with interrupt priority levels 8 to 15 and group levels 0 to 3 can be associated

with the PEC functionality (eight PEC channels in total). The group extension is not

supported for PEC requests, because the 8 PEC channels are assigned to two interrupt

levels for compatibility to the C16x family.

The following mechanism shows how to program the bit field PECCx.PLEV to set up a

link to a certain interrupt priority level and a group priority level:

PEC Channel x

is linked to:

Interrupt priority level (in IC register): (1, ~PLEV.1, ~PLEV.0, x.0)

Extended Group priority level: (0, x.1, x.0)

For an easier understanding of this formula, Table 5-4 lists all possible combinations.

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-150 V 1.7, 2001-01

All interrupt requests not assigned to a PEC channel go directly to the interrupt handler.

Table 5-4 PEC Channel Assignment

Arbitration Priority

Level

PEC

Channel x

Arbitration Priority

Level

PEC

Channel x

Interrupt

Priority

Level

xxIC.ILVL

Group

Priority

Level

xxIC.XGLVL

PLEV Ch Interrupt

Priority

Level

xxIC.ILVL

Group

Priority

Level

xxIC.XGLVL

PLEV Ch

15 3 00 7 11 3 10 7

15 2 6 11 2 6

15 1 5 11 1 5

15 0 4 11 0 4

14 3 3 10 3 3

14 2 2 10 2 2

14 1 1 10 1 1

14 0 0 10 0 0

13 3 01 7 9 3 11 7

13 2 6 9 2 6

13 1 5 9 1 5

13 0 4 9 0 4

12 3 3 8 3 3

12 2 2 8 2 2

12 1 1 8 1 1

12 0 0 8 0 0

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-151 V 1.7, 2001-01

5.5 CPU Action Control Unit

The CPU Action Control Unit multiplexes interrupt/PEC requests with OCDS requests

and forwards them to the CPU demanding the corresponding action. It also routes

request acknowledges and denies from the core to the corresponding requester. The

OCDS requests have programmable priority levels. If another interrupt request that has

won an arbitration conflicts with an OCDS request, the one with the higher priority will

trigger the CPU action first. However, if both requests (Interrupt/PEC and OCDS) have

the same priority level, the interrupt/PEC request wins.

The OCDS break request is sent directly from the OCDS module to the CPU (where it is

prioritized) and ignores the CPU Action Control Unit (or any other module of the interrupt

and Peripheral Event Controller).

User Manual

C166S V2

Interrupt and Exception Handling

User Manual 5-152 V 1.7, 2001-01

User Manual

C166S V2

External Bus Controller

User Manual 6-153 V 1.7, 2001-01

6 External Bus Controller

6.1 Introduction

Although the C166S V2 products provide a powerful set of on-chip peripherals and on-

chip program and data memories, these internal units only cover a small fraction of the

C166S V2´s address space of up to 16 MByte. The external bus interface allows access

to external1) peripherals and additional volatile and non-volatile memories. The external

bus interface provides a number of configurations, so it can be tailored to fit perfectly into

a given application system.

Accesses to external memories or peripherals are executed by the integrated External

Bus Controller (EBC). The function of the EBC is controlled via a set of configuration

registers. The basic behavior can be programmed via the mode selection registers

EBCMODx.

The EBC supports up to eight external chip select channels. Each of these chip select

signals is programmable via a set of registers. The FCONCSx registers specify the

external bus cycles in terms of address (mux/demux), data (16-bit/8-bit), chip select

enable and READY control. The timing of the bus access is controlled by the timing

configuration registers TCONCSx, which specify the length of the different access

phases. All these parameters are used for accesses within a specific address area which

is defined via the corresponding address select register ADDRSELx.

The seven register sets FCONCS1/TCONCS1/ADDRSEL1 to FCONCS7/TCONCS7/

ADDRSEL7 define seven independent ‘address windows’, while all external accesses

outside these windows are controlled via the registers FCONCS0 and TCONCS0. Two

additional chip select channels with fixed address ranges are defined for the startup and

the monitor memory.

The external bus timing is related to the reference clock output CLKOUT. All bus signals

are generated in relation to the rising edge of this clock. This behavior eases the timing

specification drastically and allows high EBC operating frequencies above 100 MHz. The

external bus protocol is compatible with the C16x ones. However, the external bus timing

is improved in terms of wait state granularity.

Note: For supporting these improvements, an extended configuration scheme

compared to the C16x is defined. The C16x registers SYSCON and BUSCONx
are no longer used. In principle the configuration of the external bus controller is

done during the application initialization. Therefore, only some initialization code

has to be adapted for using the C166S V2 EBC module instead of the C16x

external bus controller.

1) C166S V2:’External’ means off-chip However, modules like customer ASIC, startup memory and additional
peripherals and memories can be connected on-chip to the external bus module as well. These modules are
from the controller sub-system point of view also external, but on-chip.

User Manual

C166S V2

External Bus Controller

User Manual 6-154 V 1.7, 2001-01

6.2 Timing Principles

The EBC supports four different access types. Reads and Writes in multiplexed and

demultiplexed mode. Multiplexed mode means that the data bus is used in a ‘time-

multiplex’ for address (the 16 LSBs) and for data. In demultiplexed mode the data bus is

used for data only and an additional 16 bit address bus is available.

Naming Conventions

• ALE Address Latch Enable (high active)

indicates that the applied address is valid

• WR/ Write Strobe (low active)/

WRL Write Low Byte Strobe (low active)

configured either to a general write request or a write request for the low

byte (see Table 6-1)

• BHE/ Byte High Enable (low active)/

WRH Write High Byte Strobe (low active)

configured either to an enable for the high byte or a write request for the

high byte (see Table 6-1)

• RD Read Strobe (low active)

• READY Ready to indicated end of actions (programmable polarity)

• ADDR Address Bus split to a part [23:16] and [15:0]

• DATA Data Bus [15:0] or shared Data/Address [15:0] Bus

• HOLD Hold input for foreign bus requests (low active)

• HLDA Hold Acknowledge (low active)

master output to grant bus / slave input

• BREQ Bus Request (low active)

The timings of the external bus can be split up into six phases:

Table 6-1 Write Configurations (see Chapter 6.3.2)

written byte general write configuration separated byte low/high writes

low high WR BHE ADDR[0] WRL WRH ADDR[0]

- - inactive don’t care 0/1 inactive inactive 0/1

write - active inactive 0 active inactive 0/1

- write active active 1 inactive active 0/1

write write active active 0 active active 0/1

User Manual

C166S V2

External Bus Controller

User Manual 6-155 V 1.7, 2001-01

Figure 6-1 Demultiplexed Bus Read

Figure 6-2 Demultiplexed Bus Write

• a phase: addresses valid, ALE high, no command. CS switch tristate wait states

• b phase: addresses valid, ALE high, no command. ALE length

• c phase: addresses valid, ALE low, no command. R/W delay

• d phase: write data valid, ALE low, no command. Data valid for write cycles

• e phase: command (read or write) active. Access time

• f phase: command inactive, address hold. Read data tristate time, write data hold

time

ALE

ADDR, CS

RD

b c e f

valid

1-2 0-3 1-32 0-3clock cycles

 1 2 5 2rdneeded bits

a

 2
2wr

read DATA valid

d

0-1

1

0-3

ALE

ADDR, CS

WR

b c e f

valid

1-2 0-3 1-32 0-3clock cycles

 1 2 5 2rdneeded bits

a

 0-3

 2
2wr

write DATA valid

0-1

1

d

User Manual

C166S V2

External Bus Controller

User Manual 6-156 V 1.7, 2001-01

Figure 6-3 Multiplexed Bus Read

Figure 6-4 Multiplexed Bus Write

• a phase: addresses valid, ALE high, no command. CS switch tristate wait states

• b phase: addresses valid, ALE high, no command. ALE length

• c phase: addresses valid, ALE low, no command. Address hold, R/W delay

• d phase: address tristate for read cycles, data valid for write cycles, ALE low, no

command

• e phase: command (read or write) active. Access time

• f phase: command inactive, address hold. Read data tristate time, write data hold

time.

ALE

ADDR, CS

RD

c e f

read DATA

valid

data in valid

0-3 1-32 0-3clocks

2 5 2rdneeded bits

d

addr valid

0-1

1

b

1-2

 1

 a

 0-3

 2

ALE

ADDR, CS

WR

c e f

valid

0-3 1-32 0-3clocks

2 5 2wrneeded bits

d

0-1

1

write DATA data out validaddress valid

b

1-2

 1

 a

 0-3

 2

next address

User Manual

C166S V2

External Bus Controller

User Manual 6-157 V 1.7, 2001-01

6.2.1 A Phase

The A phase can take 0-3 clocks. It is used to tristate the databus drivers activated in

the previous cycle (tristate wait states after CS switch).

Phase A cycles are not inserted in every access cycle but only when changing the CS.

If an access using one chipselect CSx was finished and the next access with a different

chipselect CSy is started then Phase A cycles are performed according to the PHA bits

set for the first chipselect CSx. This feature is used to optimize wait states with devices

having a long turn off delay at their databus drivers like EPROM and FLASH.

The A Phase cycles are inserted while the addresses and ALE of the next cycle are

already applied.

If there are idle cycles in between two accesses these clock cycles are taken into

account and the A Phase is shortened accordingly. For example if there are three tristate

cycles programmed and two idle cycles occurred then the A Phase takes only one clock

cycle.

6.2.2 B Phase

The B phase can take 1-2 clocks. It is used for selecting devices and registers before

giving a command and to define the length of the active ALE. In multiplexed bus mode

the address is applied on the data bus for latching.

6.2.3 C Phase

The C phase is similar to the A and B phases but ALE is already low. It can take 0-3

clock cycles.

In multiplexed bus mode the address is held for being latched safely. Phase C cycles can

be used to delay the command signals (RW delay).

6.2.4 D Phase

The D phase can take 0-1 clocks. It is used to tristate the address on the multiplexed

bus when a read cycle is performed. For all write cycles it is used to have the data valid

on the bus before the command is applied.

6.2.5 E Phase

The E phase is the command respectively access phase and takes 1-32 clocks. Read

data is fetched, write data is put onto the bus; the command signals are active. Read

data is registered with the terminating clock cycle of this phase.

The READY function is lengthening this phase, too (see Table 6.3.6). READY controlled

access cycles have a random cycle time.

User Manual

C166S V2

External Bus Controller

User Manual 6-158 V 1.7, 2001-01

6.2.6 F Phase

The F phase can take 0-3 clocks. Addresses and write data are held while the command

is inactive. The number of wait states being inserted at the F phase is programmable

independently for read and write accesses. The F phase is used for data reads to

program tristate wait states on the bidirectional data bus in order to avoid bus conflicts.

6.3 Functional Description

6.3.1 Configuration Register Overview

The EBC registers are functionally split up into three groups:

• EBC mode registers that have influence on global functions.

• Chip select related registers to configure the functionality, timing and size of the

chipselect windows.

• Startup and Monitor Memory registers to control the access to these dedicated

memories.

CS0 is the default chip select that selects all address space not addressed by another

chip select or occupied by internal address space. Therefore CS0 has no ADDRSEL

register.

All EBC registers are write protected by the EINIT protection mechanism. This means

that after execution of the EINIT instruction by the C166S V2 CPU these registers are

not writeable anymore.

For a list of all EBC control registers refer to Chapter 9.4. All EBC registers are located

in a 128 byte segment.

6.3.2 The EBC MODE Registers EBCMODx

The EBC Mode Register 0 controls the alternate function of the pins.

EBC Mode Register 0

EBCMOD0 XSFR Reset value: 00F0H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDY
POL

RDY
DIS

ALE
DIS

BYT
DIS

WR
CFG

EBC
DIS

SLA
VE

ARB
EN

CSPEN SAPEN

rw rw rw rw rw rw rw rw rw rw

User Manual

C166S V2

External Bus Controller

User Manual 6-159 V 1.7, 2001-01

Field Bits Typ Description

RDYPOL 15 rw READY pin Polarity

0 READY is active low

1 READY is active high

RDYDIS 14 rw READY pin Disable

0 READY enabled

1 READY disabled1)

ALEDIS 13 rw ALE pin Disable

0 ALE enabled

1 ALE disabled1)

BYTDIS 12 rw BHE pin Disable

0 BHE enabled

1 BHE disabled1)

WRCFG2) 11 rw Configuration for pins WR/WRL, BHE/WRH

0 WR and BHE

1 WRL and WRH

EBCDIS 10 rw EBC pins Disable

0 EBC is using the pins for external bus

1 EBC pins disabled1)

SLAVE 9 rw SLAVE mode enable

0 Bus arbiter acts in master mode

1 Bus arbiter acts in slave mode

ARBEN 8 rw BUS Arbitration Pins enable

0 HOLD, HLDA and BREQ disabled1)

1 pins act as HOLD, HLDA and BREQ

User Manual

C166S V2

External Bus Controller

User Manual 6-160 V 1.7, 2001-01

The EBC Mode register 1 controls the general behaviour of the EBC.

CSPEN [7:4] rw CS Pins Enable1)

0000 no chipselect pins enabled

0001 enables pin CS0

...

1000 enables pins CS7, ..., CS0

else reserved

SAPEN [3:0] rw Segment Addresses Pins Enable1)

0000 no segment address pin enabled

0001 enables address pin A[16]

...

1000 enables address pins A[23:16]

else reserved

1) disabled pins are tristate and/or usable as General Purpose IO (GPIO)

2) A change of the bit content is not valid before the next external bus access cycle.

EBC Mode Register 1

EBCMOD1 XSFR Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 DHP
DIS 0 APDIS

r r r r r r r r r rw r rw

Bits Typ Description

0 [15:7]

[5]

r Reserved

The software always reads a ’0’. Although these bits are read

only, the software should always write a ’0’ in case of a write

access.

DHPDIS [6] rw Data High Pins Disable

0 AD Bus Pins[15:8] enabled

1 AD Bus Pins[15:8] disabled, can be used as GPIO

APDIS1)

1) For a demultiplexed external bus access with the address pins disabled no address will be available.

[4:0] rw Address Pins Disable

00000 Address Bus Pins [15:0] enabled

11111 Address Bus Pins [15:0] disabled, can be used as GPIO

others reserved (do not use)

Field Bits Typ Description

User Manual

C166S V2

External Bus Controller

User Manual 6-161 V 1.7, 2001-01

6.3.3 The Timing Configuration registers TCONCSx

The timing control registers are used to program the described cycle timing for the

different access phases. The timing control registers may be reprogrammed during code

fetches from the affected address window. The new settings are first valid for the next

access.

x = 1 ... 7

For controlling accesses to the monitor memory and start up memory there are two

timing control registers TCONCSMM and TCONCSSM. The functional control selection

and address windows are fixed and not changeable for the built-in memories.

Timing Configuration Register for Chip Select Channel 0

TCONCS0 XSFR Reset value: 6243H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WRPHF RDPHF PHE PHD PHC PHB PHA

r rw rw rw rw rw rw rw

Timing Configuration Register for Chip Select Channel x

TCONCSx XSFR Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WRPHF RDPHF PHE PHD PHC PHB PHA

r rw rw rw rw rw rw rw

Timing Configuration Register for Chip Select Monitor Memory

TCONCSMM XSFR Reset value: 6243H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WRPHF RDPHF PHE PHD PHC PHB PHA

r rw rw rw rw rw rw rw

Timing Configuration Register for Chip Select Startup Memory

TCONCSSM XSFR Reset value: 6243H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WRPHF RDPHF PHE PHD PHC PHB PHA

r rw rw rw rw rw rw rw

User Manual

C166S V2

External Bus Controller

User Manual 6-162 V 1.7, 2001-01

Field Bits Typ Description

0 15 r Reserved

The software always reads a ’0’. Although this bit is

read only, the software should always write a ’0’ in

case of a write access.

WRPHF [14:13] rw Write Phase F

00 0 clock cycles

...

11 3 clock cycles

RDPHF [12:11] rw Read Phase F

00 0 clock cycles

...

11 3 clock cycles

PHE [10:6] rw Phase E

00000 1 clock cycle

...

11111 32 clock cycles

PHD 5 rw Phase D

0 0 clock cycles

1 1 clock cycle

PHC [4:3] rw Phase C

00 0 clock cycles

...

11 3 clock cycles

PHB 2 rw Phase B

0 1 clock cycle

1 2 clock cycles

PHA [1:0] rw Phase A

00 0 clock cycles

...

11 3 clock cycles

User Manual

C166S V2

External Bus Controller

User Manual 6-163 V 1.7, 2001-01

6.3.4 The Function Configuration Registers FCONCSx

The Function Control registers are used to control the bus and ready functionality for a

selected address window. It can be distinguished between 8 and 16 bit bus and

multiplexed and demulitplexed accesses. Furthermore the READY functionality can be

programmed and defined whether the address window is enabled or not.

x = 1 ... 7

Function Configuration Register for Chip Select Channel 0

FCONCS0 XSFR Reset value: 0021H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 BTYP 0
RDY
MOD

RDY
EN

EN
CS

r r r r r r r r r r rw r rw rw rw

Function Configuration Register for Chip Select Channel x

FCONCSx XSFR Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 BTYP 0
RDY
MOD

RDY
EN

EN
CS

r r r r r r r r r r rw r rw rw rw

Field Bits Typ Description

0 [15:6] r Reserved

The software always reads a ’0’. Although these

bits are read only, the software should always

write a ’0’ in case of a write access.

BTYP [5:4] rw Bus Type Selection

00 8 bit Demultiplexed

01 8 bit Multiplexed

10 16 bit Demultiplexed

11 16 bit Multiplexed

0 3 r Reserved

The software always reads a ’0’. Although this bit

is read only, the software should always write a ’0’

in case of a write access.

User Manual

C166S V2

External Bus Controller

User Manual 6-164 V 1.7, 2001-01

6.3.5 The Address Window Selection Registers ADDRSELx

x = 1 ... 7

Note: There is no register ADDRSEL0, as register set FCONCS0 / TCONCS0 controls

all external accesses outside the seven address windows built by the seven

address selects ADDRSEL1 to ADDRSEL7.

6.3.5.1 Definition of Address Areas

The seven register sets FCONCS1/TCONCS1/ADDRSEL1 to FCONCS7/TCONCS7/

ADDRSEL7 define seven separate address areas within the address space of the

C166S V2. Within each of these address areas external accesses can be driven in one

RDYMOD 2 rw Ready Mode

0 asynchronous READY

1 synchronous READY

RDYEN 1 rw Ready enable

0 access time is controlled by bitfield PHEx

1 access time is controlled by bitfield PHEx

and READY signal

ENCS1) 0 rw Enable Chip Select

0 disable

1 enable

1) Disabling a Chip Select not only effects the chip select output signal; it also deactivates the respective address

window of the disabled chip select. A disabled address window is also ignored by an address window

arbitration (see Chapter 6.3.5.2).

Address range and size Select for Chip Select Channel x

ADDRSELx XSFR Reset value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RGSAD RGSZ

rw rw

Field Bits Typ Description

RGSAD [15:4] rw Address Range Start Address Selection

RGSZ [3:0] rw Address Range Size Selection (see Table 6-2)

Field Bits Typ Description

User Manual

C166S V2

External Bus Controller

User Manual 6-165 V 1.7, 2001-01

of the four different bus modes independently. Each ADDRSELx register cuts out an

address window, where the corresponding parameters of the registers FCONCSx and

TCONCSx are used to control external accesses. The range start address of such a

window defines the most significant address bits of the selected window which are

consequently not needed to address the memory/module in this window (Table 6-2).

The size of the window chosen by ADDRSELx.RGSZ defines the relevant bits of

ADDRSELx.RGSAD (marked with ‘R’) which are used to select with the most significant

bits of the request address the corresponding window. The other bits of the request

address are used to address the memory locations inside this window. The lower bits of

ADDRSELx.RGSAD (marked ‘x’) are disregarded.

Two additional chip select channels, which are used for accessing the startup and the

monitor memory, are located in a predefined address range. The size of these two

address areas is fixed to 32 kByte.

The address area from 00’8000H to 00’FFFFH (32 kbyte) is reserved for C166S V2 CPU

internal I/O, the area from BF’0000H to BF’FFFFH (64 kbyte) for startup and monitor

memory and the area from C0’0000H to FF’FFFFH (4 Mbyte) is used by the internal

program memory. Therefore, these address areas cannot be used by external resources

connected to the external bus.

Note: The range start address can only be on boundaries specified by the selected

range size according to Table 6-2.

Table 6-2 Address range and size for ADDRSELx

ADDRSELx Address Window

Range

Size

RGSZ

Relevant (R) bits

of RGSAD

Selected

address range

Range start address A[23:0]

selected with R-bits of RGSAD

3..0 15 ... 4 size A23 ... A0

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

11xx

RRRR RRRR RRRR

RRRR RRRR RRRx

RRRR RRRR RRxx

RRRR RRRR Rxxx

RRRR RRRR xxxx

RRRR RRRx xxxx

RRRR RRxx xxxx

RRRR Rxxx xxxx

RRRR xxxx xxxx

RRRx xxxx xxxx

RRxx xxxx xxxx

Rxxx xxxx xxxx

xxxx xxxx xxxx

 4 KBytes

 8 KBytes

 16 KBytes

 32 KBytes

 64 KBytes

128 KBytes

256 KBytes

512 KBytes

 1 MBytes

 2 MBytes

 4 MBytes

 8 MBytes

 reserved1)

1) The complete address space of 12 MByte can be selected by the default chip select CS0.

RRRR RRRR RRRR 0000 0000 0000

RRRR RRRR RRR0 0000 0000 0000

RRRR RRRR RR00 0000 0000 0000

RRRR RRRR R000 0000 0000 0000

RRRR RRRR 0000 0000 0000 0000

RRRR RRR0 0000 0000 0000 0000

RRRR RR00 0000 0000 0000 0000

RRRR R000 0000 0000 0000 0000

RRRR 0000 0000 0000 0000 0000

RRR0 0000 0000 0000 0000 0000

RR00 0000 0000 0000 0000 0000

R000 0000 0000 0000 0000 0000

---- ---- ---- ---- ---- ----

User Manual

C166S V2

External Bus Controller

User Manual 6-166 V 1.7, 2001-01

6.3.5.2 Address Window Arbitration

For each external access the EBC compares the current address with all address select

registers (programmable ADDRSELx and hardwired address select registers for startup

and monitor memory) of enabled windows. This comparison is done in four levels.

Priority 1: The hardwired address select registers for startup and monitor memories

are evaluated first. A match with one of these two address ranges directs

the access to the respective memory using the corresponding chip select

with its timing control register. The window of monitor and start up is not

accessible by other chip selects.

Priority 2: Registers ADDRSELx [x = 2, 4, 6] are evaluated first. A window match with

one of these registers directs the access to the respective external area

using the corresponding set of control registers FCONCSx/TCONCSx and

ignoring registers ADDRSELy. An overlapping of windows of this group will

lead to an undefined behaviour.

Priority 3: A match with registers ADDRSELy [y = 1, 3, 5, 7] directs the access to the

respective external area using the corresponding set of control registers

FCONCSy/TCONCSy. An overlapping of windows of this group will lead to

an undefined behaviour. Overlaps with priority 2 ADDRSELx are only

allowed for the (x,y) pairs (2,1), (4,3) and (6,5).

Priority 4: If there is no match with any address select register (neither the hardwired

ones nor the programmable ADDRSEL) the access to the external bus uses

the general set of control registers FCONCS0/TCONCS0 if enabled.

Figure 6-5 Address Window Arbitration

Note: Only the indicated overlaps are allowed. All other overlaps lead to erroneous bus

cycles. E.g. ADDSEL4 may not overlap ADDRSEL2 or ADDRSEL1. The

B
F

0
0
0

0

0
0
0
0
0
0

0
0
8
0
0
0

0
1
0
0
0
0

HHHHH H

C
0
0
0
0
0

1
0
0
0
0
0
0

2

P
ri
o
ri
ty

P
ri
o
ri
ty

CS1

CS2 CS6 CS4

CS3 CS7CS5

CS0

CSSM CSMM

4

3

1

2

3

4

internal I/O

Active Window

Inactive Window

Not external addressable Window

Window reserved for Startup and

Monitor

memory
internal programstartup and

segment 191
trace memory

User Manual

C166S V2

External Bus Controller

User Manual 6-167 V 1.7, 2001-01

hardwired address ranges for the startup memory and the monitor memory are

defined non-overlapping.

6.3.6 Ready Controlled Bus Cycles

6.3.6.1 General

For situations, where the response (access) time of a peripheral is not constant, or where

the programmable wait states are not enough, the C166S V2 EBC provides external bus

cycles that are terminated via a READY input signal. In this case during phase E the

C166S V2 EBC first counts a programmable number of clock cycles (1...32) and starts

in the last wait cycle to monitor the internal READY line (see Figure 6-6) to determine

the actual end of the current bus cycle. The external device drives READY active in order

to indicate that data has been latched (write cycle) or is available (read cycle).

The READY pin is generally enabled by setting the bit RDYDIS in EBCMOD0 to ’0’ in

order to switch the corresponding port pin. Also the polarity of the READY is defined

inside the EBCMOD0 register on the RDYPOL bit.

For a specific access the READY function is enabled via the RDYEN bit in the FCONCSx

registers. With FCONCSx.RDYMOD the READY is handled either in synchronous or in

asynchronous mode (see also Figure 6-6).

When the READY function is enabled for a specific address window, each bus cycle

within this window must be terminated with an active READY signal. Otherwise the

controller hangs until the next reset. This is also the case for an enabled RDYEN but a

disabled READY port pin.

Figure 6-6 External to internal READY conversion

READY int

0

1

async.

sync

FCONCSx.RDYMODx

0

1

EBCMOD0.RDYPOL

READY ext

User Manual

C166S V2

External Bus Controller

User Manual 6-168 V 1.7, 2001-01

6.3.6.2 The Synchronous/Asynchronous READY

The synchronous READY provides the fastest bus cycles, but requires setup and hold

times to be met. The CLKOUT signal should be enabled and may be used by the

peripheral logic to control the READY timing in this case.

The asynchronous READY is less restrictive, but requires one additional wait state

caused by the internal synchronization. As the asynchronous READY is sampled earlier

programmed wait states may be necessary to provide proper bus cycles

A READY signal (especially asynchronous READY) that has been activated by an

external device may be deactivated in response to the trailing (rising) edge of the

respective command (RD or WR).

Figure 6-7 Ready controlled bus cycles

6.3.6.3 Combining the READY function with predefined wait states

Typically an external wait state or READY control logic takes a while to generate the

READY signal when a cycle was started. After a predefined number of clock cycles the

C166S V2 will start checking its READY line to determine the end of the bus cycle.

When using the READY function with so-called ‘normally-ready’ peripherals, it may lead

to erroneous bus cycles, if the READY line is sampled too early. These peripherals pull

their READY output active, while they are idle. When they are accessed, they drive

READY inactive until the bus cycle is complete, then drive it active again. If, however,

the peripheral drives READY inactive a little late, after the first sample point of the

C166S V2, the controller samples an active READY and terminates the current bus cycle

too early. By inserting predefined wait states the first READY sample point can be shifted

to a time, where the peripheral has safely controlled the READY line.

programmed phase E

wait stateswait states

programmed phase E

RD/WR

ALE

async. READY

sync. READY

Bus Cycle with active READY Bus Cycle extended via READY

sampling of READY input not interesting READY cycles

User Manual

C166S V2

External Bus Controller

User Manual 6-169 V 1.7, 2001-01

6.3.7 EBC Idle State

When the external bus interface is enabled, but no external access is currently executed,

the EBC is idle. As long as only internal resources (from a CPU point of view) like RAM,

peripherals or registers, etc. are used, the external bus interface remains unchanged

(see Table 6-3). The external control signals (RD and WR or WRL/WRH if enabled)

remain inactive (high).

6.4 Multi Master Systems

6.4.1 External Bus Arbitration

The C166S V2 supports multi master systems on the external bus by its external bus

arbitration. This bus arbitration allows an external master to request the C166S V2’s bus.

The C166S V2 will release the external bus and will float the data and address bus lines

and force the control signals via pull ups/downs to their inactive state.

6.4.1.1 Initialization of Arbitration

During reset all arbitration pins are tristate, except pin BREQ which is pulled inactive.

After reset the C166S V2 EBC always starts in ‘init mode’ where the external bus is

available but no arbitration is enabled. All arbitration pins are ignored in this state. Other

to the external bus connected C166S V2 EBCs assume to have the bus also, so

potential bus conflicts are not resolved. For a multimaster system the arbitration should

be initialized first before starting any bus access. The EBC can either be chosen as

arbitration master or as arbitration slave by programming the EBCMOD0 bit SLAVE. The

selected mode and the arbitration gets active by the first setting of the HLDEN bit inside

the CPUs PSW register. Afterwards a change of the slave/master mode is not possible

Table 6-3 Status of the External Bus Interface during EBC Idle State

Pins Internal accesses only

AD15 to AD0 Tristate (floating)

A15 to A0 Undefined address (if used for the bus interface)

A23 to A16 Undefined segment address (on selected pins)

CS7 to CS0 Inactive (high)

BHE Level corresponding to last external access

ALE Inactive (low)

RD Inactive (high)

WR/WRL Inactive (high)

WRH Inactive (high)

User Manual

C166S V2

External Bus Controller

User Manual 6-170 V 1.7, 2001-01

without resetting the device. Of course for arbitration the dedicated pins have to be

activated by setting EBCMOD0.ARBEN.

6.4.1.2 Arbitration Master Scheme

If the C166S V2 EBC is configured as arbitration master, it is default owner of the

external bus, controls the arbitration protocol and drives the bus also during idle phases

with no bus requests. To perform the arbitration handshake a HOLD input allows the

request of the external bus from the arbitration master. When the arbitration master

hands over the bus to the requester this is signaled by driving the hold acknowledge pin

HLDA low, which remains at this level until the arbitration slave frees the bus by releasing

its request on the HOLD input. If the arbitration master is not the owner of the bus it treats

the external bus interface as follows:

• Address and data bus(es) float to tristate

• Command lines are pulled high by internal pull-up devices (RD, WR/WRL, BHE/WRH)

• Address latch control line ALE is pulled low by an internal pull-down device

• CSx outputs are pulled high by internal pull-up devices.

In this state the arbitration slave can take over the bus.

If the arbitration master requires the bus again, it can request the bus via the bus request

signal BREQ. As soon as the arbitration master regains the bus it releases the BREQ

signal and drives HLDA to high.

Figure 6-8 Releasing the Bus by the Arbitration Master

HLDA

BHE

ADD, DATA

WR/WRL, RD

CSx,WRH

BREQ

HOLD

not active driven

pull up

high impedance

earliest change

not fixed number of cycles (0 ... n)

User Manual

C166S V2

External Bus Controller

User Manual 6-171 V 1.7, 2001-01

Note: The figure above shows the first possibility for BREQ to get active. The C166S V2

will complete the currently running bus cycle before granting the external bus as

indicated by the broken lines.

Figure 6-9 Regaining the Bus by the Arbitration Master

Note: The falling BREQ edge shows the last chance for BREQ to trigger the indicated
regain-sequence. Even if BREQ is activated earlier the regain-sequence is

initiated by HOLD going high. Please note that HOLD may also be deactivated

without the C166S V2 requesting the bus.

6.4.1.3 Arbitration Slave Scheme

If the C166S V2 EBC is configured as arbitration slave it is by default not owner of the

external bus and has to request the bus first. As long as it has not finished all its queued

requests and the arbitration master is not requesting the bus the arbitration slave stays

owner of the bus. For the description of the signal handling of the handshake see

Chapter 6.4.1.2. For the arbitration slave the hold acknowledge pin HLDA is configured

as input.

6.4.1.4 Locking the Bus

If an application in a multimaster system requires a sequence of undisturbed bus access

it has the possibility (independently of being arbitration slave or master) to lock1) the bus

1) It is not allowed to lock the bus by resetting the EBCMOD0.ARBEN bit, as this can lead to bus conflicts.

ADD, BHE

WR/WRL, RD

CSx,WRH

BREQ

HLDA

HOLD

not active driven

latest possible change

no BREQ request

pull up

high impedance

User Manual

C166S V2

External Bus Controller

User Manual 6-172 V 1.7, 2001-01

by setting the PSW bit HLDEN to ‘0’. In this case the looked C166S V2 EBC will not

answer to HOLD requests from other external bus master until HLDEN is set to ‘1’ again.

Of course a looked bus master not owning the bus can request the external bus. If a

master and a slave are requesting the external bus at the same time for several

accesses, they toggle the ownership after each access cycle if the bus is not locked.

6.4.2 Connecting Multimaster Systems

Two C166S V2s where one is configured as arbitration master and the other as

arbitration slave can be connected directly together as shown in Figure 6-10. As both

EBCs assume after reset to own the external bus, the ‘slave’ CPU has to be released

from reset and initialized first, before starting the ‘master’ CPU. The other way is to start

both systems at the same time but then both EBC must be configured and the

PSW.HLDEN bits set before the first external bus request.

Figure 6-10 Connecting two C166S V2s using Master/Slave Arbitration

When more than two C166S V2s or other compatible bus masters are connected

together additional interconnection/arbitration logic is required. In this case the slave/

master selection has to be done according to the introduced logic.

C
1

6
6

S
V

2
 i

n

M
a

s
te

r
M

o
d

e

BREQ

HLDA

HOLD

C
1

6
6

S
V

2
 i

n

S
la

v
e

 M
o

d
e

BREQ

HLDA

HOLD

User Manual

C166S V2

External Bus Controller

User Manual 6-173 V 1.7, 2001-01

6.5 Fastest possible external access

The following four figures show the principal possible fastest access type for the EBC.

Figure 6-11 Fastest Read Cycle Demultiplexed Bus

Figure 6-12 Fastest Write Cycle Demultiplexed Bus

ALE

ADDR, CS

RD

valid

DATA in valid

b e

CLK

ALE

ADDR, CS

WR

valid

DATA out valid

b e

CLK

User Manual

C166S V2

External Bus Controller

User Manual 6-174 V 1.7, 2001-01

Figure 6-13 Fastest Read Cycle Multiplexed Bus

Figure 6-14 Fastest Write Cycle Multiplexed Bus

ALE

ADDR, CS

RD

valid

muxed Address out / DATA in d.valid

b f

CLK

add valid

e

ALE

ADDR, CS

WR

valid

muxed Address out / DATA out valid

b e

CLK

addr valid

User Manual

C166S V2

Instruction Set

User Manual 7-175 V 1.7, 2001-01

7 Instruction Set

7.1 Short Instruction Summary

The following compressed cross-reference tables quickly identify specific instructions

and provide basic information about them Two ordering schemes are included:

The first table (two pages) is a compressed cross-reference table that quickly associates

specific hexadecimal opcodes with the corresponding mnemonics.

The second table lists instructions by their mnemonic and identifies the addressing

modes that may be used with the specific instructions and indicates the instruction length

for the selected addressing mode. This reference helps to optimize instruction

sequences in terms of code size and/or execution time.

Description Levels

In the following sections the instructions are compiled according to different criteria in

order to provide different levels of precision:

• Cross Reference Tables summarize all instructions in condensed tables

• The Instruction Set Summary groups the individual instructions into functional

groups

• The Opcode Table references the instructions by their hexadecimal opcode

User Manual

C166S V2

Instruction Set

User Manual 7-176 V 1.7, 2001-01

0x 1x 2x 3x 4x 5x 6x 7x

x0 ADD ADDC SUB SUBC CMP XOR AND OR

x1 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x2 ADD ADDC SUB SUBC CMP XOR AND OR

x3 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x4 ADD ADDC SUB SUBC - XOR AND OR

x5 ADDB ADDCB SUBB SUBCB - XORB ANDB ORB

x6 ADD ADDC SUB SUBC CMP XOR AND OR

x7 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x8 ADD ADDC SUB SUBC CMP XOR AND OR

x9 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

xA BFLDL BFLDH BCMP BMOVN BMOV BOR BAND BXOR

xB MUL MULU PRIOR - DIV DIVU DIVL DIVLU

xC ROL ROL ROR ROR SHL SHL SHR SHR

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET

User Manual

C166S V2

Instruction Set

User Manual 7-177 V 1.7, 2001-01

8x 9x Ax Bx Cx Dx Ex Fx

x0 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS MOV MOV

x1 NEG CPL NEGB CPLB - AT/

EXTR

MOVB MOVB

x2 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS PCALL MOV

x3 CoXXX CoXXX CoXXX Co

STORE

Co

STORE

CMOV - MOVB

x4 MOV MOV MOVB MOVB MOV MOV MOVB MOVB

x5 ENWDT - DIS

WDT

EINIT MOVBZ MOVBS - -

x6 CMPI1 CMPI2 CMPD1 CMPD2 SCXT SCXT MOV MOV

x7 IDLE PWRDN SRV

WDT

SRST - EXTP/S/

R

MOVB MOVB

x8 MOV MOV MOV MOV MOV MOV MOV -

x9 MOVB MOVB MOVB MOVB MOVB MOVB MOVB -

xA JB JNB JBC JNBS CALLA CALLS JMPA JMPS

xB - TRAP CALLI CALLR RET RETS RETP RETI

xC SBRK JMPI ASHR ASHR NOP EXTP/S/

R

PUSH POP

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET

User Manual

C166S V2

Instruction Set

User Manual 7-178 V 1.7, 2001-01

7.2 Instruction Set Summary

This section summarizes the instructions and lists them by functional class. This enables

quick identification of the right instruction(s) for a specific function.

The following notes apply to this summary:

Data Addressing Modes

Rw: – Word GPR (R0, R1, … , R15)

Rb: – Byte GPR (RL0, RH0, …, RL7, RH7)

IDX: – Address Pointer IDX (IDX0, IDX1)

QX: – Address Offset Register QX (QX0, QX1)

QR: – Address Offset Register QR (QR0, QR1)

reg: – SFR or GPR

(in case of a byte operation on an SFR, only the low byte can be

accessed via ‘reg’)

mem: – Direct word or byte memory location

[…]: – Indirect word or byte memory location

(Any word GPR can be used as indirect address pointer, except for the

arithmetic, logical and compare instructions, where only R0 to R3 are

allowed)

bitaddr: – Direct bit in the bit-addressable memory area

bitoff: – Direct word in the bit-addressable memory area

#data: – Immediate constant

(The number of significant bits which can be specified by the user is

represented by the respective appendix ’x’)

#mask8: – Immediate 8-bit mask used for bit-field modifications

User Manual

C166S V2

Instruction Set

User Manual 7-179 V 1.7, 2001-01

Table 7-1 shows the various combinations of pointer post-modification for the

addressing modes of the CoXXX instructions. The symbols “[Rwn*∗]” and “[IDXi∗]” will be

used to refer to these addressing modes.

Multiply and Divide Operations

The MDL and MDH registers are implicit source and/or destination operands of the

multiply and divide instructions.

Branch Target Addressing Modes

caddr: – Direct 16-bit jump target address (Updates the Instruction Pointer)

seg: – Direct 2-bit segment address

(Updates the Code Segment Pointer)

rel: – Signed 8-bit jump target word offset address relative to the Instruction

Pointer of the following instruction

#trap7: – Immediate 7-bit trap or interrupt number.

Table 7-1 Pointer Post-Modification Combinations for IDXi and Rwn

Symbol Mnemonic Address Pointer Operation

“[IDXi⊗]” stands for [IDXi] (IDXi) ← (IDXi) (no-operation)

[IDXi+] (IDXi) ← (IDXi) +2 (i=0,1)

[IDXi -] (IDXi) ← (IDXi) -2 (i=0,1)

[IDXi + QXj] (IDXi) ← (IDXi) + (QXj) (i, j =0,1)

[IDXi - QXj] (IDXi) ← (IDXi) - (QXj) (i, j =0,1)

“[Rwn⊗]” stands for [Rwn] (Rwn) ← (Rwn) (no-operation)

[Rwn+] (Rwn) ← (Rwn) +2 (n=0-15)

[Rwn-] (Rwn) ← (Rwn) -2 (n=0-15)

[Rwn+QRj] (Rwn) ← (Rwn) + (QRj) (n=0-15;j =0,1)

[Rwn - QRj] (Rwn) ← (Rwn) - (QRj) (n=0-15; j =0,1)

User Manual

C166S V2

Instruction Set

User Manual 7-180 V 1.7, 2001-01

Extension Operations

The EXT* instructions override the standard DPP addressing scheme:

#pag10: – Immediate 10-bit page address.

#seg8: – Immediate 8-bit segment address.

Branch Condition Codes

cc: Symbolically specifiable condition codes

cc_UC –Unconditional

cc_Z –Zero

cc_NZ –Not Zero

cc_V –Overflow

cc_NV –No Overflow

cc_N –Negative

cc_NN –Not Negative

cc_C –Carry

cc_NC –No Carry

cc_EQ –Equal

cc_NE –Not Equal

cc_ULT –Unsigned Less Than

cc_ULE –Unsigned Less Than or Equal

cc_UGE –Unsigned Greater Than or Equal

cc_UGT –Unsigned Greater Than

cc_SLE –Signed Less Than or Equal

cc_SGE –Signed Greater Than or Equal

cc_SGT –Signed Greater Than

cc_NET –Not Equal and Not End-of-Table

cc_nusr0 –USR-bit 0 is cleared1)

cc_nusr1 –USR-bit 1 is cleared1)

cc_usr0 –USR-bit 0 is set1)

cc_usr1 –USR-bit 1 is set1)

1) Only usable with the JMPA and CALLA instructions

User Manual

C166S V2

Instruction Set

User Manual 7-181 V 1.7, 2001-01

1) Byte oriented instructions (suffix ‘B’) use Rb instead of Rw (not with [Rwn]!).
2) Byte oriented instructions (suffix ‘B’) use #data8 instead of #data16.

Mnemonic Addressing ModesBytes Mnemonic Addressing ModesBytes

ADD[B]
ADDC[B]
AND[B]
OR[B]
SUB[B]
SUBC[B]
XOR[B]

Rwn Rwm 1)

Rwn [Rwi] 1)

Rwn [Rwi+] 1)

Rwn #data3 1)

reg #data16
reg mem
mem reg

2
2
2
2

4
4
4

CPL[B]
NEG[B]

Rwn 1) 2

DIV
DIVL
DIVLU
DIVU

Rwn 2

MUL
MULU

Rwn Rwm 2

ASHR
ROL / ROR
SHL / SHR

Rwn Rwm
Rwn #data4

2
2

CMPD1/2
CMPI1/2

Rwn #data4
Rwn #data16
Rwn mem

2
4
4

BAND
BCMP
BMOV
BMOVN
BOR /
BXOR

bitaddrZ.z bitaddrQ.q 4 CMP[B] Rwn Rwm 1)

Rwn [Rwi] 1)

Rwn [Rwi+] 1)

Rwn #data3 1)

reg #data16 2)

reg mem

2
2
2
2
4
4

BCLR
BSET

bitaddrQ.q 2 CALLA
JMPA

cc caddr 4

BFLDH
BFLDL

bitoffQ #mask8 #data8 4 CALLI
JMPI

cc [Rwn] 2

MOV[B] Rwn Rwm 1)

Rwn #data4 1)

Rwn [Rwm] 1)

Rwn [Rwm+] 1)

[Rwm] Rwn 1)

[-Rwm] Rwn 1)

[Rwn] [Rwm]
[Rwn+] [Rwm]
[Rwn] [Rwm+]

reg #data16 2)

Rwn [Rwm+#d16] 1)

[Rwm+#d16] Rwn 1)

[Rwn] mem
mem [Rwn]
reg mem
mem reg

2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4

CALLS
JMPS

seg caddr 4

CALLR rel 2

JMPR cc rel 2

JB
JBC
JNB
JNBS

bitaddrQ.q rel 4

PCALL reg caddr 4

POP
PUSH
RETP

reg 2

SCXT reg #data16
reg mem

4
4

PRIOR Rwn Rwm 2

MOVBS
MOVBZ

Rwn Rbm
reg mem
mem reg

2
4
4

TRAP #trap7 2

ATOMIC
EXTR

#irang2 2

EXTS
EXTSR

Rwm #irang2
#seg #irang2

2
4

EXTP
EXTPR

Rwm #irang2
#pag #irang2

2
4

NOP
RET
RETI
RETS
SBRK

- 2 SRST/IDLE
PWRDN
SRVWDT
DISWDT
ENWDT
EINIT

- 4

User Manual

C166S V2

Instruction Set

User Manual 7-182 V 1.7, 2001-01

Instruction Set Summary

Mnemonic Description Bytes

Arithmetic Operations

ADD Rw, Rw Add direct word GPR to direct GPR 2

ADD Rw, [Rw] Add indirect word memory to direct GPR 2

ADD Rw, [Rw +] Add indirect word memory to direct GPR and post-

increment source pointer by 2

2

ADD Rw, #data3 Add immediate word data to direct GPR 2

ADD reg, #data16 Add immediate word data to direct register 4

ADD reg, mem Add direct word memory to direct register 4

ADD mem, reg Add direct word register to direct memory 4

ADDB Rb, Rb Add direct byte GPR to direct GPR 2

ADDB Rb, [Rw] Add indirect byte memory to direct GPR 2

ADDB Rb, [Rw +] Add indirect byte memory to direct GPR and

post-increment source pointer by 1

2

ADDB Rb, #data3 Add immediate byte data to direct GPR 2

ADDB reg, #data8 Add immediate byte data to direct register 4

ADDB reg, mem Add direct byte memory to direct register 4

ADDB mem, reg Add direct byte register to direct memory 4

ADDC Rw, Rw Add direct word GPR to direct GPR with Carry 2

ADDC Rw, [Rw] Add indirect word memory to direct GPR with Carry 2

ADDC Rw, [Rw +] Add indirect word memory to direct GPR with Carry and

post-increment source pointer by 2

2

ADDC Rw, #data3 Add immediate word data to direct GPR with Carry 2

ADDC reg, #data16 Add immediate word data to direct register with Carry 4

ADDC reg, mem Add direct word memory to direct register with Carry 4

ADDC mem, reg Add direct word register to direct memory with Carry 4

ADDCB Rb, Rb Add direct byte GPR to direct GPR with Carry 2

ADDCB Rb, [Rw] Add indirect byte memory to direct GPR with Carry 2

ADDCB Rb, [Rw +] Add indirect byte memory to direct GPR with Carry and

post-increment source pointer by 1

2

ADDCB Rb, #data3 Add immediate byte data to direct GPR with Carry 2

ADDCB reg, #data8 Add immediate byte data to direct register with Carry 4

ADDCB reg, mem Add direct byte memory to direct register with Carry 4

User Manual

C166S V2

Instruction Set

User Manual 7-183 V 1.7, 2001-01

Arithmetic Operations (cont’d)

ADDCB mem, reg Add direct byte register to direct memory with Carry 4

SUB Rw, Rw Subtract direct word GPR from direct GPR 2

SUB Rw, [Rw] Subtract indirect word memory from direct GPR 2

SUB Rw, [Rw +] Subtract indirect word memory from direct GPR and

post-increment source pointer by 2

2

SUB Rw, #data3 Subtract immediate word data from direct GPR 2

SUB reg, #data16 Subtract immediate word data from direct register 4

SUB reg, mem Subtract direct word memory from direct register 4

SUB mem, reg Subtract direct word register from direct memory 4

SUBB Rb, Rb Subtract direct byte GPR from direct GPR 2

SUBB Rb, [Rw] Subtract indirect byte memory from direct GPR 2

SUBB Rb, [Rw +] Subtract indirect byte memory from direct GPR and

post-increment source pointer by 1

2

SUBB Rb, #data3 Subtract immediate byte data from direct GPR 2

SUBB reg, #data8 Subtract immediate byte data from direct register 4

SUBB reg, mem Subtract direct byte memory from direct register 4

SUBB mem, reg Subtract direct byte register from direct memory 4

SUBC Rw, Rw Subtract direct word GPR from direct GPR with Carry 2

SUBC Rw, [Rw] Subtract indirect word memory from direct GPR with Carry 2

SUBC Rw, [Rw +] Subtract indirect word memory from direct GPR with

Carry and post-increment source pointer by 2

2

SUBC Rw, #data3 Subtract immediate word data from direct GPR with Carry 2

SUBC reg, #data16 Subtract immediate word data from direct register with

Carry

4

SUBC reg, mem Subtract direct word memory from direct register with Carry 4

SUBC mem, reg Subtract direct word register from direct memory with Carry 4

SUBCB Rb, Rb Subtract direct byte GPR from direct GPR with Carry 2

SUBCB Rb, [Rw] Subtract indirect byte memory from direct GPR with Carry 2

SUBCB Rb, [Rw +] Subtract indirect byte memory from direct GPR with Carry

and post-increment source pointer by 1

2

SUBCB Rb, #data3 Subtract immediate byte data from direct GPR with Carry 2

SUBCB reg, #data8 Subtract immediate byte data from direct register with Carry 4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-184 V 1.7, 2001-01

Arithmetic Operations (cont’d)

SUBCB reg, mem Subtract direct byte memory from direct register with Carry 4

SUBCB mem, reg Subtract direct byte register from direct memory with Carry 4

MUL Rw, Rw Signed multiply direct GPR by direct GPR (16-16-bit) 2

MULU Rw, Rw Unsigned multiply direct GPR by direct GPR (16-16-bit) 2

DIV Rw Signed divide register MDL by direct GPR (16-/16-bit) 2

DIVL Rw Signed long divide register MD by direct GPR (32-/16-bit) 2

DIVLU Rw Unsigned long divide register MD by direct GPR

(32-/16-bit)

2

DIVU Rw Unsigned divide register MDL by direct GPR (16-/16-bit) 2

CPL Rw Complement direct word GPR 2

CPLB Rb Complement direct byte GPR 2

NEG Rw Negate direct word GPR 2

NEGB Rb Negate direct byte GPR 2

Logical Instructions

AND Rw, Rw Bitwise AND direct word GPR with direct GPR 2

AND Rw, [Rw] Bitwise AND indirect word memory with direct GPR 2

AND Rw, [Rw +] Bitwise AND indirect word memory with direct GPR and

post-increment source pointer by 2

2

AND Rw, #data3 Bitwise AND immediate word data with direct GPR 2

AND reg, #data16 Bitwise AND immediate word data with direct register 4

AND reg, mem Bitwise AND direct word memory with direct register 4

AND mem, reg Bitwise AND direct word register with direct memory 4

ANDB Rb, Rb Bitwise AND direct byte GPR with direct GPR 2

ANDB Rb, [Rw] Bitwise AND indirect byte memory with direct GPR 2

ANDB Rb, [Rw +] Bitwise AND indirect byte memory with direct GPR

and post-increment source pointer by 1

2

ANDB Rb, #data3 Bitwise AND immediate byte data with direct GPR 2

ANDB reg, #data8 Bitwise AND immediate byte data with direct register 4

ANDB reg, mem Bitwise AND direct byte memory with direct register 4

ANDB mem, reg Bitwise AND direct byte register with direct memory 4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-185 V 1.7, 2001-01

Logical Instructions (cont’d)

OR Rw, Rw Bitwise OR direct word GPR with direct GPR 2

OR Rw, [Rw] Bitwise OR indirect word memory with direct GPR 2

OR Rw, [Rw +] Bitwise OR indirect word memory with direct GPR

and post-increment source pointer by 2

2

OR Rw, #data3 Bitwise OR immediate word data with direct GPR 2

OR reg, #data16 Bitwise OR immediate word data with direct register 4

OR reg, mem Bitwise OR direct word memory with direct register 4

OR mem, reg Bitwise OR direct word register with direct memory 4

ORB Rb, Rb Bitwise OR direct byte GPR with direct GPR 2

ORB Rb, [Rw] Bitwise OR indirect byte memory with direct GPR 2

ORB Rb, [Rw +] Bitwise OR indirect byte memory with direct GPR and

post-increment source pointer by 1

2

ORB Rb, #data3 Bitwise OR immediate byte data with direct GPR 2

ORB reg, #data8 Bitwise OR immediate byte data with direct register 4

ORB reg, mem Bitwise OR direct byte memory with direct register 4

ORB mem, reg Bitwise OR direct byte register with direct memory 4

XOR Rw, Rw Bitwise XOR direct word GPR with direct GPR 2

XOR Rw, [Rw] Bitwise XOR indirect word memory with direct GPR 2

XOR Rw, [Rw +] Bitwise XOR indirect word memory with direct GPR and

post-increment source pointer by 2

2

XOR Rw, #data3 Bitwise XOR immediate word data with direct GPR 2

XOR reg, #data16 Bitwise XOR immediate word data with direct register 4

XOR reg, mem Bitwise XOR direct word memory with direct register 4

XOR mem, reg Bitwise XOR direct word register with direct memory 4

XORB Rb, Rb Bitwise XOR direct byte GPR with direct GPR 2

XORB Rb, [Rw] Bitwise XOR indirect byte memory with direct GPR 2

XORB Rb, [Rw +] Bitwise XOR indirect byte memory with direct GPR and

post-increment source pointer by 1

2

XORB Rb, #data3 Bitwise XOR immediate byte data with direct GPR 2

XORB reg, #data8 Bitwise XOR immediate byte data with direct register 4

XORB reg, mem Bitwise XOR direct byte memory with direct register 4

XORB mem, reg Bitwise XOR direct byte register with direct memory 4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-186 V 1.7, 2001-01

Boolean Bit Manipulation Operations

BCLR bitaddr Clear direct bit 2

BSET bitaddr Set direct bit 2

BMOV bitaddr, bitaddr Move direct bit to direct bit 4

BMOVN bitaddr, bitaddr Move negated direct bit to direct bit 4

BAND bitaddr, bitaddr AND direct bit with direct bit 4

BOR bitaddr, bitaddr OR direct bit with direct bit 4

BXOR bitaddr, bitaddr XOR direct bit with direct bit 4

BCMP bitaddr, bitaddr Compare direct bit to direct bit 4

BFLDH bitoff, #mask8,

#data8

Bitwise modify masked high byte of bit-addressable

direct word memory with immediate data

4

BFLDL bitoff, #mask8,

#data8

Bitwise modify masked low byte of bit-addressable

direct word memory with immediate data

4

CMP Rw, Rw Compare direct word GPR to direct GPR 2

CMP Rw, [Rw] Compare indirect word memory to direct GPR 2

CMP Rw, [Rw +] Compare indirect word memory to direct GPR and

post-increment source pointer by 2

2

CMP Rw, #data3 Compare immediate word data to direct GPR 2

CMP reg, #data16 Compare immediate word data to direct register 4

CMP reg, mem Compare direct word memory to direct register 4

CMPB Rb, Rb Compare direct byte GPR to direct GPR 2

CMPB Rb, [Rw] Compare indirect byte memory to direct GPR 2

CMPB Rb, [Rw +] Compare indirect byte memory to direct GPR and

post-increment source pointer by 1

2

CMPB Rb, #data3 Compare immediate byte data to direct GPR 2

CMPB reg, #data8 Compare immediate byte data to direct register 4

CMPB reg, mem Compare direct byte memory to direct register 4

Compare and Loop Control Instructions

CMPD1 Rw, #data4 Compare immediate word data to direct GPR and

decrement GPR by 1

2

CMPD1 Rw, #data16 Compare immediate word data to direct GPR and

decrement GPR by 1

4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-187 V 1.7, 2001-01

Compare and Loop Control Instructions (cont’d)

CMPD1 Rw, mem Compare direct word memory to direct GPR and

decrement GPR by 1

4

CMPD2 Rw, #data4 Compare immediate word data to direct GPR and

decrement GPR by 2

2

CMPD2 Rw, #data16 Compare immediate word data to direct GPR and

decrement GPR by 2

4

CMPD2 Rw, mem Compare direct word memory to direct GPR and

decrement GPR by 2

4

CMPI1 Rw, #data4 Compare immediate word data to direct GPR and

increment GPR by 1

2

CMPI1 Rw, #data16 Compare immediate word data to direct GPR and

increment GPR by 1

4

CMPI1 Rw, mem Compare direct word memory to direct GPR and

increment GPR by 1

4

CMPI2 Rw, #data4 Compare immediate word data to direct GPR and

increment GPR by 2

2

CMPI2 Rw, #data16 Compare immediate word data to direct GPR and

increment GPR by 2

4

CMPI2 Rw, mem Compare direct word memory to direct GPR and

increment GPR by 2

4

Prioritize Instruction

PRIOR Rw, Rw Determine number of shift cycles to normalize direct

word GPR and store result in direct word GPR

2

Shift and Rotate Instructions

SHL Rw, Rw Shift left direct word GPR;

number of shift cycles specified by direct GPR

2

SHL Rw, #data4 Shift left direct word GPR;

number of shift cycles specified by immediate data

2

SHR Rw, Rw Shift right direct word GPR;

number of shift cycles specified by direct GPR

2

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-188 V 1.7, 2001-01

Shift and Rotate Instructions (cont’d)

SHR Rw, #data4 Shift right direct word GPR;

number of shift cycles specified by immediate data

2

ROL Rw, Rw Rotate left direct word GPR;

number of shift cycles specified by direct GPR

2

ROL Rw, #data4 Rotate left direct word GPR;

number of shift cycles specified by immediate data

2

ROR Rw, Rw Rotate right direct word GPR;

number of shift cycles specified by direct GPR

2

ROR Rw, #data4 Rotate right direct word GPR;

number of shift cycles specified by immediate data

2

ASHR Rw, Rw Arithmetic (sign bit) shift right direct word GPR;

number of shift cycles specified by direct GPR

2

ASHR Rw, #data4 Arithmetic (sign bit) shift right direct word GPR;

number of shift cycles specified by immediate data

2

Data Movement

MOV Rw, Rw Move direct word GPR to direct GPR 2

MOV Rw, #data4 Move immediate word data to direct GPR 2

MOV reg, #data16 Move immediate word data to direct register 4

MOV Rw, [Rw] Move indirect word memory to direct GPR 2

MOV Rw, [Rw +] Move indirect word memory to direct GPR and

post-increment source pointer by 2

2

MOV [Rw], Rw Move direct word GPR to indirect memory 2

MOV [-Rw], Rw Pre-decrement destination pointer by 2 and move direct

word GPR to indirect memory

2

MOV [Rw], [Rw] Move indirect word memory to indirect memory 2

MOV [Rw +], [Rw] Move indirect word memory to indirect memory and

post-increment destination pointer by 2

2

MOV [Rw], [Rw +] Move indirect word memory to indirect memory and

post-increment source pointer by 2

2

MOV Rw,

[Rw + #data16]

Move indirect word memory by base plus constant to

direct GPR

4

MOV [Rw + #data16],

Rw

Move direct word GPR to indirect memory by base plus

constant

4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-189 V 1.7, 2001-01

Data Movement (cont’d)

MOV [Rw], mem Move direct word memory to indirect memory 4

MOV mem, [Rw] Move indirect word memory to direct memory 4

MOV reg, mem Move direct word memory to direct register 4

MOV mem, reg Move direct word register to direct memory 4

MOVB Rb, Rb Move direct byte GPR to direct GPR 2

MOVB Rb, #data4 Move immediate byte data to direct GPR 2

MOVB reg, #data8 Move immediate byte data to direct register 4

MOVB Rb, [Rw] Move indirect byte memory to direct GPR 2

MOVB Rb, [Rw +] Move indirect byte memory to direct GPR and

post-increment source pointer by 1

2

MOVB [Rw], Rb Move direct byte GPR to indirect memory 2

MOVB [-Rw], Rb Pre-decrement destination pointer by 1 and move

direct byte GPR to indirect memory

2

MOVB [Rw], [Rw] Move indirect byte memory to indirect memory 2

MOVB [Rw +], [Rw] Move indirect byte memory to indirect memory and

post-increment destination pointer by 1

2

MOVB [Rw], [Rw +] Move indirect byte memory to indirect memory and

post-increment source pointer by 1

2

MOVB Rb,

[Rw + #data16]

Move indirect byte memory by base plus constant to

direct GPR

4

MOVB [Rw + #data16],

Rb

Move direct byte GPR to indirect memory by base plus

constant

4

MOVB [Rw], mem Move direct byte memory to indirect memory 4

MOVB mem, [Rw] Move indirect byte memory to direct memory 4

MOVB reg, mem Move direct byte memory to direct register 4

MOVB mem, reg Move direct byte register to direct memory 4

MOVBS Rw, Rb Move direct byte GPR with sign extension to direct

word GPR

2

MOVBS reg, mem Move direct byte memory with sign extension to direct

word register

4

MOVBS mem, reg Move direct byte register with sign extension to direct

word memory

4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-190 V 1.7, 2001-01

Data Movement (cont’d)

MOVBZ Rw, Rb Move direct byte GPR with zero extension to direct

word GPR

2

MOVBZ reg, mem Move direct byte memory with zero extension to direct

word register

4

MOVBZ mem, reg Move direct byte register with zero extension to direct

word memory

4

Jump and Call Operations

JMPA cc, caddr Jump absolute if condition is met 4

JMPI cc, [Rw] Jump indirect if condition is met 2

JMPR cc, rel Jump relative if condition is met 2

JMPS seg, caddr Jump absolute to a code segment 4

JB bitaddr, rel Jump relative if direct bit is set 4

JBC bitaddr, rel Jump relative and clear bit if direct bit is set 4

JNB bitaddr, rel Jump relative if direct bit is not set 4

JNBS bitaddr, rel Jump relative and set bit if direct bit is not set 4

CALLA cc, caddr Call absolute subroutine if condition is met 4

CALLI cc, [Rw] Call indirect subroutine if condition is met 2

CALLR rel Call relative subroutine 2

CALLS seg, caddr Call absolute subroutine in any code segment 4

PCALL reg, caddr Push direct word register onto system stack and call

absolute subroutine

4

TRAP #trap7 Call interrupt service routine via immediate trap number 2

System Stack Operations

POP reg Pop direct word register from system stack 2

PUSH reg Push direct word register onto system stack 2

SCXT reg, #data16 Push direct word register onto system stack und update

register with immediate data

4

SCXT reg, mem Push direct word register onto system stack und update

register with direct memory

4

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-191 V 1.7, 2001-01

Return Operations

RET Return from intra-segment subroutine 2

RETS Return from inter-segment subroutine 2

RETP reg Return from intra-segment subroutine and pop direct

word register from system stack

2

RETI Return from interrupt service subroutine 2

System Control

SRST Software Reset 4

SBRK Software Break 2

IDLE Enter Idle Mode 4

PWRDN Enter Power Down Mode

(supposes NMI-pin being low)

4

SRVWDT Service Watchdog Timer 4

DISWDT Disable Watchdog Timer 4

ENWDT Enable Watchdog Timer 4

EINIT Signify End-of-Initialization on RSTOUT-pin 4

ATOMIC #irang2 Begin ATOMIC sequence *) 2

EXTR #irang2 Begin EXTended Register sequence *) 2

EXTP Rw, #irang2 Begin EXTended Page sequence *) 2

EXTP #pag10, #irang2 Begin EXTended Page sequence *) 4

EXTPR Rw, #irang2 Begin EXTended Page and Register sequence *) 2

EXTPR #pag10, #irang2 Begin EXTended Page and Register sequence *) 4

EXTS Rw, #irang2 Begin EXTended Segment sequence *) 2

EXTS #seg8, #irang2 Begin EXTended Segment sequence *) 4

EXTSR Rw, #irang2 Begin EXTended Segment and Register sequence *) 2

EXTSR #seg8, #irang2 Begin EXTended Segment and Register sequence *) 4

Miscellaneous

NOP Null operation 2

Instruction Set Summary (cont’d)

Mnemonic Description Bytes

User Manual

C166S V2

Instruction Set

User Manual 7-192 V 1.7, 2001-01

7.3 Instruction Opcodes

This section lists the C166S V2 CPU instructions by hexadecimal opcodes to help

identify specific instructions when reading executable code, ie. during the debugging

phase.

Notes for Opcode Lists

• These instructions are encoded by means of additional bits in the operand field of the

instruction

x0H – x7H: Rw, #data3 or Rb, #data3

x8H – xBH: Rw, [Rw] or Rb, [Rw]

xCH – xFH: Rw, [Rw +] or Rb, [Rw +]

For these instructions, only the lowest four GPRs (R0 to R3) can be used as indirect

address pointers.

• These instructions are encoded by means of additional bits in the operand field of the

instruction

00xx.xxxxB: EXTS or ATOMIC

01xx.xxxxB: EXTP

10xx.xxxxB: EXTSR or EXTR

11xx.xxxxB: EXTPR

Notes on the JMPR Instructions

The condition code to be tested for the JMPR instructions is specified by the opcode.

Two mnemonic representation alternatives exist for some of the condition codes.

Notes on the JMPA and CALLA Instructions

For JMPA+/- and CALLA+/- instructions, a static user programmable prediction scheme

is used. If bit 8 (’a’) of the instruction long word is cleared, then the branch is assumed

‘taken’. If it is set, then the branch is assumed ‘not taken’. The user controls bit 8 value

by entering ’+’ or ’-’ in the instruction mnemonics. This bit can be also set/cleared by the

Assembler for JMPA and CALLA instructions depending on the jump condition.

For JMPA instruction, a pre-fetch hint bit is used (the instruction bit 9 ’l’). This bit is

required by the fetch unit to deal efficiently with short backward loops. It must be set if 0

< IP_jmpa - IP_target <= 32, where IP_jmpa is the address of the JMPA instruction and

IP_target is the target address of the JMPA. Otherwise, bit 9 must be cleared.

Notes on the BCLR and BSET Instructions

The position of the bit to be set or cleared is specified by the opcode. The operand

‘bitoff.n’ (n = 0 to 15) refers to a particular bit within a bit-addressable word.

User Manual

C166S V2

Instruction Set

User Manual 7-193 V 1.7, 2001-01

Notes on CoXXX instructions

All CoXXX instructions have a 3-bit wide extended control field ’rrr’ in the operand field

to control the MRW repeat counter. It is located within the CoXXX instructions at bit

positions [31:29].

– ‘000’ -> regular CoXXX instruction.

– ‘001’ -> RESERVED

– ‘010’ -> ‘- USR0 CoXXX’ instruction.

– ‘011’ -> ‘- USR1 CoXXX’ instruction.

– ’1xx’ -> RESERVED.

Notes on CoXXX instructions using indirect addressing modes

These CoXXX instructions have extended control fields in the operand field to specify

the special indirect addressing mode.

Bitfield ’X’ is 4-bits wide and is located within CoXXX instructions at bit positions [15:12].

Bit [15] specifies one of the two IDX address pointers; the bitfield [14:12] specifies the

operation concerning the IDX pointer.

Bit[15]:

– ‘0’ -> IDX0

– ‘1’ -> IDX1

Bitfield[14:12]

– ‘000’ -> RESERVED

– ‘001’ -> no-operation

– ‘010’ -> IDX +2

– ‘011’ -> IDX -2

– ’100’ -> IDX + QX0

– ’101’ -> IDX - QX0

– ’110’ -> IDX + QX1

– ’111’ -> IDX - QX1

Bitfield ’qqq’ is 3-bits wide and is located within CoXXX instructions at bit positions

[26:24]. It specifies the operation concerning the Rw pointer.

Bitfield[26:24]

– ‘000’ -> RESERVED

– ‘001’ -> no-operation

– ‘010’ -> Rw +2

– ‘011’ -> Rw -2

– ’100’ -> Rw + QR0

– ’101’ -> Rw - QR0

– ’110’ -> Rw + QR1

– ’111’ -> Rw - QR1

User Manual

C166S V2

Instruction Set

User Manual 7-194 V 1.7, 2001-01

Notes on the Undefined Opcodes

A hardware trap occurs when one of the undefined opcodes signified by ‘----’ is decoded

by the CPU.

In the following table used symbols for instruction cycle times:

reg 1 cycle, if short register addressing uses GPR

2 cycles, else

bit 1 cycle if at least one bit address is a GPR

2 cycles, else

co 1 to 2 cycle (see table for MAC instructions)

0-1 0 cycles, if branch is executed zerocycle

1 cycle, else

2-3 2 cycles, if CPUCON1.SGTDIS = 1

3 cycles, else

5-6 5 cycles, if CPUCON1.SGTDIS = 1

6 cycles, else

4+15 4 visible cycles to calculate PSW for division,

plus 15 invisible cycle where the result is not available

1-31 1 to 31 cycles for ’multicycle’ NOP (opcode CC 000d:dddd)

User Manual

C166S V2

Instruction Set

User Manual 7-195 V 1.7, 2001-01

Hex-
code

Bytes/
Cycles

Mnemonic Operands Hex-

code

Bytes/
Cycles

Mnemonic Operands

00 2/1 ADD Rw, Rw 20 2/1 SUB Rw, Rw

01 2/1 ADDB Rb, Rb 21 2/1 SUBB Rb, Rb

02 4/reg ADD reg, mem 22 4/reg SUB reg, mem

03 4/reg ADDB reg, mem 23 4/reg SUBB reg, mem

04 4/reg ADD mem, reg 24 4/reg SUB mem, reg

05 4/reg ADDB mem, reg 25 4/reg SUBB mem, reg

06 4/1 ADD reg, #data16 26 4/1 SUB reg, #data16

07 4/1 ADDB reg, #data8 27 4/1 SUBB reg, #data8

08 2/1 ADD Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

28 2/1 SUB Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

09 2/1 ADDB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

29 2/1 SUBB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

0A 4/1 BFLDL bitoff, #mask8,
#data8

2A 4/bit BCMP bitaddr, bitaddr

0B 2/1 MUL Rw, Rw 2B 2/1 PRIOR Rw, Rw

0C 2/1 ROL Rw, Rw 2C 2/1 ROR Rw, Rw

0D 2/0-1 JMPR cc_UC, rel 2D 2/0-1 JMPR cc_EQ, rel or
cc_Z, rel

0E 2/1 BCLR bitoff.0 2E 2/1 BCLR bitoff.2

0F 2/1 BSET bitoff.0 2F 2/1 BSET bitoff.2

10 2/1 ADDC Rw, Rw 30 2/1 SUBC Rw, Rw

11 2/1 ADDCB Rb, Rb 31 2/1 SUBCB Rb, Rb

12 4/reg ADDC reg, mem 32 4/reg SUBC reg, mem

13 4/reg ADDCB reg, mem 33 4/reg SUBCB reg, mem

14 4/reg ADDC mem, reg 34 4/reg SUBC mem, reg

15 4/reg ADDCB mem, reg 35 4/reg SUBCB mem, reg

16 4/1 ADDC reg, #data16 36 4/1 SUBC reg, #data16

17 4/1 ADDCB reg, #data8 37 4/1 SUBCB reg, #data8

18 2/1 ADDC Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

38 2/1 SUBC Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

19 2/1 ADDCB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

39 2/1 SUBCB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

1A 4/1 BFLDH bitoff, #mask8,
#data8

3A 4/bit BMOVN bitaddr, bitaddr

1B 2/1 MULU Rw, Rw 3B -/- - -

1C 2/1 ROL Rw, #data4 3C 2/1 ROR Rw, #data4

1D 2/0-1 JMPR cc_NET, rel 3D 2/0-1 JMPR cc_NE, rel or
cc_NZ, rel

1E 2/1 BCLR bitoff.1 3E 2/1 BCLR bitoff.3

1F 2/1 BSET bitoff.1 3F 2/1 BSET bitoff.3

User Manual

C166S V2

Instruction Set

User Manual 7-196 V 1.7, 2001-01

Hex-
code

Bytes/
Cycles

Mnemonic Operands Hex-
code

Bytes/
Cycles

Mnemonic Operands

40 2/1 CMP Rw, Rw 60 2/1 AND Rw, Rw

41 2/1 CMPB Rb, Rb 61 2/1 ANDB Rb, Rb

42 4/reg CMP reg, mem 62 4/reg AND reg, mem

43 4/reg CMPB reg, mem 63 4/reg ANDB reg, mem

44 -/- - - 64 4/reg AND mem, reg

45 -/- - - 65 4/reg ANDB mem, reg

46 4/1 CMP reg, #data16 66 4/1 AND reg, #data16

47 4/1 CMPB reg, #data8 67 4/1 ANDB reg, #data8

48 2/1 CMP Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

68 2/1 AND Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

49 2/1 CMPB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

69 2/1 ANDB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

4A 4/bit BMOV bitaddr, bitaddr 6A 4/bit BAND bitaddr, bitaddr

4B 2/4+15 DIV Rw 6B 2/4+15 DIVL Rw

4C 2/1 SHL Rw, Rw 6C 2/1 SHR Rw, Rw

4D 2/0-1 JMPR cc_V, rel 6D 2/0-1 JMPR cc_N, rel

4E 2/1 BCLR bitoff.4 6E 2/1 BCLR bitoff.6

4F 2/1 BSET bitoff.4 6F 2/1 BSET bitoff.6

50 2/1 XOR Rw, Rw 70 2/1 OR Rw, Rw

51 2/1 XORB Rb, Rb 71 2/1 ORB Rb, Rb

52 4/reg XOR reg, mem 72 4/reg OR reg, mem

53 4/reg XORB reg, mem 73 4/reg ORB reg, mem

54 4/reg XOR mem, reg 74 4/reg OR mem, reg

55 4/reg XORB mem, reg 75 4/reg ORB mem, reg

56 4/1 XOR reg, #data16 76 4/1 OR reg, #data16

57 4/1 XORB reg, #data8 77 4/1 ORB reg, #data8

58 2/1 XOR Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3

78 2/1 OR Rw, [Rw +] or
Rw, [Rw] or
Rw, #data3 1)

59 2/1 XORB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

79 2/1 ORB Rb, [Rw +] or
Rb, [Rw] or
Rb, #data3

5A 4/bit BOR bitaddr, bitaddr 7A 4/bit BXOR bitaddr, bitaddr

5B 2/4+15 DIVU Rw 7B 2/4+15 DIVLU Rw

5C 2/1 SHL Rw, #data4 7C 2/1 SHR Rw, #data4

5D 2/0-1 JMPR cc_NV, rel 7D 2/0-1 JMPR cc_NN, rel

5E 2/1 BCLR bitoff.5 7E 2/1 BCLR bitoff.7

5F 2/1 BSET bitoff.5 7F 2/1 BSET bitoff.7

User Manual

C166S V2

Instruction Set

User Manual 7-197 V 1.7, 2001-01

Hex-
code

Bytes/
Cycles

Mnemonic Operands Hex-
code

Bytes/
Cycles

Mnemonic Operands

80 2/1 CMPI1 Rw, #data4 A0 2/1 CMPD1 Rw, #data4

81 2/1 NEG Rw A1 2/1 NEGB Rb

82 4/1 CMPI1 Rw, mem A2 4/1 CMPD1 Rw, mem

83 4/co CoXXX xx A3 4/co CoXXX xx

84 4/2 MOV [Rw], mem A4 4/2 MOVB [Rw], mem

85 4/1 ENWDT A5 4/1 DISWDT

86 4/1 CMPI1 Rw, #data16 A6 4/1 CMPD1 Rw, #data16

87 4/5 IDLE A7 4/1 SRVWDT

88 2/1 MOV [-Rw], Rw A8 2/1 MOV Rw, [Rw]

89 2/1 MOVB [-Rw], Rb A9 2/1 MOVB Rb, [Rw]

8A 4/1 JB bitaddr, rel AA 4/1 JBC bitaddr, rel

8B -/- - - AB 2/2 CALLI cc, [Rw]

8C 2/1 SBRK AC 2/1 ASHR Rw, Rw

8D 2/0-1 JMPR cc_C, rel or
cc_ULT, rel

AD 2/0-1 JMPR cc_SGT, rel

8E 2/1 BCLR bitoff.8 AE 2/1 BCLR bitoff.10

8F 2/1 BSET bitoff.8 AF 2/1 BSET bitoff.10

90 2/1 CMPI2 Rw, #data4 B0 2/1 CMPD2 Rw, #data4

91 2/1 CPL Rw B1 2/1 CPLB Rb

92 4/1 CMPI2 Rw, mem B2 4/1 CMPD2 Rw, mem

93 4/co CoXXX xxx B3 4/1 CoSTORE [Rw*], CoREG

94 4/2 MOV mem, [Rw] B4 4/2 MOVB mem, [Rw]

95 -/- - - B5 4/1 EINIT

96 4/1 CMPI2 Rw, #data16 B6 4/1 CMPD2 Rw, #data16

97 4/5 PWRDN B7 4/5 SRST

98 2/1 MOV Rw, [Rw+] B8 2/1 MOV [Rw], Rw

99 2/1 MOVB Rb, [Rw+] B9 2/1 MOVB [Rw], Rb

9A 4/1 JNB bitaddr, rel BA 4/1 JNBS bitaddr, rel

9B 2/2-3 TRAP #trap7 BB 2/1 CALLR rel

9C 2/1 JMPI cc, [Rw] BC 2/1 ASHR Rw, #data4

9D 2/0-1 JMPR cc_NC, rel or
cc_UGE, rel

BD 2/0-1 JMPR cc_SLE, rel

9E 2/1 BCLR bitoff.9 BE 2/1 BCLR bitoff.11

9F 2/1 BSET bitoff.9 BF 2/1 BSET bitoff.11

User Manual

C166S V2

Instruction Set

User Manual 7-198 V 1.7, 2001-01

Hex-
code

Bytes/
Cycles

Mnemonic Operands Hex-
code

Bytes/
Cycles

Mnemonic Operands

C0 2/1 MOVBZ Rw, Rb E0 2/1 MOV Rw, #data4

C1 -/1 - - E1 2/1 MOVB Rb, #data4

C2 4/1 MOVBZ reg, mem E2 4/2 PCALL reg, caddr

C3 4/1 CoSTORE Rw, CoREG E3 -/- - -

C4 4/1 MOV [Rw+#data16],
Rw

E4 4/1 MOVB [Rw+#data16],
Rb

C5 4/1 MOVBZ mem, reg E5 -/- - -

C6 4/2 SCXT reg, #data16 E6 4/1 MOV reg, #data16

C7 -/- - - E7 4/1 MOVB reg, #data8

C8 2/2 MOV [Rw], [Rw] E8 2/2 MOV [Rw], [Rw+]

C9 2/2 MOVB [Rw], [Rw] E9 2/2 MOVB [Rw], [Rw+]

CA 4/1 CALLA cc, addr EA 4/0-1 JMPA cc, caddr

CB 2/1 RET EB 2/2 RETP reg

CC 2/1-31 NOP EC 2/1 PUSH reg

CD 2/0-1 JMPR cc_SLT, rel ED 2/0-1 JMPR cc_UGT, rel

CE 2/1 BCLR bitoff.12 EE 2/1 BCLR bitoff.14

CF 2/1 BSET bitoff.12 EF 2/1 BSET bitoff.14

D0 2/1 MOVBS Rw, Rb F0 2/1 MOV Rw, Rw

D1 2/1 ATOMIC or
EXTR

#irang2 F1 2/1 MOVB Rb, Rb

D2 4/1 MOVBS reg, mem F2 4/1 MOV reg, mem

D3 4/2 CoMOV [IDX*], [Rw*] F3 4/1 MOVB reg, mem

D4 4/1 MOV Rw,
[Rw + #data16]

F4 4/1 MOVB Rb,
[Rw + #data16]

D5 4/1 MOVBS mem, reg F5 -/- - -

D6 4/2 SCXT reg, mem F6 4/1 MOV mem, reg

D7 4/1 EXTP(R),
EXTS(R)

#pag10,#irang2
#seg8, #irang2

F7 4/1 MOVB mem, reg

D8 2/2 MOV [Rw+], [Rw] F8 -/- - -

D9 2/2 MOVB [Rw+], [Rw] F9 -/- - -

DA 4/2 CALLS seg, caddr FA 4/0-1 JMPS seg, caddr

DB 2/2 RETS FB 2/5-6 RETI

DC 2/1 EXTP(R),
EXTS(R)

Rw, #irang2 FC 2/1 POP reg

DD 2/0-1 JMPR cc_SGE, rel FD 2/0-1 JMPR cc_ULE, rel

DE 2/1 BCLR bitoff.13 FE 2/1 BCLR bitoff.15

DF 2/1 BSET bitoff.13 FF 2/1 BSET bitoff.15

User Manual

C166S V2

Instruction Set

User Manual 7-199 V 1.7, 2001-01

Hex-code Extended

Hex-code

Cycles Mnemonic Operands

83 00 1 CoMULu RWn, [RWm*]
83 01 2 CoMULu RWn, [RWm*], rnd
83 02 1 CoADD RWn, [RWm*]
83 08 1 CoMULu- RWn, [RWm*]
83 0A 1 CoSUB RWn, [RWm*]
83 10 1 CoMACu RWn, [RWm*]
83 11 2 CoMACu RWn, [RWm*], rnd
83 12 1 CoSUBR RWn, [RWm*]
83 20 1 CoMACu- RWn, [RWm*]
83 22 1 CoLOAD RWn, [RWm*]
83 2A 1 CoLOAD- RWn, [RWm*]
83 30 1 CoMACRu RWn, [RWm*]
83 31 2 CoMACRu RWn, [RWm*], rnd
83 3A 1 CoMAX RWn, [RWm*]
83 40 1 CoMULsu RWn, [RWm*]
83 41 2 CoMULsu RWn, [RWm*], rnd
83 42 1 CoADD2 RWn, [RWm*]
83 48 1 CoMULsu- RWn, [RWm*]
83 4A 1 CoSUB2 RWn, [RWm*]
83 50 1 CoMACsu RWn, [RWm*]
83 51 2 CoMACsu RWn, [RWm*], rnd
83 52 1 CoSUB2R RWn, [RWm*]
83 60 1 CoMACsu- RWn, [RWm*]
83 62 1 CoLOAD2 RWn, [RWm*]
83 6A 1 CoLOAD2- RWn, [RWm*]
83 70 1 CoMACRsu RWn, [RWm*]
83 71 2 CoMACRsu RWn, [RWm*], rnd
83 7A 1 CoMIN RWn, [RWm*]
83 80 1 CoMULus RWn, [RWm*]
83 81 2 CoMULus RWn, [RWm*], rnd
83 88 1 CoMULus- RWn, [RWm*]
83 8A 1 CoSHL [RWm*]
83 90 1 CoMACus RWn, [RWm*]
83 91 2 CoMACus RWn, [RWm*], rnd
83 9A 1 CoSHR [RWm*]
83 A0 1 CoMACus- RWn, [RWm*]
83 AA 1 CoASHR [RWm*]
83 B0 1 CoMACRus RWn, [RWm*]
83 B1 2 CoMACRus RWn, [RWm*], rnd
83 BA 1 CoASHR [RWm*] , rnd
83 C0 1 CoMUL RWn, [RWm*]
83 C1 2 CoMUL RWn, [RWm*], rnd
83 C2 1 CoCMP RWn, [RWm*]
83 C8 1 CoMUL- RWn, [RWm*]

User Manual

C166S V2

Instruction Set

User Manual 7-200 V 1.7, 2001-01

83 CA 1 CoABS RWn, [RWm*]
83 D0 1 CoMAC RWn, [RWm*]
83 D1 2 CoMAC RWn, [RWm*], rnd
83 E0 1 CoMAC- RWn, [RWm*]
83 F0 1 CoMACR RWn, [RWm*]
83 F1 2 CoMACR RWn, [RWm*], rnd
93 00 1 CoMULu [IDXi*], [RWm*]
93 01 2 CoMULu [IDXi*], [RWm*], rnd
93 02 1 CoADD [IDXi*], [RWm*]
93 08 1 CoMULu- [IDXi*], [RWm*]
93 0A 1 CoSUB [IDXi*], [RWm*]
93 10 1 CoMACu [IDXi*], [RWm*]
93 11 2 CoMACu [IDXi*], [RWm*], rnd
93 12 1 CoSUBR [IDXi*], [RWm*]
93 18 1 CoMACMu [IDXi*], [RWm*]
93 19 2 CoMACMu [IDXi*], [RWm*], rnd
93 20 1 CoMACu- [IDXi*], [RWm*]
93 22 1 CoLOAD [IDXi*], [RWm*]
93 28 1 CoMACMu- [IDXi*], [RWm*]
93 2A 1 CoLOAD- [IDXi*], [RWm*]
93 30 1 CoMACRu [IDXi*], [RWm*]
93 31 2 CoMACRu [IDXi*], [RWm*], rnd
93 38 1 CoMACMRu [IDXi*], [RWm*]
93 39 2 CoMACMRu [IDXi*], [RWm*], rnd
93 3A 1 CoMAX [IDXi*], [RWm*]
93 40 1 CoMULsu [IDXi*], [RWm*]
93 41 2 CoMULsu [IDXi*], [RWm*], rnd
93 42 1 CoADD2 [IDXi*], [RWm*]
93 48 1 CoMULsu- [IDXi*], [RWm*]
93 4A 1 CoSUB2 [IDXi*], [RWm*]
93 50 1 CoMACsu [IDXi*], [RWm*]
93 51 2 CoMACsu [IDXi*], [RWm*], rnd
93 52 1 CoSUB2R [IDXi*], [RWm*]
93 58 1 CoMACMsu [IDXi*], [RWm*]
93 59 2 CoMACMsu [IDXi*], [RWm*], rnd
93 5A 1 CoNOP [IDXi*]
93 5A 1 CoNOP [IDXi*], [RWm*]
93 5A 1 CoNOP [RWm*]
93 60 1 CoMACsu- [IDXi*], [RWm*]
93 62 1 CoLOAD2 [IDXi*], [RWm*]
93 68 1 CoMACMsu- [IDXi*], [RWm*]
93 6A 1 CoLOAD2- [IDXi*], [RWm*]
93 70 1 CoMACRsu [IDXi*], [RWm*]
93 71 2 CoMACRsu [IDXi*], [RWm*], rnd
93 78 1 CoMACMRsu [IDXi*], [RWm*]

Hex-code Extended

Hex-code

Cycles Mnemonic Operands

User Manual

C166S V2

Instruction Set

User Manual 7-201 V 1.7, 2001-01

93 79 2 CoMACMRsu [IDXi*], [RWm*], rnd
93 7A 1 CoMIN [IDXi*], [RWm*]
93 80 1 CoMULus [IDXi*], [RWm*]
93 81 2 CoMULus [IDXi*], [RWm*], rnd
93 88 1 CoMULus- [IDXi*], [RWm*]
93 90 1 CoMACus [IDXi*], [RWm*]
93 91 2 CoMACus [IDXi*], [RWm*], rnd
93 98 1 CoMACMus [IDXi*], [RWm*]
93 99 2 CoMACMus [IDXi*], [RWm*], rnd
93 A0 1 CoMACus- [IDXi*], [RWm*]
93 A8 1 CoMACMus- [IDXi*], [RWm*]
93 B0 1 CoMACRus [IDXi*], [RWm*]
93 B1 2 CoMACRus [IDXi*], [RWm*], rnd
93 B8 1 CoMACMRus [IDXi*], [RWm*]
93 B9 2 CoMACMRus [IDXi*], [RWm*], rnd
93 C0 1 CoMUL [IDXi*], [RWm*]
93 C1 2 CoMUL [IDXi*], [RWm*] , rnd
93 C2 1 CoCMP [IDXi*], [RWm*]
93 C8 1 CoMUL- [IDXi*], [RWm*]
93 CA 1 CoABS [IDXi*], [RWm*]
93 D0 1 CoMAC [IDXi*], [RWm*]
93 D1 2 CoMAC [IDXi*], [RWm*], rnd
93 D8 1 CoMACM [IDXi*], [RWm*]
93 D9 2 CoMACM [IDXi*], [RWm*], rnd
93 E0 1 CoMAC- [IDXi*], [RWm*]
93 E8 1 CoMACM- [IDXi*], [RWm*]
93 F0 1 CoMACR [IDXi*], [RWm*]
93 F1 2 CoMACR [IDXi*], [RWm*], rnd
93 F8 1 CoMACMR [IDXi*], [RWm*]
93 F9 2 CoMACMR [IDXi*], [RWm*] , rnd
A3 00 1 CoMULu RWn, RWm
A3 01 2 CoMULu RWn, RWm, rnd
A3 02 1 CoADD RWn, RWm
A3 08 1 CoMULu- RWn, RWm
A3 0A 1 CoSUB RWn, RWm
A3 10 1 CoMACu RWn, RWm
A3 11 2 CoMACu RWn, RWm, rnd
A3 12 1 CoSUBR RWn, RWm
A3 1A 1 CoABS
A3 20 1 CoMACu- RWn, RWm
A3 22 1 CoLOAD RWn, RWm
A3 2A 1 CoLOAD- RWn, RWm
A3 30 1 CoMACRu RWn, RWm
A3 31 2 CoMACRu RWn, RWm , rnd
A3 32 1 CoNEG

Hex-code Extended

Hex-code

Cycles Mnemonic Operands

User Manual

C166S V2

Instruction Set

User Manual 7-202 V 1.7, 2001-01

A3 3A 1 CoMAX RWn, RWm
A3 40 1 CoMULsu RWn, RWm
A3 41 2 CoMULsu RWn, RWm , rnd
A3 42 1 CoADD2 RWn, RWm
A3 48 1 CoMULsu- RWn, RWm
A3 4A 1 CoSUB2 RWn, RWm
A3 50 1 CoMACsu RWn, RWm
A3 51 2 CoMACsu RWn, RWm , rnd
A3 52 1 CoSUB2R RWn, RWm
A3 60 1 CoMACsu- RWn, RWm
A3 62 1 CoLOAD2 RWn, RWm
A3 6A 1 CoLOAD2- RWn, RWm
A3 70 1 CoMACRsu RWn, RWm
A3 71 2 CoMACRsu RWn, RWm , rnd
A3 72 1 CoNEG rnd
A3 7A 1 CoMIN RWn, RWm
A3 80 1 CoMULus RWn, RWm
A3 81 2 CoMULus RWn, RWm, rnd
A3 82 1 CoSHL #data5
A3 88 1 CoMULus- RWn, RWm
A3 8A 1 CoSHL RWn
A3 90 1 CoMACus RWn, RWm
A3 91 2 CoMACus RWn, RWm, rnd
A3 92 1 CoSHR #data5
A3 9A 1 CoSHR RWn
A3 A0 1 CoMACus- RWn, RWm
A3 A2 1 CoASHR #data5
A3 AA 1 CoASHR RWn
A3 B0 1 CoMACRus RWn, RWm
A3 B1 2 CoMACRus RWn, RWm, rnd
A3 B2 1 CoASHR #data5, rnd
A3 B2 1 CoRND
A3 BA 1 CoASHR RWn, rnd
A3 C0 1 CoMUL RWn, RWm
A3 C1 2 CoMUL RWn, RWm, rnd
A3 C2 1 CoCMP RWn, RWm
A3 C8 1 CoMUL- RWn, RWm
A3 CA 1 CoABS RWn, RWm
A3 D0 1 CoMAC RWn, RWm
A3 D1 2 CoMAC RWn, RWm, rnd
A3 E0 1 CoMAC- RWn, RWm
A3 F0 1 CoMACR RWn, RWm

Hex-code Extended

Hex-code

Cycles Mnemonic Operands

User Manual

C166S V2

Instruction Set

User Manual 7-203 V 1.7, 2001-01

A3 F1 2 CoMACR RWn, RWm, rnd
B3 1 CoSTORE [RWn*], CoReg
C3 1 CoSTORE RWn, CoReg
D3 00 2 CoMOV [IDXi*], [RWm*]

Hex-code Extended

Hex-code

Cycles Mnemonic Operands

User Manual

C166S V2

Instruction Set

User Manual 7-204 V 1.7, 2001-01

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-205 V 1.7, 2001-01

8 Detailed Instruction Description

This section describes each instruction in detail. The instructions are listed

alphabetically, and the description contains the following elements.

• Instruction Name: Specifies the mnemonic opcode of the instruction in oversized

bold lettering for easy reference. The mnemonics have been chosen with regard to the

particular operation performed by the instruction.

• Syntax: Specifies the mnemonic opcode and the required formal operands of the

instruction as used in the following subsection 'Operation'. There are instructions with

either none, one, two or three operands, which must be separated from each other by

commas:

MNEMONIC {op1 {,op2 {,op3 } } }

The syntax for the actual operands of an instruction depends on the selected addressing

mode. All of the available addressing modes are summarized at the end of each single

instruction description. In contrast to the syntax for the instructions described in the

following material, the assembler provides much more flexibility in writing C166S V2

CPU programs (e.g. by generic instructions and by automatically selecting appropriate

addressing modes whenever possible). Thus, it eases the use of the instruction set.

• Operation: This part presents a logical description of the operation performed by an

instruction as a symbolic formula or a high level language construct.

The following symbols are used to represent data movement, arithmetic, or logical

operators.

Diadic operations: (opX) operator (opY)

¨ (opY) is MOVED into (opX)

+ (opX) is ADDED to (opY)

- (opY) is SUBTRACTED from (opX)

* (opX) is MULTIPLIED by (opY)

/ (opX) is DIVIDED by (opY)

Ÿ (opX) is logically ANDed with (opY)

⁄ (opX) is logically ORed with (opY)

Ý (opX) is logically EXCLUSIVELY ORed with (opY)

¤ (opX) is COMPARED against (opY)

mod (opX) is divided MODULO (opY)

|| (opX) is CONCATENATED (opY)

Monadic operations: operator (opX)

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-206 V 1.7, 2001-01

ÿ (opX) is logically COMPLEMENTED

Parentheses indicate a method of addressing the used operand as follows:

opX Specifies the immediate constant value of opX

(opX) Specifies the contents of opX

(opX[n]) Specifies the contents of bit n of opX

((opX)) Specifies the contents of the contents of opX

(ie. opX is used as pointer to the actual operand)

The following operands notation will also be used in the operational description:

CP Context Pointer

CSP Code Segment Pointer

IP Instruction Pointer

MD Multiply/Divide register

(32 bits wide, consists of MDH and MDL)

MDL, MDH Multiply/Divide Low and High registers

(each 16 bit wide)

ACC Accumulator

(40 bits wide, consists of MAE, MAH and MDL)

MAH, MAL Accumulator Low and High registers

(each 16 bits wide)

MAE Accumulator extension register (one byte wide)

PSW Program Status Word

SP System Stack Pointer

CPUCON1 CPU Configuration register

C Carry condition flag in the PSW register

V Overflow condition flag in the PSW register

SGTDIS Segmentation Disable bit in the SYSCON register

count Temporary variable for an intermediate storage of

the number of shift or rotate cycles which remain

to complete the shift or rotate operation

tmp Temporary variable for an intermediate result

0, 1, 2,... Constant values due to the data format

of the specified operation

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-207 V 1.7, 2001-01

Data Types: This part specifies the particular data type according to the instruction.

Basically, the following data types are possible:

BIT, BYTE, WORD, DOUBLEWORD, ACC = 40-bit signed value

Only CoXXX instructions and instructions which extend byte data to word data can

change the data type. Note that the data types mentioned in this subsection do not cover

accesses to indirect address pointers or to the system stack. These accesses are always

performed with word data. Moreover, no data type is specified for System Control

Instructions and for those branch instructions which do not access any explicitly

addressed data.

• Description: This part provides a brief description of the action that is executed by

the respective instruction.

• Condition Code: The Condition code indicates that the respective instruction is

executed if the specified condition exists, and is skipped if it does not. The table below

summarizes the sixteen possible condition codes that can be used within Call and

Branch instructions. The table shows the abbreviations, the test that is executed for a

specific condition, and a 4/5-bit number associated with condition code.

Condition

Code

Mnemonic

cc

Test Description Condition

Code

Number

c

Condition

Code

Number

d

cc_UC 1 = 1 Unconditional 0H 0H

cc_Z Z = 1 Zero 2H 4H

cc_NZ Z = 0 Not zero 3H 6H

cc_V V = 1 Overflow 4H 8H

cc_NV V = 0 No overflow 5H AH

cc_N N = 1 Negative 6H CH

cc_NN N = 0 Not negative 7H EH

cc_C C = 1 Carry 8H 10H

cc_NC C = 0 No carry 9H 12H

cc_EQ Z = 1 Equal 2H 4H

cc_NE Z = 0 Not equal 3H 6H

cc_ULT C = 1 Unsigned less than 8H 10H

cc_ULE (Z∨C) = 1 Unsigned less than or equal FH 1EH

cc_UGE C = 0 Unsigned greater than or equal 9H 12H

cc_UGT (Z∨C) = 0 Unsigned greater than EH 1CH

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-208 V 1.7, 2001-01

• Condition Flags: This part reflects the state of the N, C, V, Z, and E flags in the PSW

register which is the state after execution of the corresponding instruction, except if

the PSW register itself was specified as the destination operand of that instruction

(see Note).

The resulting state of the flags is represented by symbols as follows:

'*' The flag is set due to the following standard rules for the corresponding flag:

N = 1 : MSB of the result is set

N = 0 : MSB of the result is not set

C = 1 : Carry occurred during operation

C = 0 : No Carry occurred during operation

V = 1 : Arithmetic Overflow occurred during operation

V = 0 : No Arithmetic Overflow occurred during operation

Z = 1 : Result equals zero

Z = 0 : Result does not equal zero

E = 1 : Source operand represents the lowest negative number

(either 8000h for word data or 80h for byte data)

E = 0 : Source operand does not represent the lowest negative

number for the specified data type

cc_SLT (N⊕V) = 1 Signed less than CH 18H

cc_SLE (Z∨(N⊕V)) = 1 Signed less than or equal BH 16H

cc_SGE (N⊕V) = 0 Signed greater than or equal DH 1AH

cc_SGT (Z∨(N⊕V)) = 0 Signed greater than AH 14H

cc_NET (Z∨E) = 0 Not equal AND not end of table 1H 02H

cc_nusr01) usr0 = 0 usr0 is cleared 1H

cc_nusr11) usr1 = 0 usr1 is cleared 3H

cc_usr01) usr0 = 1 usr0 is set 5H

cc_usr11) usr1 = 1 usr1 is set 7H

1) Only usable with the JMA and CALLA instructions.

Condition

Code

Mnemonic

cc

Test Description Condition

Code

Number

c

Condition

Code

Number

d

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-209 V 1.7, 2001-01

’S’ The flag is set due to rules which deviate from the described standard.

For more details see instruction pages (below) or the ALU status flags

description.

’-’ The flag is not affected by the operation.

’0’ The flag is cleared by the operation.

’NOR’ The flag contains the logical NORing of the two specified bit operands.

’AND’ The flag contains the logical ANDing of the two specified bit operands.

’OR’ The flag contains the logical ORing of the two specified bit operands.

’XOR’ The flag contains the logical XORing of the two specified bit operands.

’B’ The flag contains the original value of the specified bit operand.

’B’ The flag contains the complemented value of the specified bit operand.

Note: If the PSW register was specified as the destination operand of an instruction, the

condition flags can not be interpreted as just described, because the PSW register

is modified depending on the data format of the instruction as follows:
For word operations, the PSW register is overwritten with the word result. For byte

operations, the non-addressed byte is cleared and the addressed byte is

overwritten. For bit or bit-field operations on the PSW register, only the specified

bits are modified. Supposed that the condition flags were not selected as

destination bits, they stay unchanged. This means that they keep the state after

execution of the previous instruction.
In any case, if the PSW was the destination operand of an instruction, the PSW

flags do NOT represent the condition flags of this instruction as usual.

• Addressing Modes: This part specifies which combinations of different addressing

modes are available for the required operands. The selected addressing mode

combination is usually specified by the opcode of the corresponding instruction.

However, there are some arithmetic and logical instructions for which the addressing

mode combination is not specified by the (identical) opcodes but by particular bits

within the operand field.

The addressing mode entries are made up of three elements:

Mnemonic Shows accepted operands for the respective instruction.

Format This part specifies the format of the instructions as it is represented in the

assembler listing. Figure 8-1 shows the relation between the instruction format

representation of the assembler and the corresponding internal organization of such an

instruction format (N = nibble = 4 bits).

The following symbols are used to describe the instruction formats:

00H through FFH: Instruction Opcodes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-210 V 1.7, 2001-01

0, 1 : Constant Values

:.... : Each of the 4 characters immediately following a colon represents a single bit

:..ii : 2-bit short GPR address (Rwi)

SS : Code segment number

:..## : 2-bit immediate constant (#irang2)

:.### : 3-bit immediate constant (#data3)

...#:# : 5-bit immediate constant (#data5)

c : 4-bit condition code specification (cc)

d : 5-bit condition code specification (xcc)

n : 4-bit short GPR address (Rwn or Rbn)

m : 4-bit short GPR address (Rwm or Rbm)

q : 4-bit position of the source bit within the word specified by QQ

qqq : 3-bit addressing mode specifier for CoXXX instructions

z : 4-bit position of the destination bit within the word specified by ZZ

: 4-bit immediate constant (#data4)

t:ttt0 : 7-bit trap number (#trap7)

QQ : 8-bit word address of the source bit (bitoff)

rr : 8-bit relative target address word offset (rel)

rrr : 3-bit repeat control for CoXXX instructions

RR : 8-bit word address reg

wwww:w : 5-bit word address CoREG

X : 4-bit addressing mode specifier for CoXXX instructions

ZZ : 8-bit word address of the destination bit (bitoff)

: 8-bit immediate constant (#data8)

xx : 8-bit immediate constant (represented by #data16, byte xx is not significant)

@@ : 8-bit immediate constant (#mask8)

MM MM : 16-bit address (mem or caddr; low byte, high byte)

: 16-bit immediate constant (#data16; low byte, high byte)

a : 1-bit branch assumption bit

l : 1-bit short backward loop bit

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-211 V 1.7, 2001-01

Number of Bytes All C166S V2 CPU instructions are either 2 or 4 bytes. According to

the instruction size, all instructions can be classified as either single word or double word

instructions.

Figure 8-1 Instruction Format Representation

The following pages contain a detailed description of each normal arithmetic, logic,

branch or system instruction in alphabetical order followed by a list of the dedicated DSP

instructions:

Bits in ascending order LSBMSB

Representation in the
Assembler Listing:

N2N1 N4N3 N6N5 N8N7

High Byte 2nd word

Low Byte 2nd word

High Byte 1st word

Low Byte 1st word

Internal Organization:

N8 N7 N6 N5 N4 N3 N2 N1

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-212 V 1.7, 2001-01

8.1 Normal Instruction Set

ADD Integer Addition ADD

Group Arithmetic Instructions

Syntax ADD op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op1) + (op2)

Description

Performs a 2s complement binary addition of the source operand specified by op2 and

the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the word data

type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * * *

Mnemonic Format Bytes

ADD Rwn , #data3 08 n:0### 2

ADD Rwn , Rwm 00 nm 2

ADD Rwn , [Rwi+] 08 n:11ii 2

ADD Rwn , [Rwi] 08 n:10ii 2

ADD mem , reg 04 RR MM MM 4

ADD reg , #data16 06 RR ## ## 4

ADD reg , mem 02 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-213 V 1.7, 2001-01

ADDB Integer Addition ADDB

Group Arithmetic Instructions

Syntax ADDB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← (op1) + (op2)

Description

Performs a 2s complement binary addition of the source operand specified by op2 and

the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the byte data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the byte data

type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * * *

Mnemonic Format Bytes

ADDB Rbn , #data3 09 n:0### 2

ADDB Rbn , Rbm 01 nm 2

ADDB Rbn , [Rwi+] 09 n:11ii 2

ADDB Rbn , [Rwi] 09 n:10ii 2

ADDB mem , reg 05 RR MM MM 4

ADDB reg , #data8 07 RR ## xx 4

ADDB reg , mem 03 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-214 V 1.7, 2001-01

ADDC Integer Addition with Carry ADDC

Group Arithmetic Instructions

Syntax ADDC op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op1) + (op2) + (C)

Description

Performs a 2s complement binary addition of the source operand specified by op2, the

destination operand specified by op1 and the previously generated carry bit. The sum is

then stored in op1. This instruction can be used to perform multiple precision arithmetic.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the word data

type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* S * * *

Mnemonic Format Bytes

ADDC Rwn , #data3 18 n:0### 2

ADDC Rwn , Rwm 10 nm 2

ADDC Rwn , [Rwi+] 18 n:11ii 2

ADDC Rwn , [Rwi] 18 n:10ii 2

ADDC mem , reg 14 RR MM MM 4

ADDC reg , #data16 16 RR ## ## 4

ADDC reg , mem 12 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-215 V 1.7, 2001-01

ADDCB Integer Addition with Carry ADDCB

Group Arithmetic Instructions

Syntax ADDCB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← (op1) + (op2) + (C)

Description

Performs a 2s complement binary addition of the source operand specified by op2, the

destination operand specified by op1 and the previously generated carry bit. The sum is

then stored in op1. This instruction can be used to perform multiple precision arithmetic.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the byte data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the byte data

type. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* S * * *

Mnemonic Format Bytes

ADDCB Rbn , #data3 19 n:0### 2

ADDCB Rbn , Rbm 11 nm 2

ADDCB Rbn , [Rwi+] 19 n:11ii 2

ADDCB Rbn , [Rwi] 19 n:10ii 2

ADDCB mem , reg 15 RR MM MM 4

ADDCB reg , #data8 17 RR ## xx 4

ADDCB reg , mem 13 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-216 V 1.7, 2001-01

AND Logical AND AND

Group Logical Instructions

Syntax AND op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op1) ∧ (op2)

Description

Performs a bitwise logical AND of the source operand specified by op2 and the

destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * 0 0 *

Mnemonic Format Bytes

AND Rwn , #data3 68 n:0### 2

AND Rwn , Rwm 60 nm 2

AND Rwn , [Rwi+] 68 n:11ii 2

AND Rwn , [Rwi] 68 n:10ii 2

AND mem , reg 64 RR MM MM 4

AND reg , #data16 66 RR ## ## 4

AND reg , mem 62 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-217 V 1.7, 2001-01

ANDB Logical AND ANDB

Group Logical Instructions

Syntax ANDB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← (op1) ∧ (op2)

Description

Performs a bitwise logical AND of the source operand specified by op2 and the

destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * 0 0 *

Mnemonic Format Bytes

ANDB Rbn , #data3 69 n:0### 2

ANDB Rbn , Rbm 61 nm 2

ANDB Rbn , [Rwi+] 69 n:11ii 2

ANDB Rbn , [Rwi] 69 n:10ii 2

ANDB mem , reg 65 RR MM MM 4

ANDB reg , #data8 67 RR ## xx 4

ANDB reg , mem 63 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-218 V 1.7, 2001-01

ASHR Arithmetic Shift Right ASHR

Group Shift and Rotate Instructions

Syntax ASHR op1, op2

Source Operand(s) op1 → WORD

op2 → shift counter

Destination Operand(s) op1 → WORD

Operation

(count) ← (op2)

(V) ← 0

(C) ← 0

DO WHILE ((count) ≠ 0)

(V) ← (C) ∨ (V)

(C) ← (op1[0])

(op1[n]) ← (op1[n+1]) [n=0...14]

(count) ← (count) - 1

END WHILE

Description

Arithmetically shifts the destination word operand op1 right by the number of times as

specified by the source operand op2. To preserve the sign of the original operand op1,

the most significant bits of the result are filled with zeros if the original most significant

bit was a 0 or with ones if the original most significant bit was a 1. The Overflow flag is

used as a Rounding flag. The least significant bit is shifted into the Carry. Only shift

values between 0 and 15 are allowed. When using a GPR as the count control, only the

least significant 4 bits are used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a 1 is shifted out of the carry flag.

Cleared in case of a shift count equal 0.

C The carry flag is set according to the last least significant bit shifted out of

op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

E Z V C N

0 * * * *

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-219 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

ASHR Rwn , #data4 BC #n 2

ASHR Rwn , Rwm AC nm 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-220 V 1.7, 2001-01

ATOMIC Begin ATOMIC Sequence ATOMIC

Group System Control Instructions

Syntax ATOMIC op1

Source Operand(s) op1 → 2-bit instruction counter

Destination Operand(s) none

Operation

(count) ← (op1) [1 ≤ op1 ≤ 4]

Disable interrupts and Class A traps

DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction

(count) ← (count) - 1

END WHILE

(count) ← 0

Enable interrupts and traps

Description

Causes standard and PEC interrupts and class A hardware traps to be disabled for a

specified number of instructions. The ATOMIC instruction becomes immediately active.

No NOPs are required for normal ATOMIC execution. Depending on the value of op1,

the period of validity of the ATOMIC sequence extends over the sequence of the next

one to four instructions being executed after the ATOMIC instruction. All instructions

requiring multiple cycles or hold states to be executed are regarded as one instruction

in this sense. Any instruction type can be used with the ATOMIC instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

ATOMIC #irang2 D1 :00##-0 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-221 V 1.7, 2001-01

BAND Bit Logical AND BAND

Group Boolean Bit Manipulation Instructions

Syntax BAND op1, op2

Source Operand(s) op1, op2 → BIT

Destination Operand(s) op1 → BIT

Operation

(op1) ← (op1) ∧ (op2)

Description

Performs a single bit logical AND of the source bit specified by op2 and the destination

bit specified by op1. The result is then stored in op1.

CPU Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Encoding

E Z V C N

0 NOR OR AND XOR

Mnemonic Format Bytes

BAND bitaddrZ.z , bitaddrQ.q 6A QQ ZZ qz 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-222 V 1.7, 2001-01

BCLR Bit Clear BCLR

Group Boolean Bit Manipulation Instructions

Syntax BCLR op1

Source Operand(s) none

Destination Operand(s) op1 → BIT

Operation

(op1) ← 0

Description

Clears the bit specified by op1. This instruction is primarily used for peripheral and

system control.

CPU Flags

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Encoding

E Z V C N

0 B 0 0 B

Mnemonic Format Bytes

BCLR bitaddrQ.q qE QQ 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-223 V 1.7, 2001-01

BCMP Bit to Bit Compare BCMP

Group Boolean Bit Manipulation Instructions

Syntax BCMP op1, op2

Source Operand(s) op1, op2 → BIT

Destination Operand(s) none

Operation

(op1) ⇔ (op2)

Description

Performs a single bit comparison of the source bit specified by op1 and the source bit

specified by op2. No result is written by this instruction. Only the flags are updated.

CPU Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Encoding

E Z V C N

0 NOR OR AND XOR

Mnemonic Format Bytes

BCMP bitaddrZ.z , bitaddrQ.q 2A QQ ZZ qz 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-224 V 1.7, 2001-01

BFLDH Bit Field High Byte BFLDH

Group Boolean Bit Manipulation Instructions

Syntax BFLDH op1, op2, op3

Source Operand(s) op1 → WORD

op2, op3 → BYTE

Destination Operand(s) op1 → WORD

Operation

(count) ← 0

DO WHILE ((count) <8)

IF (op2[(count)] = 1)

(op1[(count) + 8]) ← op3[(count)]

ENDIF

(count) ← (count) + 1

END WHILE

Description

Replaces those bits in the high byte of the destination word operand op1 which are

selected by an ’1’ in the mask specified by op2 with the bits at the corresponding

positions in "op3".

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

0 * 0 0 *

Mnemonic Format Bytes

BFLDH bitoffQ , #mask8 , #data8 1A QQ ## @@ 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-225 V 1.7, 2001-01

BFLDL Bit Field Low Byte BFLDL

Group Boolean Bit Manipulation Instructions

Syntax BFLDL op1, op2, op3

Source Operand(s) op1 → WORD

op2, op3 → BYTE

Destination Operand(s) op1 → WORD

Operation

(count) ← 0

DO WHILE ((count) <8)

IF op2[(count)] = 1

(op1[(count)]) ← op3[(count)]

ENDIF

(count) ← (count) + 1

END WHILE

Description

Replaces those bits in the low byte of the destination word operand op1 which are

selected by an ’1’ in the mask specified by op2 with the bits at the corresponding

positions in "op3".

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

0 * 0 0 *

Mnemonic Format Bytes

BFLDL bitoffQ , #mask8 , #data8 0A QQ @@ ## 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-226 V 1.7, 2001-01

BMOV Bit to Bit Move BMOV

Group Boolean Bit Manipulation Instructions

Syntax BMOV op1, op2

Source Operand(s) op2 → BIT

Destination Operand(s) op1 → BIT

Operation

(op1) ← (op2)

Description

Moves a single bit from the source operand specified by op2 into the destination

operand specified by op1. The source bit is examined and the flags are updated

accordingly.

CPU Flags

E Always cleared.

Z Contains the logical negation of the source bit.

V Always cleared.

C Always cleared.

N Contains the state of the source bit.

Encoding

E Z V C N

0 B 0 0 B

Mnemonic Format Bytes

BMOV bitaddrZ.z , bitaddrQ.q 4A QQ ZZ qz 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-227 V 1.7, 2001-01

BMOVN Bit to Bit Move and Negate BMOVN

Group Boolean Bit Manipulation Instructions

Syntax BMOVN op1, op2

Source Operand(s) op2 → BIT

Destination Operand(s) op1 → BIT

Operation

(op1) ← ¬(op2)

Description

Moves the complement of a single bit from the source operand specified by op2 into the

destination operand specified by op1. The source bit is examined and the flags are

updated accordingly.

CPU Flags

E Always cleared.

Z Contains the logical negation of the source bit.

V Always cleared.

C Always cleared.

N Contains the state of the source bit.

Encoding

E Z V C N

0 B 0 0 B

Mnemonic Format Bytes

BMOVN bitaddrZ.z , bitaddrQ.q 3A QQ ZZ qz 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-228 V 1.7, 2001-01

BOR Bit Logical OR BOR

Group Boolean Bit Manipulation Instructions

Syntax BOR op1, op2

Source Operand(s) op1, op2 → BIT

Destination Operand(s) op1 → BIT

Operation

(op1) ← (op1) ∨ (op2)

Description

Performs a single bit logical OR of the source bit specified by op2 and the destination

bit specified by op1. The result is then stored in op1.

CPU Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Encoding

E Z V C N

0 NOR OR AND XOR

Mnemonic Format Bytes

BOR bitaddrZ.z , bitaddrQ.q 5A QQ ZZ qz 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-229 V 1.7, 2001-01

BSET Bit Set BSET

Group Boolean Bit Manipulation Instructions

Syntax BSET op1

Source Operand(s) none

Destination Operand(s) op1 → BIT

Operation

(op1) ← 1

Description

Sets the bit specified by op1.

CPU Flags

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Encoding

E Z V C N

0 B 0 0 B

Mnemonic Format Bytes

BSET bitaddrQ.q qF QQ 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-230 V 1.7, 2001-01

BXOR Bit Logical XOR BXOR

Group Boolean Bit Manipulation Instructions

Syntax BXOR op1, op2

Source Operand(s) op1, op2 → BIT

Destination Operand(s) op1 → BIT

Operation

(op1) ← (op1) ⊕ (op2)

Description

Performs a single bit logical EXCLUSIVE OR of the source bit specified by op2 and the

destination bit specified by op1. The result is then stored in op1.

CPU Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Encoding

E Z V C N

0 NOR OR AND XOR

Mnemonic Format Bytes

BXOR bitaddrZ.z , bitaddrQ.q 7A QQ ZZ qz 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-231 V 1.7, 2001-01

CALLA Call Subroutine Absolute CALLA

Group Call Instructions

Syntax CALLA op1, op2

Alternative Syntax CALLA+ op1, op2

CALLA- op1, op2

Source Operand(s) op1 → extended condition code

op2 → 16-bit address offset

Destination Operand(s) none

Operation

IF (op1) THEN

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← op2

ELSE

next instruction

END IF

Description

If the condition specified by op1 is met, a branch to the absolute memory location

specified by the second operand op2 is taken. The value of the instruction pointer IP is

placed into the system stack. Because the IP always points to the instruction following

the branch instruction, the value stored in the system stack represents the return

address of the calling routine. A static prediction scheme is used: if the bit ’a’ of the

instruction long word is cleared then CALLA is assumed ’taken’ and if this bit is set to 1,

CALLA is assumed ’not taken’. CALLA+ and CALLA- instructions are converted into

CALLA assumed ’taken’ (prediction bit cleared) and ’not taken’ (prediction bit set)

respectively. For regular CALLA instructions, the assembler assumes them ’taken’.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

E Z V C N

- - - - -

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-232 V 1.7, 2001-01

N Not affected.

Encoding

Mnemonic Format Bytes

CALLA xcc , caddr CA d00a MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-233 V 1.7, 2001-01

CALLI Call Subroutine Indirect CALLI

Group Call Instructions

Syntax CALLI op1, op2

Source Operand(s) op1 → condition code

op2 → 16-bit address offset

Destination Operand(s) none

Operation

IF (op1) THEN

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← op2

ELSE

next instruction

END IF

Description

If the condition specified by op1 is met, a branch to the location specified indirectly by

the second operand op2 is taken. The value of the instruction pointer IP is placed onto

the system stack. Because the IP always points to the instruction following the branch

instruction, the value stored in the system stack represents the return address of the

calling routine. If the condition is not met, no action is taken and the next instruction is

executed normally.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

CALLI cc , [Rwn] AB cn 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-234 V 1.7, 2001-01

CALLR Call Subroutine Relative CALLR

Group Call Instructions

Syntax CALLR op1

Source Operand(s) op1 → 8-bit signed displacement

Destination Operand(s) none

Operation

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← (IP) + 2*sign_extend(op1)

Description

A branch is taken to the location specified by the instruction pointer IP plus the relative

displacement op1. The displacement is a two’s complement number which is sign

extended and counts the relative distance in words. The value of the instruction pointer

(IP) is placed into the system stack. Because the IP always points to the instruction

following the branch instruction, the value stored in the system stack represents the

return address of the calling routine. The value of the IP used in the target address

calculation is the address of the instruction following the CALLR instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

CALLR rel BB rr 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-235 V 1.7, 2001-01

CALLS Call Inter-Segment Subroutine CALLS

Group Call Instructions

Syntax CALLS op1, op2

Source Operand(s) op1 → segment number

op2 → 16-bit address offset

Destination Operand(s) none

Operation

(SP) ← (SP) - 2

((SP)) ← (CSP)

(SP) ← (SP) - 2

((SP)) ← (IP)

IF (CPUCON1.SGTDIS = 0) THEN

(CSP) ← op1

END IF

(IP) ← op2

Description

A branch is taken to the absolute location specified by op2 within the segment specified

by op1. The previous value of the CSP is placed into the system stack to ensure correct

return to the calling segment. The value of the instruction pointer (IP) is also placed into

the system stack. Because the IP always points to the instruction following the branch

instruction, the value stored on the system stack represents the return address to the

calling routine.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

CALLS seg , caddr DA SS MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-236 V 1.7, 2001-01

CMP Integer Compare CMP

Group Boolean Bit Manipulation Instructions

Syntax CMP op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) none

Operation

(op1) ⇔ (op2)

Description

The source operand specified by op1 is compared to the source operand specified by

op2 by performing a 2s complement binary subtraction of op2 from op1. The flags are

set according to the rules of subtraction. The operands remain unchanged.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * S *

Mnemonic Format Bytes

CMP Rwn , #data3 48 n:0### 2

CMP Rwn , Rwm 40 nm 2

CMP Rwn , [Rwi+] 48 n:11ii 2

CMP Rwn , [Rwi] 48 n:10ii 2

CMP reg , #data16 46 RR ## ## 4

CMP reg , mem 42 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-237 V 1.7, 2001-01

CMPB Integer Compare CMPB

Group Boolean Bit Manipulation Instructions

Syntax CMPB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) none

Operation

(op1) ⇔ (op2)

Description

The source operand specified by op1 is compared to the source operand specified by

op2 by performing a 2s complement binary subtraction of op2 from op1. The flags are

set according to the rules of subtraction. The operands remain unchanged.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the byte data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * S *

Mnemonic Format Bytes

CMPB Rbn , #data3 49 n:0### 2

CMPB Rbn , Rbm 41 nm 2

CMPB Rbn , [Rwi+] 49 n:11ii 2

CMPB Rbn , [Rwi] 49 n:10ii 2

CMPB reg , #data8 47 RR ## xx 4

CMPB reg , mem 43 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-238 V 1.7, 2001-01

CMPD1 Integer Compare and Decrement by 1 CMPD1

Group Compare and Loop Control Instructions

Syntax CMPD1 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ⇔ (op2)

(op1) ← (op1) - 1

Description

This instruction is used to enhance the performance and flexibility of loops. The source

operand specified by op1 is compared to the source operand specified by op2 by

performing a 2s complement binary subtraction of op2 from op1. Operand op1 may

specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is

decremented by one. Using the set flags, a branch instruction can then be used in

conjunction with this instruction to form common high level language FOR loops of any

range.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * S *

Mnemonic Format Bytes

CMPD1 Rwn , #data16 A6 Fn ## ## 4

CMPD1 Rwn , #data4 A0 #n 2

CMPD1 Rwn , mem A2 Fn MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-239 V 1.7, 2001-01

CMPD2 Integer Compare and Decrement by 2 CMPD2

Group Compare and Loop Control Instructions

Syntax CMPD2 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ⇔ (op2)

(op1) ← (op1) - 2

Description

This instruction is used to enhance the performance and flexibility of loops. The source

operand specified by op1 is compared to the source operand specified by op2 by

performing a 2s complement binary subtraction of op2 from op1. Operand op1 may

specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is

decremented by two. Using the set flags, a branch instruction can then be used in

conjunction with this instruction to form common high level language FOR loops of any

range.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * S *

Mnemonic Format Bytes

CMPD2 Rwn , #data16 B6 Fn ## ## 4

CMPD2 Rwn , #data4 B0 #n 2

CMPD2 Rwn , mem B2 Fn MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-240 V 1.7, 2001-01

CMPI1 Integer Compare and Increment by 1 CMPI1

Group Compare and Loop Control Instructions

Syntax CMPI1 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ⇔ (op2)

(op1) ← (op1) + 1

Description

This instruction is used to enhance the performance and flexibility of loops. The source

operand specified by op1 is compared to the source operand specified by op2 by

performing a 2s complement binary subtraction of op2 from op1. Operand op1 may

specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is

incremented by one. Using the set flags, a branch instruction can then be used in

conjunction with this instruction to form common high level language FOR loops of any

range.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * S *

Mnemonic Format Bytes

CMPI1 Rwn , #data16 86 Fn ## ## 4

CMPI1 Rwn , #data4 80 #n 2

CMPI1 Rwn , mem 82 Fn MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-241 V 1.7, 2001-01

CMPI2 Integer Compare and Increment by 2 CMPI2

Group Compare and Loop Control Instructions

Syntax CMPI2 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ⇔ (op2)

(op1) ← (op1) + 2

Description

This instruction is used to enhance the performance and flexibility of loops. The source

operand specified by op1 is compared to the source operand specified by op2 by

performing a 2s complement binary subtraction of op2 from op1. Operand op1 may

specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is

incremented by two. Using the set flags, a branch instruction can then be used in

conjunction with this instruction to form common high level language FOR loops of any

range.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * S *

Mnemonic Format Bytes

CMPI2 Rwn , #data16 96 Fn ## ## 4

CMPI2 Rwn , #data4 90 #n 2

CMPI2 Rwn , mem 92 Fn MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-242 V 1.7, 2001-01

CPL Integer One’s Complement CPL

Group Arithmetic Instructions

Syntax CPL op1

Source Operand(s) op1 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← ¬(op1)

Description

Performs a 1s complement of the source operand specified by op1. The result is stored

back into op1.

CPU Flags

E Set if the value of op1 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * 0 0 *

Mnemonic Format Bytes

CPL Rwn 91 n0 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-243 V 1.7, 2001-01

CPLB Integer One’s Complement CPLB

Group Arithmetic Instructions

Syntax CPLB op1

Source Operand(s) op1 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← ¬(op1)

Description

Performs a 1s complement of the source operand specified by op1. The result is stored

back into op1.

CPU Flags

E Set if the value of op1 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * 0 0 *

Mnemonic Format Bytes

CPLB Rbn B1 n0 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-244 V 1.7, 2001-01

DISWDT Disable Watchdog Timer DISWDT

Group System Control Instructions

Syntax DISWDT

Source Operand(s) none

Destination Operand(s) none

Operation

Disable the watchdog timer

Description

This instruction disables the Watchdog Timer. If the WDTCTL bit is cleared, the

DISWDT instruction can be executed at any time between the Reset and the first

execution of either EINIT or SRVWDT. After execution of either an EINIT or a

SRVWDT, the DISWDT instruction will have no effect. If the WDTCTL bit is set, the

DISWDT instruction can always be executed regardless of the execution of EINIT or

SRVWDT. To ensure that this instruction is not accidentally executed, it is implemented

as a protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

DISWDT A5 5A A5 A5 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-245 V 1.7, 2001-01

DIV 16-by-16 Signed Division DIV

Group Arithmetic Instructions

Syntax DIV op1

Source Operand(s) op1 → WORD

MDL → WORD

Destination Operand(s) MD → DOUBLEWORD

Operation

(MDL) ← (MDL) / (op1)

(MDH) ← (MDL) mod (op1)

Description

Performs a signed 16-bit by 16-bit division of the low order word stored in the MD

register by the source word operand op1. The signed quotient is then stored in the low

order word of the MD register (MDL) and the remainder is stored in the high order word

of the MD register (MDH).

CPU Flags

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared

otherwise. Undefined if the V flag is set.

V Set if an arithmetic overflow occurred, i.e. the quotient cannot be

represented in a word data type (only in case of 8000H/FFFEH), or if the

divisor op1 was zero. Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is

set. Cleared otherwise. Undefined if the V flag is set.

Encoding

E Z V C N

0 * * 0 *

Mnemonic Format Bytes

DIV Rwn 4B nn 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-246 V 1.7, 2001-01

DIVL 32-by-16 Signed Division DIVL

Group Arithmetic Instructions

Syntax DIVL op1

Source Operand(s) op1 → WORD

MD → DOUBLEWORD

Destination Operand(s) MD → DOUBLEWORD

Operation

(MDL) ← (MD) / (op1)

(MDH) ← (MD) mod (op1)

Description

Performs an extended signed 32-bit by 16-bit division of the two words stored in the MD

register by the source word operand op1. The signed quotient is then stored in the low

order word of the MD register (MDL) and the remainder is stored in the high order word

of the MD register (MDH).

CPU Flags

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared

otherwise. Undefined if the V flag is set.

V Set if an arithmetic overflow occurred, i.e. the quotient cannot be

represented in a word data type, or if the divisor op1 was zero. Cleared

otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is

set. Cleared otherwise. Undefined if the V flag is set.

Encoding

E Z V C N

0 * * 0 *

Mnemonic Format Bytes

DIVL Rwn 6B nn 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-247 V 1.7, 2001-01

DIVLU 32-by-16 Unsigned Division DIVLU

Group Arithmetic Instructions

Syntax DIVLU op1

Source Operand(s) op1 → WORD

MD → DOUBLEWORD

Destination Operand(s) MD → DOUBLEWORD

Operation

(MDL) ← (MD) / op1

(MDH) ← (MD) mod (op1)

Description

Performs an extended unsigned 32-bit by 16-bit division of the two words stored in the

MD register by the source word operand op1. The unsigned quotient is then stored in

the low order word of the MD register (MDL) and the remainder is stored in the high

order word of the MD register (MDH).

CPU Flags

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared

otherwise. Undefined if the V flag is set.

V Set if an arithmetic overflow occurred, i.e. the quotient cannot be

represented in a word data type, or if the divisor op1 was zero. Cleared

otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is

set. Cleared otherwise. Undefined if the V flag is set.

Encoding

E Z V C N

0 * * 0 *

Mnemonic Format Bytes

DIVLU Rwn 7B nn 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-248 V 1.7, 2001-01

DIVU 16-by-16 Unsigned Division DIVU

Group Arithmetic Instructions

Syntax DIVU op1

Source Operand(s) op1 → WORD

MDL → WORD

Destination Operand(s) MD → DOUBLEWORD

Operation

(MDL) ← (MDL) / (op1)

(MDH) ← (MDL) mod (op1)

Description

Performs an unsigned 16-bit by 16-bit division of the low order word stored in the MD

register by the source word operand op1. The unsigned quotient is then stored in the

low order word of the MD register (MDL) and the remainder is stored in the high order

word of the MD register (MDH).

CPU Flags

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared

otherwise. Undefined if the V flag is set.

V Set if the divisor op1 was zero.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is

set. Cleared otherwise. Undefined if the V flag is set.

Encoding

E Z V C N

0 * * 0 *

Mnemonic Format Bytes

DIVU Rwn 5B nn 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-249 V 1.7, 2001-01

EINIT End of Initialization EINIT

Group System Control Instructions

Syntax EINIT

Source Operand(s) none

Destination Operand(s) none

Operation

End of Initialization

Description

After a reset, the reset output pin RSTOUT is pulled low. It remains low until the EINIT

instruction has been executed at which time it goes high. This enables the software to

signal the external circuitry that it has successfully initialized the microcontroller. After

EINIT execution, registers can be locked until reset. The DISWDT instruction executed

after the first EINIT instruction has effect only if the WDTCTL bit was cleared before the

EINIT instruction. To ensure that this instruction is not accidentally executed, it is

implemented as a protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

EINIT B5 4A B5 B5 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-250 V 1.7, 2001-01

ENWDT Enable Watchdog Timer ENWDT

Group System Control Instructions

Syntax ENWDT

Source Operand(s) none

Destination Operand(s) none

Operation

Enable Watchdog Timer

Description

If the WDTCTL bit of the CPUCON1 register is cleared, this instruction has no effect. If

the WDTCTL bit is set, this instruction enables the Watchdog Timer. Specifically, it

allows the Watchdog Timer to be re-enabled after it has been previously disabled by a

DISWDT instruction. To ensure that this instruction is not accidentally executed, it is

implemented as a protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

ENWDT 85 7A 85 85 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-251 V 1.7, 2001-01

EXTP Begin EXTended Page Sequence EXTP

Group System Control Instructions

Syntax EXTP op1, op2

Source Operand(s) op1 → 10-bit page number

op2 → 2-bit instruction counter

Destination Operand(s) none

Operation

(count) ← (op2) [1 ≤ op2 ≤ 4]

Disable interrupts and Class A traps

Data_Page ← (op1)

DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction

(count) ← (count) - 1

END WHILE

(count) ← 0

Data_Page ← (DPPx)

Enable interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing

modes for a specified number of instructions. During their execution, both standard and

PEC interrupts and class A hardware traps are locked. The EXTP instruction becomes

active immediately such that no additional NOPs are required. For any long (’mem’) or

indirect ([...]) address in the EXTP instruction sequence, the 10-bit page number

(address bits A23-A14) is not determined by the contents of a DPP register, but by the

value of op1 itself. The 14-bit page offset (address bits A13-A0) is derived from the long

or indirect address as usual. The value of op2 defines the length of the affected

instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

E Z V C N

- - - - -

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-252 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

EXTP #pag , #irang2 D7 :01##-0 pp 0:00pp 4

EXTP Rwm , #irang2 DC :01##-m 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-253 V 1.7, 2001-01

EXTPR Begin EXTended Page and Register Sequence EXTPR

Group System Control Instructions

Syntax EXTPR op1, op2

Source Operand(s) op1 → 10-bit page number

op2 → 2-bit instruction counter

Destination Operand(s) none

Operation

(count) ← (op2) [1 ≤ op2 ≤ 4]

Disable interrupts and Class A traps

Data_Page ← (op1)

SFR_range ← Extended

DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction

(count) ← (count) - 1

END WHILE

(count) ← 0

Data_Page ← (DPPx)

SFR_range ← Standard

Enable interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing

modes and causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’

addressing modes being made to the Extended SFR space for a specified number of

instructions. During their execution, both standard and PEC interrupts and class A

hardware traps are locked. For any long (’mem’) or indirect ([...]) address in the EXTP

instruction sequence, the 10-bit page number (address bits A23-A14) is not determined

by the contents of a DPP register, but by the value of op1 itself. The 14-bit page offset

(address bits A13-A0) is derived from the long or indirect address as usual. The value

of op2 defines the length of the affected instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

E Z V C N

- - - - -

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-254 V 1.7, 2001-01

C Not affected.

N Not affected.

Encoding

Mnemonic Format Bytes

EXTPR #pag , #irang2 D7 :11##-0 pp 0:00pp 4

EXTPR Rwm , #irang2 DC :11##-m 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-255 V 1.7, 2001-01

EXTR Begin EXTended Register Sequence EXTR

Group System Control Instructions

Syntax EXTR op1

Source Operand(s) op1 → 2-bit instruction counter

Destination Operand(s) none

Operation

(count) ← (op1) [1 ≤ op1 ≤ 4]

Disable interrupts and Class A traps

SFR_range ← Extended

DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction

(count) ← (count) - 1

END WHILE

(count) ← 0

SFR_range ← Standard

Enable interrupts and traps

Description

Causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’ addressing modes

being made to the Extended SFR space for a specified number of instructions. During

their execution, both standard and PEC interrupts and class A hardware traps are

locked. The value of op1 defines the length of the affected instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

EXTR #irang2 D1 :10##-0 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-256 V 1.7, 2001-01

EXTS Begin EXTended Segment Sequence EXTS

Group System Control Instructions

Syntax EXTS op1, op2

Source Operand(s) op1 → segment number

op2 → 2-bit instruction counter

Destination Operand(s) none

Operation

(count) ← (op2) [1 ≤ op2 ≤ 4]

Disable interrupts and Class A traps

Data_Segment ← (op1)

DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction

(count) ← (count) - 1

END WHILE

(count) ← 0

Data_Page ← (DPPx)

Enable interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing

modes for a specified number of instructions. During their execution, both standard and

PEC interrupts and class A hardware traps are locked. The EXTS instruction becomes

immediately active such that no additional NOPs are required. For any long (’mem’) or

indirect ([...]) address in an EXTS instruction sequence, the value of op1 determines the

8-bit segment (address bits A23-A16) valid for the corresponding data access. The long

or indirect address itself represents the 16-bit segment offset (address bits A15-A0).

The value of op2 defines the length of the affected instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

E Z V C N

- - - - -

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-257 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

EXTS #seg , #irang2 D7 :00##-0 ss 00 4

EXTS Rwm , #irang2 DC :00##-m 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-258 V 1.7, 2001-01

EXTSR Begin EXTended Segment and Register Sequence EXTSR

Group System Control Instructions

Syntax EXTSR op1, op2

Source Operand(s) op1 → segment number

op2 → 2-bit instruction counter

Destination Operand(s) none

Operation

(count) ← (op2) [1 ≤ op2 ≤ 4]

Disable interrupts and Class A traps

Data_Segment ← (op1)

SFR_range ← Extended

DO WHILE ((count) ≠ 0 AND Class_B_Trap_Condition ≠ TRUE)

Next Instruction

(count) ← (count) - 1

END WHILE

(count) ← 0

Data_Page ← (DPPx)

SFR_range ← Standard

Enable interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing

modes and causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’

addressing modes being made to the Extended SFR space for a specified number of

instructions. During their execution, both standard and PEC interrupts and class A

hardware traps are locked. The EXTSR instruction becomes immediately active such

that no additional NOPs are required. For any long (’mem’) or indirect ([...]) address in

an EXTSR instruction sequence, the value of op1 determines the 8-bit segment

(address bits A23-A16) valid for the corresponding data access. The long or indirect

address itself represents the 16-bit segment offset (address bits A15-A0). The value of

op2 defines the length of the affected instruction sequence.

CPU Flags

E Not affected.

Z Not affected.

E Z V C N

- - - - -

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-259 V 1.7, 2001-01

V Not affected.

C Not affected.

N Not affected.

Encoding

Mnemonic Format Bytes

EXTSR #seg , #irang2 D7 :10##-0 ss 00 4

EXTSR Rwm , #irang2 DC :10##-m 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-260 V 1.7, 2001-01

IDLE Enter Idle Mode IDLE

Group System Control Instructions

Syntax IDLE

Source Operand(s) none

Destination Operand(s) none

Operation

Enter Idle Mode

Description

This instruction causes the part to enter the idle mode. In this mode, the CPU is

powered down while the peripherals remain running. It remains powered down until a

peripheral interrupt or external interrupt occurs. To ensure that this instruction is not

accidentally executed, it is implemented as a protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

IDLE 87 78 87 87 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-261 V 1.7, 2001-01

JB Relative Jump if Bit Set JB

Group Jump Instructions

Syntax JB op1, op2

Source Operand(s) op1 → BIT

op2 → 8-bit signed displacement

Destination Operand(s) none

Operation

IF ((op1) = 1) THEN

(IP) ← (IP) + 2*sign_extend(op2)

ELSE

Next Instruction

END IF

Description

If the bit specified by op1 is set, program execution continues at the location of the

instruction pointer IP, plus the specified displacement op2. The displacement is a 2s

complement number which is sign extended and counts the relative distance in words.

The value of the IP used in the target address calculation is the address of the

instruction following the JB instruction. If the specified bit is cleared, program execution

continues normally with the instruction following the JB instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

JB bitaddrQ.q , rel 8A QQ rr q0 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-262 V 1.7, 2001-01

JBC Relative Jump if Bit Set and Clear Bit JBC

Group Jump Instructions

Syntax JBC op1, op2

Source Operand(s) op1 → BIT

op2 → 8-bit signed displacement

Destination Operand(s) none

Operation

IF ((op1) = 1) THEN

(op1) ← 0

(IP) ← (IP) + 2*sign_extend(op2)

ELSE

Next Instruction

END IF

Description

If the bit specified by op1 is set, program execution continues at the location of the

instruction pointer IP, plus the specified displacement op2. The bit specified by op1 is

cleared, allowing implementation of semaphore operations. The displacement is a 2s

complement number which is sign extended and counts the relative distance in words.

The value of the IP used in the target address calculation is the address of the

instruction following the JBC instruction. If the specified bit was clear, program

execution continues normally with the instruction following the JBC instruction.

Note: Flags are updated by this instruction even if the branch is not executed. An explicit
write operation to the PSW register supersedes the condition flag values which are

implicitly generated by the CPU.

CPU Flags

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

E Z V C N

0 B 0 0 B

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-263 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

JBC bitaddrQ.q , rel AA QQ rr q0 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-264 V 1.7, 2001-01

JMPA Absolute Conditional Jump JMPA

Group Jump Instructions

Syntax JMPA op1, op2

Alternative Syntax JMPA+ op1, op2

JMPA- op1, op2

Source Operand(s) op1 → extended condition code

op2 → 16-bit address offset

Destination Operand(s) none

Operation

IF ((op1) = 1) THEN

(IP) ← op2

ELSE

Next Instruction

END IF

Description

If the condition specified by op1 is met, a branch to the absolute address specified by

op2 is taken. If the condition is not met, no action is taken, and the instruction following

the JMPA instruction is executed normally. A static prediction scheme is used: if the

prediction bit ’a’ of the instruction long word is cleared then JMPA is assumed ’taken’

and if this bit is set to 1 JMPA is assumed ’not taken’. JMPA+ and JMPA- instructions

are converted into JMPA assumed ’taken’ (bit ’a’ cleared) and ’not taken’ (bit ’a’ set)

respectively. For regular JMPA instructions, the assembler applies the following rule:

cc_z is predicted ’not taken’ meanwhile all other conditions are predicted ’taken’. A

prefetch hint bit is also used. This bit is the instruction long word bit ’l’ and is required by

the fetch unit to deal efficiently with short backward loops. It must be set only if

(0 < IP_jmpa - IP_target ≤ 32), cleared otherwise. IP_jmpa is the address of the JMPA

instruction and IP_target is the target address of JMPA.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

E Z V C N

- - - - -

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-265 V 1.7, 2001-01

C Not affected.

N Not affected.

Encoding

Mnemonic Format Bytes

JMPA xcc , caddr EA d0la MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-266 V 1.7, 2001-01

JMPI Indirect Conditional Jump JMPI

Group Jump Instructions

Syntax JMPI op1, op2

Source Operand(s) op1 → condition code

op2 → 16-bit address offset

Destination Operand(s) none

Operation

IF ((op1) = 1) THEN

(IP) ← (op2)

ELSE

Next Instruction

END IF

Description

If the condition specified by op1 is met, a branch to the absolute address specified by

op2 is taken. If the condition is not met, no action is taken, and program execution

continues normally with the instruction following the JMPI instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

JMPI cc , [Rwn] 9C cn 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-267 V 1.7, 2001-01

JMPR Relative Conditional Jump JMPR

Group Jump Instructions

Syntax JMPR op1, op2

Source Operand(s) op1 → condition code

op2 → 8-bit signed displacement

Destination Operand(s) none

Operation

IF ((op1) = 1) THEN

(IP) ← (IP) + 2*sign_extend(op2)

ELSE

Next Instruction

END IF

Description

If the extended condition specified by op1 is met, program execution continues at the

location of the instruction pointer, IP, plus the specified displacement, op2. The

displacement is a 2s complement number which is sign-extended and counts the

relative distance in words. The value of the IP used in the target address calculation is

the address of the instruction following the JMPR instruction. If the specified condition is

not met, program execution continues normally with the instruction following the JMPR

instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

JMPR cc , rel cD rr 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-268 V 1.7, 2001-01

JMPS Absolute Inter-Segment Jump JMPS

Group Jump Instructions

Syntax JMPS op1, op2

Source Operand(s) op1 → segment number

op2 → 16-bit address offset

Destination Operand(s) none

Operation

IF (CPUCON1.SGTDIS = 0) THEN

(CSP) ← op1

END IF

(IP) ← op2

Description

Branches unconditionally to the absolute address specified by op2 within the segment

specified by op1.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

JMPS seg , caddr FA SS MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-269 V 1.7, 2001-01

JNB Relative Jump if Bit Clear JNB

Group Jump Instructions

Syntax JNB op1, op2

Source Operand(s) op1 → BIT

op2 → 8-bit signed displacement

Destination Operand(s) none

Operation

IF ((op1) = 0) THEN

(IP) ← (IP) + 2*sign_extend(op2)

ELSE

Next Instruction

END IF

Description

If the bit specified by op1 is clear, program execution continues at the location of the

instruction pointer IP, plus the specified displacement op2. The displacement is a 2s

complement number which is sign-extended and counts the relative distance in words.

The value of the IP used in the target address calculation is the address of the

instruction following the JNB instruction. If the specified bit is set, program execution

continues normally with the instruction following the JNB instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

JNB bitaddrQ.q , rel 9A QQ rr q0 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-270 V 1.7, 2001-01

JNBS Relative Jump if Bit Clear and Set Bit JNBS

Group Jump Instructions

Syntax JNBS op1, op2

Source Operand(s) op1 → BIT

op2 → 8-bit signed displacement

Destination Operand(s) none

Operation

IF ((op1) = 0) THEN

(op1) ← 1

(IP) ← (IP) + 2*sign_extend(op2)

ELSE

Next Instruction

END IF

Description

If the bit specified by op1 is clear, program execution continues at the location of the

instruction pointer IP, plus the specified displacement op2. The bit specified by op1 is

set, allowing implementation of semaphore operations. The displacement is a 2s

complement number which is sign-extended and counts the relative distance in words.

The value of the IP used in the target address calculation is the address of the

instruction following the JNBS instruction. If the specified bit was set, program

execution continues normally with the instruction following the JNBS instruction.

Note: Flags are updated by this instruction even if the branch is not executed. An explicit
write operation to the PSW register supersedes the condition flag values which are

implicitly generated by the CPU.

CPU Flags

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

E Z V C N

0 B 0 0 B

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-271 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

JNBS bitaddrQ.q , rel BA QQ rr q0 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-272 V 1.7, 2001-01

MOV Move Data MOV

Group Data Movement Instructions

Syntax MOV op1, op2

Source Operand(s) op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op2)

Description

Moves the contents of the source operand specified by op2 to the location specified by

the destination operand op1. The contents of the moved data are examined, and the

flags are updated accordingly.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Encoding

E Z V C N

* * - - *

Mnemonic Format Bytes

MOV Rwn , #data4 E0 #n 2

MOV Rwn , Rwm F0 nm 2

MOV Rwn , [Rwm+#data16] D4 nm ## ## 4

MOV Rwn , [Rwm+] 98 nm 2

MOV Rwn , [Rwm] A8 nm 2

MOV [-Rwm] , Rwn 88 nm 2

MOV [Rwm+#data16] , Rwn C4 nm ## ## 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-273 V 1.7, 2001-01

MOV [Rwm] , Rwn B8 nm 2

MOV [Rwn+] , [Rwm] D8 nm 2

MOV [Rwn] , [Rwm+] E8 nm 2

MOV [Rwn] , [Rwm] C8 nm 2

MOV [Rwn] , mem 84 0n MM MM 4

MOV mem , [Rwn] 94 0n MM MM 4

MOV mem , reg F6 RR MM MM 4

MOV reg , #data16 E6 RR ## ## 4

MOV reg , mem F2 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-274 V 1.7, 2001-01

MOVB Move Data MOVB

Group Data Movement Instructions

Syntax MOVB op1, op2

Source Operand(s) op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← (op2)

Description

Moves the contents of the source operand specified by op2 to the location specified by

the destination operand op1. The contents of the moved data are examined, and the

flags are updated accordingly.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Encoding

E Z V C N

* * - - *

Mnemonic Format Bytes

MOVB Rbn , #data4 E1 #n 2

MOVB Rbn , Rbm F1 nm 2

MOVB Rbn , [Rwm + #data16] F4 nm ## ## 4

MOVB Rbn , [Rwm+] 99 nm 2

MOVB Rbn , [Rwm] A9 nm 2

MOVB [-Rwm] , Rbn 89 nm 2

MOVB [Rwm + #data16] , Rbn E4 nm ## ## 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-275 V 1.7, 2001-01

MOVB [Rwm] , Rbn B9 nm 2

MOVB [Rwn+] , [Rwm] D9 nm 2

MOVB [Rwn] , [Rwm+] E9 nm 2

MOVB [Rwn] , [Rwm] C9 nm 2

MOVB [Rwn] , mem A4 0n MM MM 4

MOVB mem , [Rwn] B4 0n MM MM 4

MOVB mem , reg F7 RR MM MM 4

MOVB reg , #data8 E7 RR ## xx 4

MOVB reg , mem F3 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-276 V 1.7, 2001-01

MOVBS Move Byte Sign Extend MOVBS

Group Data Movement Instructions

Syntax MOVBS op1, op2

Source Operand(s) op2 → BYTE

Destination Operand(s) op1 → WORD

Operation

(low byte op1) ← (op2)

IF ((op2[7]) = 1) THEN

(high byte op1) ← FFH

ELSE

(high byte op1) ← 00H

END IF

Description

Moves and sign-extends the contents of the source byte operand specified by op2 to

the word location specified by the destination operand op1. The contents of the moved

data are examined, and the flags are updated accordingly.

CPU Flags

E Always cleared.

Z Set if the value of the source byte operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Encoding

E Z V C N

0 * - - *

Mnemonic Format Bytes

MOVBS Rwn , Rbm D0 mn 2

MOVBS mem , reg D5 RR MM MM 4

MOVBS reg , mem D2 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-277 V 1.7, 2001-01

MOVBZ Move Byte Zero Extend MOVBZ

Group Data Movement Instructions

Syntax MOVBZ op1, op2

Source Operand(s) op2 → BYTE

Destination Operand(s) op1 → WORD

Operation

(low byte op1) ← (op2)

(high byte op1) ← 00H

Description

Moves and zero-extends the contents of the source byte operand specified by op2 to

the word location specified by the destination operand op1. The contents of the moved

data are examined, and the flags are updated accordingly.

CPU Flags

E Always cleared.

Z Set if the value of the source byte operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Always cleared.

Encoding

E Z V C N

0 * - - 0

Mnemonic Format Bytes

MOVBZ Rwn , Rbm C0 mn 2

MOVBZ mem , reg C5 RR MM MM 4

MOVBZ reg , mem C2 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-278 V 1.7, 2001-01

MUL Signed Multiplication MUL

Group Arithmetic Instructions

Syntax MUL op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) MD → DOUBLEWORD

Operation

(MD) ← (op1) * (op2)

Description

Performs a 16-bit by 16-bit signed multiplication using the two words specified by

operands op1 and op2 respectively. The signed 32-bit result is placed in the MD

register.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a word data type.

Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

0 * * 0 *

Mnemonic Format Bytes

MUL Rwn , Rwm 0B nm 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-279 V 1.7, 2001-01

MULU Unsigned Multiplication MULU

Group Arithmetic Instructions

Syntax MULU op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) MD → DOUBLEWORD

Operation

(MD) ← (op1) * (op2)

Description

Performs a 16-bit by 16-bit unsigned multiplication using the two words specified by

operands op1 and op2 respectively. The unsigned 32-bit result is placed in the MD

register.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a word data type.

Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

0 * * 0 *

Mnemonic Format Bytes

MULU Rwn , Rwm 1B nm 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-280 V 1.7, 2001-01

NEG Integer Two’s Complement NEG

Group Arithmetic Instructions

Syntax NEG op1

Source Operand(s) op1 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← 0 - (op1)

Description

Performs a binary 2s complement of the source operand specified by op1. The result is

then stored in op1.

CPU Flags

E Set if the value of op1 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * * *

Mnemonic Format Bytes

NEG Rwn 81 n0 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-281 V 1.7, 2001-01

NEGB Integer Two’s Complement NEGB

Group Arithmetic Instructions

Syntax NEGB op1

Source Operand(s) op1 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← 0 - (op1)

Description

Performs a binary 2s complement of the source operand specified by op1. The result is

then stored in op1.

CPU Flags

E Set if the value of op1 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the byte data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * * *

Mnemonic Format Bytes

NEGB Rbn A1 n0 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-282 V 1.7, 2001-01

NOP No Operation NOP

Group Null operation

Syntax NOP

Source Operand(s) none

Destination Operand(s) none

Operation

No Operation

Description

This instruction causes a null operation to be performed. A null operation causes no

change in the status of the flags.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

NOP CC 00 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-283 V 1.7, 2001-01

OR Logical OR OR

Group Logical Instructions

Syntax OR op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op1) ∨ (op2)

Description

Performs a bitwise logical OR of the source operand specified by op2 and the

destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * 0 0 *

Mnemonic Format Bytes

OR Rwn , #data3 78 n:0### 2

OR Rwn , Rwm 70 nm 2

OR Rwn , [Rwi+] 78 n:11ii 2

OR Rwn , [Rwi] 78 n:10ii 2

OR mem , reg 74 RR MM MM 4

OR reg , #data16 76 RR ## ## 4

OR reg , mem 72 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-284 V 1.7, 2001-01

ORB Logical OR ORB

Group Logical Instructions

Syntax ORB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← (op1) ∨ (op2)

Description

Performs a bitwise logical OR of the source operand specified by op2 and the

destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * 0 0 *

Mnemonic Format Bytes

ORB Rbn , #data3 79 n:0### 2

ORB Rbn , Rbm 71 nm 2

ORB Rbn , [Rwi+] 79 n:11ii 2

ORB Rbn , [Rwi] 79 n:10ii 2

ORB mem , reg 75 RR MM MM 4

ORB reg , #data8 77 RR ## xx 4

ORB reg , mem 73 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-285 V 1.7, 2001-01

PCALL Push Word and Call Subroutine Absolute PCALL

Group Call Instructions

Syntax PCALL op1, op2

Source Operand(s) op1 → WORD

op2 → 16-bit address offset

Destination Operand(s) none

Operation

(tmp) ← (op1)

(SP) ← (SP) - 2

((SP)) ← (tmp)

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← op2

Description

Pushes the word specified by operand op1 and the value of the instruction pointer, IP,

onto the system stack, and branches to the absolute memory location specified by the

second operand op2. Because IP always points to the instruction following the branch

instruction, the value stored on the system stack represents the return address of the

calling routine.

CPU Flags

E Set if the value of the pushed operand op1 represents the lowest

possible negative number. Cleared otherwise. Used to signal the end of a

table.

Z Set if the value of the pushed operand op1 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed operand op1 is set. Cleared

otherwise.

E Z V C N

* * - - *

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-286 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

PCALL reg , caddr E2 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-287 V 1.7, 2001-01

POP Pop Word from System Stack POP

Group System Stack Instructions

Syntax POP op1

Source Operand(s) none

Destination Operand(s) op1 → WORD

Operation

(tmp) ← ((SP))

(SP) ← (SP) + 2

(op1) ← (tmp)

Description

Pops one word from the system stack specified by the Stack Pointer into the operand

specified by op1. The Stack Pointer is then incremented by two.

CPU Flags

E Set if the value of the popped word represents the lowest possible

negative number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the popped word equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the popped word is set. Cleared

otherwise.

Encoding

E Z V C N

* * - - *

Mnemonic Format Bytes

POP reg FC RR 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-288 V 1.7, 2001-01

PRIOR Prioritize Register PRIOR

Group Prioritize Instruction

Syntax PRIOR op1, op2

Source Operand(s) op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(tmp) ← (op2)

(count) ← 0

DO WHILE (((tmp[15]) ≠ 1) AND ((op2) ≠ 0)))

(tmp[n]) ← (tmp[n-1]) [n=15...1]

(count) ← (count) + 1

END WHILE

(op1) ← (count)

Description

This instruction stores a count value in the word operand specified by op1. This count

value indicates the number of single bit shifts required to normalize the word operand

op2 so that its most significant bit is equal to one. If the source operand op2 equals

zero, a zero is written to operand op1 and the zero flag is set. Otherwise, the zero flag is

cleared.

CPU Flags

E Always cleared.

Z Set if the value of the source operand op2 equals zero. Cleared

otherwise.

V Always cleared.

C Always cleared.

N Always cleared.

Encoding

E Z V C N

0 * 0 0 0

Mnemonic Format Bytes

PRIOR Rwn , Rwm 2B nm 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-289 V 1.7, 2001-01

PUSH Push Word on System Stack PUSH

Group System Stack Instructions

Syntax PUSH op1

Source Operand(s) op1 → WORD

Destination Operand(s) none

Operation

(tmp) ← (op1)

(SP) ← (SP) - 2

((SP)) ← (tmp)

Description

Moves the word specified by operand op1 to the location in the system stack specified

by the Stack Pointer, after the Stack Pointer has been decremented by two.

CPU Flags

E Set if the value of the pushed operand op1 represents the lowest

possible negative number. Cleared otherwise. Used to signal the end of a

table.

Z Set if the value of the pushed operand op1 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed operand op1 is set. Cleared

otherwise.

Encoding

E Z V C N

* * - - *

Mnemonic Format Bytes

PUSH reg EC RR 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-290 V 1.7, 2001-01

PWRDN Enter Power Down Mode PWRDN

Group System Control Instructions

Syntax PWRDN

Source Operand(s) none

Destination Operand(s) none

Operation

Enter Power Down Mode

Description

This instruction causes the device to enter the power down mode. In this mode, all

peripherals and the CPU are powered down until the device is externally reset. To

ensure that this instruction is not accidentally executed, it is implemented as a

protected instruction. To further control the action of this instruction, the PWRDN

instruction is only enabled when the non-maskable interrupt pin (NMI) is in the low

state. Otherwise, this instruction has no effect.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

PWRDN 97 68 97 97 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-291 V 1.7, 2001-01

RET Return from Subroutine RET

Group Return Instructions

Syntax RET

Source Operand(s) none

Destination Operand(s) none

Operation

(IP) ← ((SP))

(SP) ← (SP) + 2

Description

Returns from a subroutine. The IP is popped from the system stack.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

RET CB 00 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-292 V 1.7, 2001-01

RETI Return from Interrupt Subroutine RETI

Group Return Instructions

Syntax RETI

Source Operand(s) none

Destination Operand(s) none

Operation

(IP) ← ((SP))

(SP) ← (SP) + 2

IF (CPUCON1.SGTDIS = 0) THEN

(CSP) ← ((SP))

(SP) ← (SP) + 2

END IF

(PSW) ← ((SP))

(SP) ← (SP) + 2

Description

Returns from an interrupt routine. The IP, CSP, and PSW are popped off the system

stack. The CSP is only popped if segmentation is enabled. This is indicated by the

SGTDIS bit in the CPUCON1 register.

CPU Flags

E Restored from the PSW popped from stack.

Z Restored from the PSW popped from stack.

V Restored from the PSW popped from stack.

C Restored from the PSW popped from stack.

N Restored from the PSW popped from stack.

Encoding

E Z V C N

* * * * *

Mnemonic Format Bytes

RETI FB 88 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-293 V 1.7, 2001-01

RETP Return from Subroutine and Pop Word RETP

Group Return Instructions

Syntax RETP op1

Source Operand(s) none

Destination Operand(s) op1 → WORD

Operation

(IP) ← ((SP))

(SP) ← (SP) + 2

(tmp) ← ((SP))

(SP) ← (SP) + 2

(op1) ← (tmp)

Description

Returns from a subroutine. First the IP is popped from the system stack and then the

next word is popped from the system stack into the operand specified by op1.

CPU Flags

E Set if the value of the popped word represents the lowest possible

negative number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the popped word equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the popped word is set. Cleared

otherwise.

Encoding

E Z V C N

* * - - *

Mnemonic Format Bytes

RETP reg EB RR 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-294 V 1.7, 2001-01

RETS Return from Inter-Segment Subroutine RETS

Group Return Instructions

Syntax RETS

Source Operand(s) none

Destination Operand(s) none

Operation

(IP) ← ((SP))

(SP) ← (SP) + 2

IF (CPUCON1.SGTDIS = 0) THEN

(CSP) ← ((SP))

END IF

(SP) ← (SP) + 2

Description

Returns from an inter-segment subroutine. The IP and CSP are popped from the

system stack.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

RETS DB 00 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-295 V 1.7, 2001-01

ROL Rotate Left ROL

Group Shift and Rotate Instructions

Syntax ROL op1, op2

Source Operand(s) op1 → WORD

op2 → shift counter

Destination Operand(s) op1 → WORD

Operation

(count) ← (op2)

(C) ← 0

DO WHILE ((count) ≠ 0)

(C) ← (op1[15])

(op1[n]) ← (op1[n-1]) [n=15...1]

(op1[0]) ← (C)

(count) ← (count) - 1

END WHILE

Description

Rotates the destination word operand op1 the number of times as specified by the

source operand op2. Bit 15 is rotated into Bit 0 and into the Carry. Only shift values

between 0 and 15 are allowed. When using a GPR as the count control, only the least

significant four bits are used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last most significant bit shifted out of

op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

E Z V C N

0 * 0 S *

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-296 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

ROL Rwn , #data4 1C #n 2

ROL Rwn , Rwm 0C nm 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-297 V 1.7, 2001-01

ROR Rotate Right ROR

Group Shift and Rotate Instructions

Syntax ROR op1, op2

Source Operand(s) op1 → WORD

op2 → shift counter

Destination Operand(s) op1 → WORD

Operation

(count) ← (op2)

(C) ← 0

(V) ← 0

DO WHILE ((count) ≠ 0)

(V) ← (V) ∨ (C)

(C) ← (op1[0])

(op1[n]) ← (op1[n+1]) [n=0...14]

(op1[15]) ← (C)

(count) ← (count) - 1

END WHILE

Description

Rotates the destination word operand op1 right by the number of times as specified by

the source operand op2. Bit 0 is rotated into Bit 15 and into the Carry. Only shift values

between 0 and 15 are allowed. When using a GPR as the count control, only the least

significant four bits are used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the rotate operation a 1 is shifted out of the carry

flag. Cleared for a rotate count of zero.

C The carry flag is set according to the last least significant bit shifted out of

op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

E Z V C N

0 * S S *

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-298 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

ROR Rwn , #data4 3C #n 2

ROR Rwn , Rwm 2C nm 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-299 V 1.7, 2001-01

SBRK Software Break SBRK

Group System Control Instructions

Syntax SBRK

Source Operand(s) none

Destination Operand(s) none

Operation

Software Break

Description

If the SBRK instruction is enabled by the One Chip Emulator (OCE), then the break

mode is activated. If SBRK is not enabled by the OCE, then the hardware trap "soft

break" (Class A, Vector 8) is activated. For more details about this instruction, see the

OCE specifications.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

SBRK 8C 00 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-300 V 1.7, 2001-01

SCXT Switch Context SCXT

Group System Stack Instructions

Syntax SCXT op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(tmp1) ← (op1)

(tmp2) ← (op2)

(SP) ← (SP) - 2

((SP)) ← (tmp1)

(op1) ← (tmp2)

Description

Switches contexts of any register. Switching context is a push and load operation. The

contents of the register specified by the first operand op1, are pushed onto the stack.

That register is then loaded with the value specified by the second operand, op2.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

SCXT reg , #data16 C6 RR ## ## 4

SCXT reg , mem D6 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-301 V 1.7, 2001-01

SHL Shift Left SHL

Group Shift and Rotate Instructions

Syntax SHL op1, op2

Source Operand(s) op1 → WORD

op2 → shift counter

Destination Operand(s) op1 → WORD

Operation

(count) ← (op2)

(C) ← 0

DO WHILE ((count) ≠ 0)

(C) ← (op1[15])

(op1[n]) ← (op1[n-1]) [n=15...1]

(op1[0]) ← 0

(count) ← (count) - 1

END WHILE

Description

Shifts the destination word operand op1 the number of times as specified by the source

operand op2. The least significant bits of the result are filled with zeros accordingly. The

most significant bit is shifted into the Carry. Only shift values between 0 and 15 are

allowed. When using a GPR as the count control, only the least significant four bits are

used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last most significant bit shifted out of

op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

E Z V C N

0 * 0 S *

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-302 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

SHL Rwn , #data4 5C #n 2

SHL Rwn , Rwm 4C nm 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-303 V 1.7, 2001-01

SHR Shift Right SHR

Group Shift and Rotate Instructions

Syntax SHR op1, op2

Source Operand(s) op1 → WORD

op2 → shift counter

Destination Operand(s) op1 → WORD

Operation

(count) ← (op2)

(C) ← 0

(V) ← 0

DO WHILE ((count) ≠ 0)

(V) ← (C) ∨ (V)

(C) ← (op1[0])

(op1[n]) ← (op1[n+1]) [n=0...14]

(op1[15]) ← 0

(count) ← (count) - 1

END WHILE

Description

Shifts the destination word operand op1 right by the number of times as specified by the

source operand op2. The most significant bits of the result are filled with zeros

accordingly. Since the bits shifted out effectively represent the remainder, the Overflow

flag is used instead as a Rounding flag. A shift right is a division by a power of two. The

overflow flag with the carry flag allows determination of whether the fractional part of the

division result is greater than, less than, or equal to one half (0.5 in decimal base). This

allows rounding of the division result accordingly. Only shift values between 0 and 15

are allowed. When using a GPR as the count control, only the least significant four bits

are used.

CPU Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a 1 is shifted out of the carry flag.

Cleared in case of a shift count equal 0.

E Z V C N

0 * S S *

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-304 V 1.7, 2001-01

C The carry flag is set according to the last least significant bit shifted out of

op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes

SHR Rwn , #data4 7C #n 2

SHR Rwn , Rwm 6C nm 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-305 V 1.7, 2001-01

SRST Software Reset SRST

Group System Control Instructions

Syntax SRST

Source Operand(s) none

Destination Operand(s) none

Operation

Software Reset

Description

This instruction is used to perform a software reset. A software reset has the same

effect on the microcontroller as an externally applied hardware reset. To ensure that

this instruction is not accidentally executed, it is implemented as a protected instruction.

CPU Flags

E Always cleared.

Z Always cleared.

V Always cleared.

C Always cleared.

N Always cleared.

Encoding

E Z V C N

0 0 0 0 0

Mnemonic Format Bytes

SRST B7 48 B7 B7 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-306 V 1.7, 2001-01

SRVWDT Service Watchdog Timer SRVWDT

Group System Control Instructions

Syntax SRVWDT

Source Operand(s) none

Destination Operand(s) none

Operation

Service Watchdog Timer

Description

This instruction reloads the high order byte of the Watchdog Timer with a preset value

and clears the low byte. After this instruction has been executed and if the WDTCTL bit

of the CPUCON1 register is cleared, the Watchdog Timer cannot be disabled

regardless of the execution of SRVWDT. If the WDTCTL bit is set, the Watchdog Timer

can still be disabled. To ensure that this instruction is not accidentally executed, it is

implemented as a protected instruction.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Encoding

E Z V C N

- - - - -

Mnemonic Format Bytes

SRVWDT A7 58 A7 A7 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-307 V 1.7, 2001-01

SUB Integer Subtraction SUB

Group Arithmetic Instructions

Syntax SUB op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op1) - (op2)

Description

Performs a 2s complement binary subtraction of the source operand specified by op2

and the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * S *

Mnemonic Format Bytes

SUB Rwn , #data3 28 n:0### 2

SUB Rwn , Rwm 20 nm 2

SUB Rwn , [Rwi+] 28 n:11ii 2

SUB Rwn , [Rwi] 28 n:10ii 2

SUB mem , reg 24 RR MM MM 4

SUB reg , #data16 26 RR ## ## 4

SUB reg , mem 22 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-308 V 1.7, 2001-01

SUBB Integer Subtraction SUBB

Group Arithmetic Instructions

Syntax SUBB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← (op1) - (op2)

Description

Performs a 2s complement binary subtraction of the source operand specified by op2

and the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * * S *

Mnemonic Format Bytes

SUBB Rbn , #data3 29 n:0### 2

SUBB Rbn , Rbm 21 nm 2

SUBB Rbn , [Rwi+] 29 n:11ii 2

SUBB Rbn , [Rwi] 29 n:10ii 2

SUBB mem , reg 25 RR MM MM 4

SUBB reg , #data8 27 RR ## xx 4

SUBB reg , mem 23 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-309 V 1.7, 2001-01

SUBC Integer Subtraction with Carry SUBC

Group Arithmetic Instructions

Syntax SUBC op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op1) - (op2) - (C)

Description

Performs a 2s complement binary subtraction of the source operand specified by op2

and the previously generated carry bit from the destination operand specified by op1.

The result is then stored in op1. This instruction can be used to perform multiple

precision arithmetic.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* S * S *

Mnemonic Format Bytes

SUBC Rwn , #data3 38 n:0### 2

SUBC Rwn , Rwm 30 nm 2

SUBC Rwn , [Rwi+] 38 n:11ii 2

SUBC Rwn , [Rwi] 38 n:10ii 2

SUBC mem , reg 34 RR MM MM 4

SUBC reg , #data16 36 RR ## ## 4

SUBC reg , mem 32 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-310 V 1.7, 2001-01

SUBCB Integer Subtraction with Carry SUBCB

Group Arithmetic Instructions

Syntax SUBCB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← (op1) - (op2) - (C)

Description

Performs a 2s complement binary subtraction of the source operand specified by op2

and the previously generated carry bit from the destination operand specified by op1.

The result is then stored in op1. This instruction can be used to perform multiple

precision arithmetic.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero and the previous Z flag was set. Cleared

otherwise.

V Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the word data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* S * S *

Mnemonic Format Bytes

SUBCB Rbn , #data3 39 n:0### 2

SUBCB Rbn , Rbm 31 nm 2

SUBCB Rbn , [Rwi+] 39 n:11ii 2

SUBCB Rbn , [Rwi] 39 n:10ii 2

SUBCB mem , reg 35 RR MM MM 4

SUBCB reg , #data8 37 RR ## xx 4

SUBCB reg , mem 33 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-311 V 1.7, 2001-01

TRAP Software Trap TRAP

Group Call Instructions

Syntax TRAP op1

Source Operand(s) op1 → 7-bit trap number

Destination Operand(s) none

Operation

(SP) ← (SP) - 2

((SP) ← (PSW)

IF (CPUCON1.SGTDIS = 0) THEN

(SP) ← (SP) - 2

((SP)) ← (CSP)

END IF

(CSP) ← (VSEG)

(SP) ← (SP) - 2

((SP)) ← (IP)

(IP) ← ((op1) * 4) <<CPUCON1.SCINT

Description

Invokes a trap or interrupt routine based on the specified operand op1. The invoked

routine is determined by branching to the specified vector table entry point. This routine

has no indication of whether it was called by software or hardware. System state is

preserved identically to hardware interrupt entry except that the CPU priority level is not

affected. The RETI, Return from Interrupt instruction is used to resume execution after

the completion of the trap or interrupt routine. The CSP is pushed if the segmentation is

enabled. This is indicated by the SGTDIS bit of the CPUCON1 register.

CPU Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

E Z V C N

- - - - -

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-312 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

TRAP #trap7 9B t:ttt0 2

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-313 V 1.7, 2001-01

XOR Logical Exclusive OR XOR

Group Logical Instructions

Syntax XOR op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op1) ⊕ (op2)

Description

Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and

the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * 0 0 *

Mnemonic Format Bytes

XOR Rwn , #data3 58 n:0### 2

XOR Rwn , Rwm 50 nm 2

XOR Rwn , [Rwi+] 58 n:11ii 2

XOR Rwn , [Rwi] 58 n:10ii 2

XOR mem , reg 54 RR MM MM 4

XOR reg , #data16 56 RR ## ## 4

XOR reg , mem 52 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-314 V 1.7, 2001-01

XORB Logical Exclusive OR XORB

Group Logical Instructions

Syntax XORB op1, op2

Source Operand(s) op1, op2 → BYTE

Destination Operand(s) op1 → BYTE

Operation

(op1) ← (op1) ⊕ (op2)

Description

Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and

the destination operand specified by op1. The result is then stored in op1.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

E Z V C N

* * 0 0 *

Mnemonic Format Bytes

XORB Rbn , #data3 59 n:0### 2

XORB Rbn , Rbm 51 nm 2

XORB Rbn , [Rwi+] 59 n:11ii 2

XORB Rbn , [Rwi] 59 n:10ii 2

XORB mem , reg 55 RR MM MM 4

XORB reg , #data8 57 RR ## xx 4

XORB reg , mem 53 RR MM MM 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-315 V 1.7, 2001-01

8.2 DSP Instruction Set

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-316 V 1.7, 2001-01

CoABS Absolute Value CoABS

Group Arithmetic Instructions

Syntax CoABS

Source Operand(s) ACC → 40-bit signed value

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← Abs(ACC)

Description

Computes the absolute value of the 40-bit ACC contents.

MAC Flags

MV Set if the ACC contents was 80 0000 0000H. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if the ACC contents was 80 0000 0000H. Not affected otherwise.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * 0 * * yes

Mnemonic Format Bytes

CoABS A3 00 1A rrr0:0000 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-317 V 1.7, 2001-01

CoABS Absolute Value CoABS

Group Arithmetic Instructions

Syntax CoABS op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← Abs((op2) || (op1))

Description

Computes the absolute value of a 40-bit source operand and loads the result in the

40-bit ACC register. The 40-bit operand is a sign-extended result of the concatenation

of the two source operands op1 (LSW) and op2 (MSW).

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * * yes

Mnemonic Format Bytes

CoABS Rwn , Rwm A3 nm CA rrr0:0000 4

CoABS Rwn , [Rwm*] 83 nm CA rrr0:0qqq 4

CoABS [IDXi*] , [Rwm*] 93 Xm CA rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-318 V 1.7, 2001-01

CoADD Add CoADD

Group Arithmetic Instructions

Syntax CoADD op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op2) || (op1)

(ACC) ← (ACC) + (tmp)

Description

Adds a 40-bit operand to the 40-bit ACC register contents and stores the result in the

ACC register. The 40-bit operand is a sign-extended result of the concatenation of the

two source operands op1 (LSW) and op2 (MSW).

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoADD Rwn , Rwm A3 nm 02 rrr0:0000 4

CoADD Rwn , [Rwm*] 83 nm 02 rrr0:0qqq 4

CoADD [IDXi*] , [Rwm*] 93 Xm 02 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-319 V 1.7, 2001-01

CoADD2 Add CoADD2

Group Arithmetic Instructions

Syntax CoADD2 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← 2 * ((op2) || (op1))

(ACC) ← (ACC) + (tmp)

Description

Adds a 40-bit operand to the 40-bit ACC register contents and stores the result in the

ACC register. The 40-bit operand is a sign-extended result of the concatenation of the

two source operands op1 (LSW) and op2 (MSW). The 40-bit operand is then multiplied

by two before being added to ACC register.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoADD2 Rwn , Rwm A3 nm 42 rrr0:0000 4

CoADD2 Rwn , [Rwm*] 83 nm 42 rrr0:0qqq 4

CoADD2 [IDXi*] , [Rwm*] 93 Xm 42 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-320 V 1.7, 2001-01

CoASHR Accumulator Arithmetic Shift Right with Round CoASHR

Group Shift Instructions

Syntax CoASHR op1, rnd

Source Operand(s) op1 → shift counter

Destination Operand(s) ACC → 40-bit signed value

Operation

(count) ← (op1)

(C) ← 0

DO WHILE (count) ≠ 0

(ACC[n]) ← (ACC[n+1]) [n=0...38]

(count) ← (count) -1

END WHILE

(ACC) ← (ACC) + 0000 8000h

(MAL) ← 0

Description

Arithmetically shifts the ACC register right by the number of times as specified by the

operand op1. Then, the result is 2s complement rounded before being stored in the

40-bit ACC register. To preserve the sign of the ACC register, the most significant bits

of the result are filled with sign 0 if the original most significant bit was a 0 or with sign 1

if the original most significant bit was 1. Only shift values from 0 to 16 (inclusive) are

allowed. op1 can be either a 5-bit unsigned immediate data (the shift range is from 0 to

16 in this case) or the four least significant bits (the shift range is from 0 to 15 in that

case) of any register directly or indirectly addressed operand.

MAC Flags

MV Set if an arithmetic overflow occurred. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated when rounding. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-321 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoASHR #data5 , rnd A3 00 B2 rrr#:# 4

CoASHR Rwn , rnd A3 nn BA rrr0:0000 4

CoASHR [Rwm*] , rnd 83 mm BA rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-322 V 1.7, 2001-01

CoASHR Accumulator Arithmetic Shift Right CoASHR

Group Shift Instructions

Syntax CoASHR op1

Source Operand(s) op1 → shift counter

Destination Operand(s) ACC → 40-bit signed value

Operation

(count) ← (op1)

(C) ← 0

DO WHILE (count) ≠ 0

(ACC[n]) ← (ACC[n+1]) [n=0...38]

(count) ← (count) -1

END WHILE

Description

Arithmetically shifts the ACC register right by the number of times as specified by the

operand op1. To preserve the sign of the ACC register, the most significant bits of the

result are filled with sign 0 if the original most significant bit was a 0 or with sign 1 if the

original most significant bit was 1. Only shift values from 0 to 16 (inclusive) are allowed.

op1 can be either a 5-bit unsigned immediate data (the shift range is from 0 to 16 in this

case) or the four least significant bits (the shift range is from 0 to 15 in that case) of any

register directly or indirectly addressed operand. The MS bit of the MCW register does

not affect the result.

MAC Flags

MV Always cleared.

MSL Not affected.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

0 - * - 0 * * no

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-323 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoASHR #data5 A3 00 A2 rrr#:# 4

CoASHR Rwn A3 nn AA rrr0:0000 4

CoASHR [Rwm*] 83 mm AA rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-324 V 1.7, 2001-01

CoCMP Compare CoCMP

Group Compare Instructions

Syntax CoCMP op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) none

Operation

tmp ← (op2) || (op1)

(ACC) ⇔ (tmp)

Description

Subtracts a 40-bit signed operand from the 40-bit ACC contents and updates the N, Z

and C flags of the MSW register leaving the ACC register unchanged. The 40-bit

operand is a sign-extended result of the concatenation of the two source operands op1

(LSW) and op2 (MSW). The MS bit of the MCW register does not affect the result.

MAC Flags

MV Set if the ACC contents are strictly less than the 40-bit operand. Cleared

otherwise.

MSL Not affected.

ME Not affected.

MSV Not affected.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* - - - * * * no

Mnemonic Format Bytes

CoCMP Rwn , Rwm A3 nm C2 rrr0:0000 4

CoCMP Rwn , [Rwm*] 83 nm C2 rrr0:0qqq 4

CoCMP [IDXi*] , [Rwm*] 93 Xm C2 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-325 V 1.7, 2001-01

CoLOAD Load Accumulator CoLOAD

Group Arithmetic Instructions

Syntax CoLOAD op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op2) || (op1)

(ACC) ← 0 + (tmp)

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand

is the sign-extended result of the concatenation of the two source operands op1 (LSW)

and op2 (MSW).

MAC Flags

MV Always cleared.

MSL Not affected.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 - 0 - 0 * * no

Mnemonic Format Bytes

CoLOAD Rwn , Rwm A3 nm 22 rrr0:0000 4

CoLOAD Rwn , [Rwm*] 83 nm 22 rrr0:0qqq 4

CoLOAD [IDXi*] , [Rwm*] 93 Xm 22 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-326 V 1.7, 2001-01

CoLOAD- Load Accumulator CoLOAD-

Group Arithmetic Instructions

Syntax CoLOAD- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op2) || (op1)

(ACC) ← 0 - (tmp)

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand

is a sign-extended result of the concatenation of the two source operands op1 (LSW)

and op2 (MSW). The 40-bit source operand is 2s complemented, before being stored in

the ACC register.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - * * * yes

Mnemonic Format Bytes

CoLOAD- Rwn , Rwm A3 nm 2A rrr0:0000 4

CoLOAD- Rwn , [Rwm*] 83 nm 2A rrr0:0qqq 4

CoLOAD- [IDXi*] , [Rwm*] 93 Xm 2A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-327 V 1.7, 2001-01

CoLOAD2 Load Accumulator CoLOAD2

Group Arithmetic Instructions

Syntax CoLOAD2 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← 2 * ((op2) || (op1))

(ACC) ← 0 + (tmp)

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand

is a sign-extended results of the concatenation of the two source operands op1 (LSW)

and op2 (MSW). The 40-bit operand is also multiplied by two, before being stored in the

ACC register.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * * yes

Mnemonic Format Bytes

CoLOAD2 Rwn , Rwm A3 nm 62 rrr0:0000 4

CoLOAD2 Rwn , [Rwm*] 83 nm 62 rrr0:0qqq 4

CoLOAD2 [IDXi*] , [Rwm*] 93 Xm 62 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-328 V 1.7, 2001-01

CoLOAD2- Load Accumulator CoLOAD2-

Group Arithmetic Instructions

Syntax CoLOAD2- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← 2 * ((op2) || (op1))

(ACC) ← 0 - (tmp)

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand

is a sign-extended result of the concatenation of the two source operands op1 (LSW)

and op2 (MSW). The 40-bit operand is also multiplied by two and negated, before being

stored in the ACC register.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - * * * yes

Mnemonic Format Bytes

CoLOAD2- Rwn , Rwm A3 nm 6A rrr0:0000 4

CoLOAD2- Rwn , [Rwm*] 83 nm 6A rrr0:0qqq 4

CoLOAD2- [IDXi*] , [Rwm*] 93 Xm 6A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-329 V 1.7, 2001-01

CoMAC Multiply-Accumulate with Round CoMAC

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMAC op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← ((op1) * (op2)) <<1

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

ELSE

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

END IF

(MAL) ← 0

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

then, it is added to the 40-bit ACC register contents. Finally, the result is 2s complement

rounded before being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-330 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMAC Rwn , Rwm , rnd A3 nm D1 rrr0:0000 4

CoMAC Rwn , [Rwm*] , rnd 83 nm D1 rrr0:0qqq 4

CoMAC [IDXi*] , [Rwm*] , rnd 93 Xm D1 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-331 V 1.7, 2001-01

CoMAC Multiply-Accumulate CoMAC

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMAC op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← ((op1) * (op2)) <<1

(ACC) ← (ACC) + (tmp)

ELSE

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) + (tmp)

END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

then, it is added to the 40-bit ACC register contents before being stored in the 40-bit

ACC register.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-332 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMAC Rwn , Rwm A3 nm D0 rrr0:0000 4

CoMAC Rwn , [Rwm*] 83 nm D0 rrr0:0qqq 4

CoMAC [IDXi*] , [Rwm*] 93 Xm D0 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-333 V 1.7, 2001-01

CoMAC- Multiply-Accumulate CoMAC-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMAC- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← ((op1) * (op2)) <<1

(ACC) ← (ACC) - (tmp)

ELSE

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) - (tmp)

END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

then, it is subtracted from the 40-bit ACC register contents before being stored in the

40-bit ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-334 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMAC- Rwn , Rwm A3 nm E0 rrr0:0000 4

CoMAC- Rwn , [Rwm*] 83 nm E0 rrr0:0qqq 4

CoMAC- [IDXi*] , [Rwm*] 93 Xm E0 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-335 V 1.7, 2001-01

CoMACM Multiply-Accumulate & Move & Round CoMACM

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACM op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← (((op1)) * ((op2))) <<1

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

ELSE

(tmp) ← ((op1))*((op2))

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

END IF

(MAL) ← 0

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

and next, it is added to the 40-bit ACC register contents. Finally, the result is 2s

complement rounded before being stored in the 40-bit ACC register. The MAL register

is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data

pointed to by IDXi overwrites another data located in memory (DPRAM). The address

of the overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-336 V 1.7, 2001-01

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes

CoMACM [IDXi*], [Rwm*] , rnd 93 Xm D9 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-337 V 1.7, 2001-01

CoMACM Multiply-Accumulate & Move CoMACM

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACM op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← (((op1)) * ((op2))) <<1

(ACC) ← (ACC) + (tmp)

ELSE

(tmp) ← ((op1)) * ((op2))

(ACC) ← (ACC) + (tmp)

END IF

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then if the MP flag is set, it is one-bit left shifted;

and next it is added to the 40-bit ACC register contents before being stored in the 40-bit

ACC register. In parallel to the arithmetic operation and to the two parallel reads, the

data pointed to by IDXi overwrites another data located in memory (DPRAM). The

address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-338 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACM [IDXi*], [Rwm*] 93 Xm D8 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-339 V 1.7, 2001-01

CoMACM- Multiply-Accumulate & Move CoMACM-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACM- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← (((op1)) * ((op2))) <<1

(ACC) ← (ACC) - (tmp)

ELSE

(tmp) ← ((op1)) * ((op2))

(ACC) ← (ACC) - (tmp)

END IF

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

and next, it is subtracted from the 40-bit ACC register contents before being stored in

the 40-bit ACC register. In parallel to the arithmetic operation and to the two parallel

reads, the data pointed to by IDXi overwrites another data located in memory

(DPRAM). The address of the overwritten data depends on the operation executed on

IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-340 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACM- [IDXi*], [Rwm*] 93 Xm E8 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-341 V 1.7, 2001-01

CoMACMR Multiply-Accumulate & Move & Round CoMACMR

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMR op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← (((op1)) * ((op2))) <<1

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

ELSE

(tmp) ← ((op1))*((op2))

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

END IF

(MAL) ← 0

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

and next, the 40-bit ACC register contents are subtracted from the result Finally, the

result is 2s complement rounded before being stored in the 40-bit ACC register. The

MAL register is cleared. In parallel to the arithmetic operation and to the two parallel

reads, the data pointed to by IDXi overwrites another data located in memory

(DPRAM). The address of the overwritten data depends on the operation executed on

IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-342 V 1.7, 2001-01

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes

CoMACMR [IDXi*], [Rwm*] , rnd 93 Xm F9 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-343 V 1.7, 2001-01

CoMACMR Multiply-Accumulate & Move CoMACMR

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMR op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← (((op1)) * ((op2))) <<1

(ACC) ← (tmp) - (ACC)

ELSE

(tmp) ← ((op1)) * ((op2))

(ACC) ← (tmp) - (ACC)

END IF

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

and next, the 40-bit ACC register contents are subtracted from the result before being

stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the two

parallel reads, the data pointed to by IDXi overwrites another data located in memory

(DPRAM). The address of the overwritten data depends on the operation executed on

IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-344 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACMR [IDXi*], [Rwm*] 93 Xm F8 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-345 V 1.7, 2001-01

CoMACMRsu Multiply-Accumulate & Move & Round CoMACMRsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMRsu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

(MAL) ← 0

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, the 40-bit

ACC register contents are subtracted from the result before being stored in the 40-bit

ACC register. Finally, the result is 2s complement rounded before being stored in the

40-bit ACC register. The MAL register is cleared. In parallel to the arithmetic operation

and to the two parallel reads, the data pointed to by IDXi overwrites another data

located in memory (DPRAM). The address of the overwritten data depends on the

operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-346 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACMRsu [IDXi*], [Rwm*] , rnd 93 Xm 79 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-347 V 1.7, 2001-01

CoMACMRsu Multiply-Accumulate & Move CoMACMRsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMRsu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (tmp) - (ACC)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, the 40-bit

ACC register contents are subtracted from the result before being stored in the 40-bit

ACC register. In parallel to the arithmetic operation and to the two parallel reads, the

data pointed to by IDXi overwrites another data located in memory (DPRAM). The

address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMRsu [IDXi*], [Rwm*] 93 Xm 78 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-348 V 1.7, 2001-01

CoMACMRu Multiply-Accumulate & Move & Round CoMACMRu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMRu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1))*((op2))

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

(MAL) ← 0

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended; then, the 40-bit ACC register contents

are subtracted from the result. Finally, the result is 2s complement rounded before

being stored in the 40-bit ACC register. The MAL register is cleared. In parallel to the

arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites

another data located in memory (DPRAM). The address of the overwritten data

depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-349 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACMRu [IDXi*], [Rwm*] , rnd 93 Xm 39 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-350 V 1.7, 2001-01

CoMACMRu Multiply-Accumulate & Move CoMACMRu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMRu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1))*((op2))

(ACC) ← (tmp) - (ACC)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended; then, the 40-bit ACC register contents

are subtracted from the result before being stored in the 40-bit ACC register. In parallel

to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi

overwrites another data located in memory (DPRAM). The address of the overwritten

data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMRu [IDXi*], [Rwm*] 93 Xm 38 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-351 V 1.7, 2001-01

CoMACMRus Multiply-Accumulate & Move & Round CoMACMRus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMRus op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

(MAL) ← 0

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, the 40-bit

ACC register contents are subtracted from the result. Finally, the result is 2s

complement rounded before being stored in the 40-bit ACC register. The MAL register

is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data

pointed to by IDXi overwrites another data located in memory (DPRAM). The address

of the overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-352 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACMRus [IDXi*], [Rwm*] , rnd 93 Xm B9 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-353 V 1.7, 2001-01

CoMACMRus Multiply-Accumulate & Move CoMACMRus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMRus op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (tmp) - (ACC)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, the 40-bit

ACC register contents are subtracted from the result before being stored in the 40-bit

ACC register. In parallel to the arithmetic operation and to the two parallel reads, the

data pointed to by IDXi overwrites another data located in memory (DPRAM). The

address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMRus [IDXi*], [Rwm*] 93 Xm B8 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-354 V 1.7, 2001-01

CoMACMsu Multiply-Accumulate & Move & Round CoMACMsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMsu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

(MAL) ← 0

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is added

to the 40-bit ACC register contents. Finally, the result is 2s complement rounded before

being stored in the 40-bit ACC register. The MAL register is cleared. In parallel to the

arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites

another data located in memory (DPRAM). The address of the overwritten data

depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-355 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACMsu [IDXi*], [Rwm*] , rnd 93 Xm 59 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-356 V 1.7, 2001-01

CoMACMsu Multiply-Accumulate & Move CoMACMsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMsu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (ACC) + (tmp)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is added

to the 40-bit ACC register contents before being stored in the 40-bit ACC register. In

parallel to the arithmetic operation and to the two parallel reads, the data pointed to by

IDXi overwrites another data located in memory (DPRAM). The address of the

overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMsu [IDXi*], [Rwm*] 93 Xm 58 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-357 V 1.7, 2001-01

CoMACMsu- Multiply-Accumulate & Move CoMACMsu-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMsu- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (ACC) - (tmp)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is

subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC

register. In parallel to the arithmetic operation and to the two parallel reads, the data

pointed to by IDXi overwrites another data located in memory (DPRAM). The address

of the overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMsu- [IDXi*], [Rwm*] 93 Xm 68 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-358 V 1.7, 2001-01

CoMACMu Multiply-Accumulate & Move & Round CoMACMu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1))*((op2))

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

(MAL) ← 0

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended; then, it is added to the 40-bit ACC

register contents. Finally, the result is 2s complement rounded before being stored in

the 40-bit ACC register. The MAL register is cleared. In parallel to the arithmetic

operation and to the two parallel reads, the data pointed to by IDXi overwrites another

data located in memory (DPRAM). The address of the overwritten data depends on the

operation executed on IDXi.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-359 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACMu [IDXi*], [Rwm*] , rnd 93 Xm 19 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-360 V 1.7, 2001-01

CoMACMu Multiply-Accumulate & Move CoMACMu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1))*((op2))

(ACC) ← (ACC) + (tmp)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended; then, it is added to the 40-bit ACC

register contents before being stored in the 40-bit ACC register. In parallel to the

arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites

another data located in memory (DPRAM). The address of the overwritten data

depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMu [IDXi*], [Rwm*] 93 Xm 18 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-361 V 1.7, 2001-01

CoMACMu- Multiply-Accumulate & Move CoMACMu-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMu- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1))*((op2))

(ACC) ← (ACC) - (tmp)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended; then, it is subtracted from the 40-bit ACC

register contents before being stored in the 40-bit ACC register. In parallel to the

arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites

another data located in memory (DPRAM). The address of the overwritten data

depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMu- [IDXi*], [Rwm*] 93 Xm 28 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-362 V 1.7, 2001-01

CoMACMus Multiply-Accumulate & Move & Round CoMACMus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMus op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

(MAL) ← 0

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is added

to the 40-bit ACC register contents. Finally, the result is 2s complement rounded before

being stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the

two parallel reads, the data pointed to by IDXi overwrites another data located in

memory (DPRAM). The address of the overwritten data depends on the operation

executed on IDXi.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-363 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACMus [IDXi*], [Rwm*] , rnd 93 Xm 99 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-364 V 1.7, 2001-01

CoMACMus Multiply-Accumulate & Move CoMACMus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMus op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (ACC) + (tmp)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is added

to the 40-bit ACC register contents before being stored in the 40-bit ACC register. In

parallel to the arithmetic operation and to the two parallel reads, the data pointed to by

IDXi overwrites another data located in memory (DPRAM). The address of the

overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMus [IDXi*], [Rwm*] 93 Xm 98 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-365 V 1.7, 2001-01

CoMACMus- Multiply-Accumulate & Move CoMACMus-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMus- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← ((op1)) * ((op2))

(ACC) ← (ACC) - (tmp)

((IDXi(-*))) ← ((IDXi))

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is

subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC

register. In parallel to the arithmetic operation and to the two parallel reads, the data

pointed to by IDXi overwrites another data located in memory (DPRAM). The address

of the overwritten data depends on the operation executed on IDXi.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACMus- [IDXi*], [Rwm*] 93 Xm A8 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-366 V 1.7, 2001-01

CoMACR Multiply-Accumulate & Round CoMACR

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACR op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← ((op1) * (op2)) <<1

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

ELSE

(tmp) ← (op1) * (op2)

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

END IF

(MAL) ← 0

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

then, the 40-bit ACC register contents are subtracted from the result. Finally, the result

is 2s complement rounded before being stored in the 40-bit ACC register. The MAL

register is cleared.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-367 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACR Rwn , Rwm , rnd A3 nm F1 rrr0:0000 4

CoMACR Rwn , [Rwm*] , rnd 83 nm F1 rrr0:0qqq 4

CoMACR [IDXi*] , [Rwm*] , rnd 93 Xm F1 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-368 V 1.7, 2001-01

CoMACR Multiply-Accumulate CoMACR

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACR op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(tmp) ← ((op1) * (op2)) <<1

(ACC) ← (tmp) - (ACC)

ELSE

(tmp) ← (op1) * (op2)

(ACC) ← (tmp) - (ACC)

END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

then, the 40-bit ACC register contents are subtracted from the result before being

stored in the 40-bit ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-369 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACR Rwn , Rwm A3 nm F0 rrr0:0000 4

CoMACR Rwn , [Rwm*] 83 nm F0 rrr0:0qqq 4

CoMACR [IDXi*] , [Rwm*] 93 Xm F0 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-370 V 1.7, 2001-01

CoMACRsu Mixed Multiply-Accumulate & Round CoMACRsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACRsu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then the

40-bit ACC register contents are subtracted from the result. Finally, the result is 2s

complement rounded before being stored in the 40-bit ACC register. The MAL register

is cleared.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-371 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACRsu Rwn , Rwm , rnd A3 nm 71 rrr0:0000 4

CoMACRsu Rwn , [Rwm*] , rnd 83 nm 71 rrr0:0qqq 4

CoMACRsu [IDXi*] , [Rwm*] , rnd 93 Xm 71 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-372 V 1.7, 2001-01

CoMACRsu Mixed Multiply-Accumulate CoMACRsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACRsu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (tmp) - (ACC)

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then the

40-bit ACC register contents are subtracted from the result before being stored in the

40-bit ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN

* * * * * * *

Mnemonic Format Bytes

CoMACRsu Rwn , Rwm A3 nm 70 rrr0:0000 4

CoMACRsu Rwn , [Rwm*] 83 nm 70 rrr0:0qqq 4

CoMACRsu [IDXi*] , [Rwm*] 93 Xm 70 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-373 V 1.7, 2001-01

CoMACRu Unsigned Multiply-Accumulate & Round CoMACRu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACRu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended and then the 40-bit ACC register contents

are subtracted from the result. Finally, the result is 2s complement rounded before

being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACRu Rwn , Rwm , rnd A3 nm 31 rrr0:0000 4

CoMACRu Rwn , [Rwm*] , rnd 83 nm 31 rrr0:0qqq 4

CoMACRu [IDXi*] , [Rwm*] , rnd 93 Xm 31 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-374 V 1.7, 2001-01

CoMACRu Unsigned Multiply-Accumulate CoMACRu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACRu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (tmp) - (ACC)

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended and then the 40-bit ACC register contents

are subtracted from the result before being stored in the 40-bit ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACRu Rwn , Rwm A3 nm 30 rrr0:0000 4

CoMACRu Rwn , [Rwm*] 83 nm 30 rrr0:0qqq 4

CoMACRu [IDXi*] , [Rwm*] 93 Xm 30 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-375 V 1.7, 2001-01

CoMACRus Mixed Multiply-Accumulate & Round CoMACRus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACRus op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (tmp) - (ACC) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then the

40-bit ACC register contents are subtracted from the result. Finally, the result is 2s

complement rounded before being stored in the 40-bit ACC register. The MAL register

is cleared.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-376 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMACRus Rwn , Rwm , rnd A3 nm B1 rrr0:0000 4

CoMACRus Rwn , [Rwm*] , rnd 83 nm B1 rrr0:0qqq 4

CoMACRus [IDXi*] , [Rwm*] , rnd 93 Xm B1 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-377 V 1.7, 2001-01

CoMACRus Mixed Multiply-Accumulate CoMACRus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACRus op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (tmp) - (ACC)

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then the

40-bit ACC register contents are subtracted from the result before being stored in the

40-bit ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACRus Rwn , Rwm A3 nm B0 rrr0:0000 4

CoMACRus Rwn , [Rwm*] 83 nm B0 rrr0:0qqq 4

CoMACRus [IDXi*] , [Rwm*] 93 Xm B0 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-378 V 1.7, 2001-01

CoMACsu Mixed Multiply-Accumulate & Round CoMACsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACsu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then added

to the 40-bit ACC register contents. Finally, the result is 2s complement rounded before

being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACsu Rwn , Rwm , rnd A3 nm 51 rrr0:0000 4

CoMACsu Rwn , [Rwm*] , rnd 83 nm 51 rrr0:0qqq 4

CoMACsu [IDXi*] , [Rwm*] , rnd 93 Xm 51 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-379 V 1.7, 2001-01

CoMACsu Mixed Multiply-Accumulate CoMACsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACsu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) + (tmp)

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then added

to the 40-bit ACC register contents before being stored in the 40-bit ACC register.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACsu Rwn , Rwm A3 nm 50 rrr0:0000 4

CoMACsu Rwn , [Rwm*] 83 nm 50 rrr0:0qqq 4

CoMACsu [IDXi*] , [Rwm*] 93 Xm 50 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-380 V 1.7, 2001-01

CoMACsu- Mixed Multiply-Accumulate CoMACsu-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACsu- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) - (tmp)

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then

subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC

register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACsu- Rwn , Rwm A3 nm 60 rrr0:0000 4

CoMACsu- Rwn , [Rwm*] 83 nm 60 rrr0:0qqq 4

CoMACsu- [IDXi*] , [Rwm*] 93 Xm 60 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-381 V 1.7, 2001-01

CoMACu Unsigned Multiply-Accumulate & Round CoMACu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended and then added to the 40-bit ACC register

contents. Finally, the result is 2s complement rounded before being stored in the 40-bit

ACC register. The MAL register is cleared.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACu Rwn , Rwm , rnd A3 nm 11 rrr0:0000 4

CoMACu Rwn , [Rwm*] , rnd 83 nm 11 rrr0:0qqq 4

CoMACu [IDXi*] , [Rwm*] , rnd 93 Xm 11 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-382 V 1.7, 2001-01

CoMACu Unsigned Multiply-Accumulate CoMACu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) + (tmp)

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended and then added to the 40-bit ACC register

contents before being stored in the 40-bit ACC register.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACu Rwn , Rwm A3 nm 10 rrr0:0000 4

CoMACu Rwn , [Rwm*] 83 nm 10 rrr0:0qqq 4

CoMACu [IDXi*] , [Rwm*] 93 Xm 10 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-383 V 1.7, 2001-01

CoMACu- Unsigned Multiply-Accumulate CoMACu-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACu- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) - (tmp)

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended and then subtracted from the 40-bit ACC

register contents before being stored in the 40-bit ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACu- Rwn , Rwm A3 nm 20 rrr0:0000 4

CoMACu- Rwn , [Rwm*] 83 nm 20 rrr0:0qqq 4

CoMACu- [IDXi*] , [Rwm*] 93 Xm 20 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-384 V 1.7, 2001-01

CoMACus Mixed Multiply-Accumulate with Round CoMACus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACus op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) + (tmp) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then added

to the 40-bit ACC register contents. Finally, the result is 2s complement rounded before

being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACus Rwn , Rwm , rnd A3 nm 91 rrr0:0000 4

CoMACus Rwn , [Rwm*] , rnd 83 nm 91 rrr0:0qqq 4

CoMACus [IDXi*] , [Rwm*] , rnd 93 Xm 91 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-385 V 1.7, 2001-01

CoMACus Mixed Multiply-Accumulate CoMACus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACus op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) + (tmp)

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then added

to the 40-bit ACC register contents before being stored in the 40-bit ACC register.

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACus Rwn , Rwm A3 nm 90 rrr0:0000 4

CoMACus Rwn , [Rwm*] 83 nm 90 rrr0:0qqq 4

CoMACus [IDXi*] , [Rwm*] 93 Xm 90 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-386 V 1.7, 2001-01

CoMACus- Mixed Multiply-Accumulate CoMACus-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACus- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op1) * (op2)

(ACC) ← (ACC) - (tmp)

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended and then

subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC

register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoMACus- Rwn , Rwm A3 nm A0 rrr0:0000 4

CoMACus- Rwn , [Rwm*] 83 nm A0 rrr0:0qqq 4

CoMACus- [IDXi*] , [Rwm*] 93 Xm A0 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-387 V 1.7, 2001-01

CoMAX Maximum CoMAX

Group Compare Instructions

Syntax CoMAX op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op2) || (op1)

(ACC) ← max((ACC),(tmp))

Description

Compares a signed 40-bit operand against the 40-bit ACC register contents. The 40-bit

operand is a sign-extended result of the concatenation of the two source operands op1

(LSW) and op2 (MSW) which is then sign-extended. If the contents of the 40-bit ACC

register are smaller than the 40-bit operand, then the ACC register is loaded with it.

Otherwise, the ACC register remains unchanged. The MS bit of the MCW register does

not affect the result.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is changed. Not affected otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * * no

Mnemonic Format Bytes

CoMAX Rwn , Rwm A3 nm 3A rrr0:0000 4

CoMAX Rwn , [Rwm*] 83 nm 3A rrr0:0qqq 4

CoMAX [IDXi*] , [Rwm*] 93 Xm 3A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-388 V 1.7, 2001-01

CoMIN Minimum CoMIN

Group Compare Instructions

Syntax CoMIN op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op2) || (op1)

(ACC) ← min((ACC),(tmp))

Description

Compares a signed 40-bit operand against the 40-bit ACC register contents. The 40-bit

operand is a sign-extended result of the concatenation of the two source operands op1

(LSW) and op2 (MSW). If the contents of the ACC register are greater than the 40-bit

operand, then the ACC register is loaded with it. Otherwise, the ACC register remains

unchanged. The MS bit of the MCW register does not affect the result.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is changed. Not affected otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * * no

Mnemonic Format Bytes

CoMIN Rwn , Rwm A3 nm 7A rrr0:0000 4

CoMIN Rwn , [Rwm*] 83 nm 7A rrr0:0qqq 4

CoMIN [IDXi*] , [Rwm*] 93 Xm 7A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-389 V 1.7, 2001-01

CoMOV Memory to Memory Move CoMOV

Group Data Movement Instructions

Syntax CoMOV op1, op2

Source Operand(s) op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op2)

Description

Moves the contents of the memory location specified by the source operand op2 to the

memory location specified by the destination operand op1. Note that in this case, unlike

for the other instructions, IDXi can address the entire memory. This instruction does not

affect the Mac Flags, but modifies the CPU Flags as any other MOV instruction.

Note: CoMOV is the only MAC instruction which affects the CPU flags. MAC Flags are

not affected.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared

otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Encoding

E Z V C N

* * - - *

Mnemonic Format Bytes

CoMOV [IDXi*] , [Rwm*] D3 Xm 00 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-390 V 1.7, 2001-01

CoMUL Signed Multiply with Round CoMUL

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMUL op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(ACC) ← ((op1) * (op2)) <<1 + 00 0000 8000h

ELSE

(ACC) ← (op1) * (op2) + 00 0000 8000h

END IF

(MAL) ← 0

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted.

Finally, the result is 2s complement rounded before being stored in the 40-bit ACC

register. The MAL register is cleared.

MAC Flags

MV Always cleared.

MSL Not affected when MP or MS are cleared, otherwise, only set in case of

8000h by 8000h multiplication.

ME Set when MP is set and MS is cleared and in case of 8000h by 8000h

multiplication. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-391 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMUL Rwn , Rwm , rnd A3 nm C1 rrr0:0000 4

CoMUL Rwn , [Rwm*] , rnd 83 nm C1 rrr0:0qqq 4

CoMUL [IDXi*] , [Rwm*] , rnd 93 Xm C1 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-392 V 1.7, 2001-01

CoMUL Signed Multiply CoMUL

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMUL op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(ACC) ← ((op1) * (op2)) <<1

ELSE

(ACC) ← (op1) * (op2)

END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted

before being stored in the 40-bit ACC register.

MAC Flags

MV Always cleared.

MSL Not affected when MP or MS are cleared, otherwise, only set in case of

8000h by 8000h multiplication.

ME Set when MP is set and MS is cleared and in case of 8000h by 8000h

multiplication. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-393 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoMUL Rwn , Rwm A3 nm C0 rrr0:0000 4

CoMUL Rwn , [Rwm*] 83 nm C0 rrr0:0qqq 4

CoMUL [IDXi*] , [Rwm*] 93 Xm C0 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-394 V 1.7, 2001-01

CoMUL- Signed Multiply CoMUL-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMUL- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

IF (MP = 1) THEN

(ACC) ← - ((op1) * (op2)) <<1

ELSE

(ACC) ← - ((op1) * (op2))

END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed

32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;

and, finally, it is negated before being stored in the 40-bit ACC register.

MAC Flags

MV Always cleared.

MSL Always cleared.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 0 0 - 0 * * no

Mnemonic Format Bytes

CoMUL- Rwn , Rwm A3 nm C8 rrr0:0000 4

CoMUL- Rwn , [Rwm*] 83 nm C8 rrr0:0qqq 4

CoMUL- [IDXi*] , [Rwm*] 93 Xm C8 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-395 V 1.7, 2001-01

CoMULsu Mixed Multiply & Round CoMULsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULsu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← (op1) * (op2) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is

rounded before being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

MV Always cleared.

MSL Not affected.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 - 0 - 0 * * no

Mnemonic Format Bytes

CoMULsu Rwn , Rwm , rnd A3 nm 41 rrr0:0000 4

CoMULsu Rwn , [Rwm*] , rnd 83 nm 41 rrr0:0qqq 4

CoMULsu [IDXi*] , [Rwm*] , rnd 93 Xm 41 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-396 V 1.7, 2001-01

CoMULsu Mixed Multiply CoMULsu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULsu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← (op1) * (op2)

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended before being

stored in the 40-bit ACC register.

MAC Flags

MV Always cleared.

MSL Not affected.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 - 0 - 0 * * no

Mnemonic Format Bytes

CoMULsu Rwn , Rwm A3 nm 40 rrr0:0000 4

CoMULsu Rwn , [Rwm*] 83 nm 40 rrr0:0qqq 4

CoMULsu [IDXi*] , [Rwm*] 93 Xm 40 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-397 V 1.7, 2001-01

CoMULsu- Mixed Multiply CoMULsu-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULsu- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← - ((op1) * (op2))

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, is negated

before being stored in the 40-bit ACC register.

MAC Flags

MV Always cleared.

MSL Not affected.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 - 0 - 0 * * no

Mnemonic Format Bytes

CoMULsu- Rwn , Rwm A3 nm 48 rrr0:0000 4

CoMULsu- Rwn , [Rwm*] 83 nm 48 rrr0:0qqq 4

CoMULsu- [IDXi*] , [Rwm*] 93 Xm 48 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-398 V 1.7, 2001-01

CoMULu Unsigned Multiply with Round CoMULu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULu op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← (op1) * (op2) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended; then, it is rounded before being stored in

the 40-bit ACC register. The MAL register is cleared.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Always cleared.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * 0 yes

Mnemonic Format Bytes

CoMULu Rwn , Rwm , rnd A3 nm 01 rrr0:0000 4

CoMULu Rwn , [Rwm*] , rnd 83 nm 01 rrr0:0qqq 4

CoMULu [IDXi*] , [Rwm*] , rnd 93 Xm 01 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-399 V 1.7, 2001-01

CoMULu Unsigned Multiply CoMULu

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULu op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← (op1) * (op2)

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is zero-extended before being stored in the 40-bit ACC register.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Always cleared.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * 0 yes

Mnemonic Format Bytes

CoMULu Rwn , Rwm A3 nm 00 rrr0:0000 4

CoMULu Rwn , [Rwm*] 83 nm 00 rrr0:0qqq 4

CoMULu [IDXi*] , [Rwm*] 93 Xm 00 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-400 V 1.7, 2001-01

CoMULu- Unsigned Multiply CoMULu-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULu- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← - ((op1) * (op2))

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The resulting

unsigned 32-bit product is first zero-extended; then, it is negated before being stored in

the 40-bit ACC register.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 * * - 0 * * yes

Mnemonic Format Bytes

CoMULu- Rwn , Rwm A3 nm 08 rrr0:0000 4

CoMULu- Rwn , [Rwm*] 83 nm 08 rrr0:0qqq 4

CoMULu- [IDXi*] , [Rwm*] 93 Xm 08 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-401 V 1.7, 2001-01

CoMULus Mixed Multiply with Round CoMULus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULus op1, op2, rnd

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← (op1) * (op2) + 00 0000 8000h

(MAL) ← 0

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is

rounded before being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

MV Always cleared.

MSL Not affected.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 - 0 - 0 * * no

Mnemonic Format Bytes

CoMULus Rwn , Rwm , rnd A3 nm 81 rrr0:0000 4

CoMULus Rwn , [Rwm*] , rnd 83 nm 81 rrr0:0qqq 4

CoMULus [IDXi*] , [Rwm*] , rnd 93 Xm 81 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-402 V 1.7, 2001-01

CoMULus Mixed Multiply CoMULus

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULus op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← (op1) * (op2)

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended before being

stored in the 40-bit ACC register.

MAC Flags

MV Always cleared.

MSL Not affected.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 - 0 - 0 * * no

Mnemonic Format Bytes

CoMULus Rwn , Rwm A3 nm 80 rrr0:0000 4

CoMULus Rwn , [Rwm*] 83 nm 80 rrr0:0qqq 4

CoMULus [IDXi*] , [Rwm*] 93 Xm 80 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-403 V 1.7, 2001-01

CoMULus- Mixed Multiply CoMULus-

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULus- op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← - ((op1) * (op2))

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2,

respectively. The resulting signed 32-bit product is first sign-extended; then, it is

negated before being stored in the 40-bit ACC register.

MAC Flags

MV Always cleared.

MSL Not affected.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

0 - 0 - 0 * * no

Mnemonic Format Bytes

CoMULus- Rwn , Rwm A3 nm 88 rrr0:0000 4

CoMULus- Rwn , [Rwm*] 83 nm 88 rrr0:0qqq 4

CoMULus- [IDXi*] , [Rwm*] 93 Xm 88 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-404 V 1.7, 2001-01

CoNEG Negate Accumulator CoNEG

Group Arithmetic Instructions

Syntax CoNEG

Source Operand(s) ACC → 40-bit signed value

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← 0 - (ACC)

Description

The ACC register contents are subtracted from zero before being stored in the 40-bit

ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoNEG A3 00 32 rrr0:0000 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-405 V 1.7, 2001-01

CoNEG Negate Accumulator with Round CoNEG

Group Arithmetic Instructions

Syntax CoNEG rnd

Source Operand(s) ACC → 40-bit signed value

Destination Operand(s) ACC → 40-bit signed value

Operation

(ACC) ← 0 - (ACC) + 00 0000 8000h

(MAL) ← 0

Description

The ACC register contents are subtracted from zero and the result is rounded before

being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoNEG rnd A3 00 72 rrr0:0000 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-406 V 1.7, 2001-01

CoNOP No-Operation CoNOP

Group Arithmetic Instructions

Syntax CoNOP

Source Operand(s) none

Destination Operand(s) none

Operation

No Operation

Description

Modifies the address pointers.

MAC Flags

MV Not affected.

MSL Not affected.

ME Not affected.

MSV Not affected.

MC Not affected.

MZ Not affected.

MN Not affected.

Encoding

MV MSL ME MSV MC MZ MN Sat.

- - - - - - - no

Mnemonic Format Bytes

CoNOP [IDXi*] , [Rwm*] 93 Xm 5A rrr0:0qqq 4

CoNOP [IDXi*] 93 X0 5A rrr0:0001 4

CoNOP [Rwm*] 93 1m 5A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-407 V 1.7, 2001-01

CoRND Round Accumulator CoRND

Group Shift Instructions

Syntax CoRND

Source Operand(s) ACC → 40-bit signed value

Destination Operand(s) ACC → 40-bit signed value signed value

Operation

(ACC) ← (ACC) + 00 0000 8000h

(MAL) ← 0

Description

Rounds the ACC register contents by adding 00 0000 8000h and stores the result in the

ACC register and the lower part of the ACC register. MAL, is cleared.

Note: CoRND is a shortname for CoASHR #0, rnd

MAC Flags

MV Set if an arithmetic overflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Set if a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoRND A3 00 B2 rrr0:0000 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-408 V 1.7, 2001-01

CoSHL Accumulator Logical Shift Left CoSHL

Group Shift Instructions

Syntax CoSHL op1

Source Operand(s) op1 → 5-bit unsigned data

Destination Operand(s) ACC → 40-bit signed value

Operation

(count) ← (op1)

(C) <- (ACC[39])

DO WHILE ((count) ≠ 0)

(C) ← (ACC[39])

(ACC[n]) ← (ACC[n-1]) [n=39...1]

(ACC[0]) ← 0

(count) ← (count) -1

END WHILE

Description

Shifts the 40-bit ACC register contents left by the number of times specified by the

operand op1. The least significant bits of the result are filled with zeros accordingly.

Only shift values from 0 to 16 (inclusive) are allowed. op1 can be either a 5-bit unsigned

immediate data (the shift range is from 0 to 16 in this case) or the four least significant

bits (the shift range is from 0 to 15 in that case) of any register directly or indirectly

addressed operand.

Note: For this instruction only, the saturation is computed using the 40-bit result. So a
sign shifted over the 40 bit result is disregarded.

MAC Flags

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Carry flag is set according to the last most significant bit shifted out of

ACC or according to the sign of ACC.

MZ Set if result equals zero. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

0 * * - * * * yes

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-409 V 1.7, 2001-01

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes

CoSHL #data5 A3 00 82 rrr#:# 4

CoSHL Rwn A3 nn 8A rrr0:0000 4

CoSHL [Rwm*] 83 mm 8A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-410 V 1.7, 2001-01

CoSHR Accumulator Logical Shift Right CoSHR

Group Shift Instructions

Syntax CoSHR op1

Source Operand(s) op1 → 5-bit unsigned data

Destination Operand(s) ACC → 40-bit signed value

Operation

(count) ← (op1)

(C) ← 0

DO WHILE (count) ≠ 0

((ACC[n]) ← (ACC[n+1]) [n=0...38]

(ACC[39]) ← 0

(count) ← (count) -1

END WHILE

Description

Shifts the 40-bit ACC register contents right the number of times as specified by the

operand op1. The most significant bits of the result are filled with zeros accordingly.

Only shift values from 0 to 16 (inclusive) are allowed. op1 can be either a 5-bit unsigned

immediate data (the shift range is from 0 to 16 in this case) or the four least significant

bits (the shift range is from 0 to 15 in that case) of any register directly or indirectly

addressed operand. The MS bit of the MCW register does not affect the result.

MAC Flags

MV Always cleared.

MSL Not affected.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

MV MSL ME MSV MC MZ MN Sat.

0 - * - 0 * * no

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-411 V 1.7, 2001-01

Encoding

Mnemonic Format Bytes

CoSHR #data5 A3 00 92 rrr#:# 4

CoSHR Rwn A3 nn 9A rrr0:0000 4

CoSHR [Rwm*] 83 mm 9A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-412 V 1.7, 2001-01

CoSTORE Store a MAC-Unit Register CoSTORE

Group Data Movement Instructions

Syntax CoSTORE op1, op2

Source Operand(s) op2 → WORD

Destination Operand(s) op1 → WORD

Operation

(op1) ← (op2)

Description

Moves the contents of a MAC-Unit register specified by the source operand op2 to the

location specified by the destination operand op1.

MAC Flags

MV Not affected.

MSL Not affected.

ME Not affected.

MSV Not affected.

MC Not affected.

MZ Not affected.

MN Not affected.

Encoding

MV MSL ME MSV MC MZ MN Sat.

- - - - - - - no

Mnemonic Format Bytes

CoSTORE Rwn , CoReg C3 nn wwww:w000 rrr0:0000 4

CoSTORE [Rwn*] , CoReg B3 nn wwww:w000 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-413 V 1.7, 2001-01

CoSUB Subtract CoSUB

Group Arithmetic Instructions

Syntax CoSUB op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op2) || (op1)

(ACC) ← (ACC) - (tmp)

Description

Subtracts a 40-bit operand from the 40-bit ACC contents and stores the result in the

ACC register. The 40-bit operand is a sign-extended result of the concatenation of the

two source operands op1 (LSW) and op2 (MSW).

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoSUB Rwn , Rwm A3 nm 0A rrr0:0000 4

CoSUB Rwn , [Rwm*] 83 nm 0A rrr0:0qqq 4

CoSUB [IDXi*] , [Rwm*] 93 Xm 0A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-414 V 1.7, 2001-01

CoSUB2 Subtract CoSUB2

Group Arithmetic Instructions

Syntax CoSUB2 op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← 2 * (op2) || (op1)

(ACC) ← (ACC) - (tmp)

Description

Subtracts a 40-bit operand from the 40-bit ACC contents and stores the result in the

ACC register. The 40-bit operand is a sign-extended result of the concatenation of the

two source operands op1 (LSW) and op2 (MSW). The 40-bit operand is then multiplied

by two before being subtracted from the ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoSUB2 Rwn , Rwm A3 nm 4A rrr0:0000 4

CoSUB2 Rwn , [Rwm*] 83 nm 4A rrr0:0qqq 4

CoSUB2 [IDXi*] , [Rwm*] 93 Xm 4A rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-415 V 1.7, 2001-01

CoSUB2R Subtract CoSUB2R

Group Arithmetic Instructions

Syntax CoSUB2R op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← 2 * (op2) || (op1)

(ACC) ← (tmp) - (ACC)

Description

Subtracts the 40-bit ACC contents from a 40-bit operand and stores the result in the

ACC register. The 40-bit operand is a sign-extended result of the concatenation of the

two source operands op1 (LSW) and op2 (MSW). The 40-bit operand is then multiplied

by two before being subtracted from the ACC register.

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoSUB2R Rwn , Rwm A3 nm 52 rrr0:0000 4

CoSUB2R Rwn , [Rwm*] 83 nm 52 rrr0:0qqq 4

CoSUB2R [IDXi*] , [Rwm*] 93 Xm 52 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-416 V 1.7, 2001-01

CoSUBR Subtract CoSUBR

Group Arithmetic Instructions

Syntax CoSUBR op1, op2

Source Operand(s) op1, op2 → WORD

Destination Operand(s) ACC → 40-bit signed value

Operation

(tmp) ← (op2) || (op1)

(ACC) ← (tmp) - (ACC)

Description

Subtracts the 40-bit ACC contents from a 40-bit operand and stores the result in the

ACC register. The 40-bit operand is a sign-extended result of the concatenation of the

two source operands op1 (LSW) and op2 (MSW).

MAC Flags

MV Set if an arithmetic underflow occurred, i.e. the result cannot be

represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected

otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.

MC Set if a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

MV MSL ME MSV MC MZ MN Sat.

* * * * * * * yes

Mnemonic Format Bytes

CoSUBR Rwn , Rwm A3 nm 12 rrr0:0000 4

CoSUBR Rwn , [Rwm*] 83 nm 12 rrr0:0qqq 4

CoSUBR [IDXi*] , [Rwm*] 93 Xm 12 rrr0:0qqq 4

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-417 V 1.7, 2001-01

8.3 Instructions for OCDS/ITC injection and System Control

The following table gives a brief overview of the instructions that are defined especially

for injections via the Interrupt and PEC controller and for debugging reasons by the

OCDS. All instruction are 32 bit wide and overlap the existing instruction set. All these

instructuions are not modifying the PSW except direct writes to the PSW and the ITRAP/

ITRAPS instruction that adjust the level inside the PSW. All these instructions are only

available for injection.

operand symbol size comment

mem24 MM2 MM0 MM1 24 direct 24 bit address for memory access.

The format MM2 MM0 MM1 means that the 24

bit address (byte2,byte1,byte0) has to be

presented in the order byte2, byte0, byte1.

#addr23 aa aa a:aaa 23 direct 23bit (to be LSB extended by zero) for

program access.

#banksel2 ss 2 selection of local/global banks

00 global register bank

10 local register bank 1

11 local register bank 2

01 reserved

#data23 dd dd d:ddd 23 direct 23bit (to be LSB extended by zero) data

to be written to CSP/IP.

Rx x 4 word GPR address

Rbx x 4 byte GPR address

Table 8-1 Used shortcuts

Mnemonic Operands Opcode Cycle Comment

OLOAD mem24 0D MM2 MM0 MM1 1 reads word from

memory and

writes to OCDS

OSTORE mem24 1D MM2 MM0 MM1 1 reads word from

OCDS and writes

to memory

Table 8-2 Instructions for Injection only

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-418 V 1.7, 2001-01

OLOADB mem24 2D MM2 MM0 MM1 1 reads byte from

memory and

writes to OCDS

OSTOREB mem24 3D MM2 MM0 MM1 1 reads byte from

OCDS and writes

to memory

OLOAD Rx, #banksel2 4D ss00:x 00 00 1 reads word from

GPR and writes

to OCDS

OSTORE Rx, #banksel2 5D ss00:x 00 00 1 reads word from

OCDS and writes

to GPR

OLOADB Rbx, #banksel2 6D ss00:x 00 00 1 reads byte from

GPR and writes

to OCDS

OSTOREB Rbx, #banksel2 7D ss00:x 00 00 1 reads byte from

OCDS and writes

to GPR

MOVCSIP #data23 9D dd dd d:ddd0 1 writes CSP/IP

register to force a

program brnach

OLOADIP 8D 00 00 00 1 reads the current

instruction

pointer and

writes it to OCDS

ITRAP #addr23,

#banksel2

10ss:B aa aa a:aaa0 4 Interrupt Trap

with absolut

address

ITRAPS #trap10,

#banksel2

11ss:B 00 0t t:tt00“ 4 Short Interrupt

Trap with10 bit

trap number

using VECSEG

Mnemonic Operands Opcode Cycle Comment

Table 8-2 Instructions for Injection only

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-419 V 1.7, 2001-01

PEC1) mem24 CD MM2 MM0 MM1 1 word PEC

transfer started

by ITC

DPEC1) mem24 DD MM2 MM0 MM1 1 word PEC

transfer started

by OCDS

PECB1) mem24 AD MM2 MM0 MM1 1 byte PEC

transfer started

by ITC

DPECB1) mem24 BD MM2 MM0 MM1 1 byte PEC

transfer started

by OCDS

TLOAD mem24 8A MM2 MM0 MM1 1 reads memory

and writes result

to trace bus

TLOAD Rx, #banksel2 CA ss00:x 00 00 1 reads GPR and

writes result to

trace bus

INOP 9A 00 00 00

AA 00 00 00

BA 00 00 00

DA 00 00 00

EA 00 00 00

FA 00 00 00

1 injected NOP

(reserved for

later use)

CXLOAD ED 00 00 00 11 internal

instruction used

for switch context

CXSW FD 00 00 00 19 internal

instruction used

for switch context

1) The shown operand specifies the source address for the PEC operation. For the destination address a

dedicated CPU input is provided.

Mnemonic Operands Opcode Cycle Comment

Table 8-2 Instructions for Injection only

User Manual

C166S V2

Detailed Instruction Description

User Manual 8-420 V 1.7, 2001-01

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-421 V 1.7, 2001-01

9 Summary of CPU/Subsystem Registers

This chapter summarizes all registers implemented in the C166S V2 CPU. There are two

register types: the General Purpose Registers (GPR) and the CPU-Special Function

Registers (CSFR). GPRs are the working registers of the arithmetic and logic operations

and may be also used as address pointers indirect addressing modes. CSFRs are the

control registers of the C166S V2 CPU. The register set for the PEC and Interrupt

Controller is listed. For easy reference, the SFRs are ordered in two different ways:

• Sorted by the address, to identify a register at a given address.

• Sorted by the register name, to find an address of a specific register.

9.1 General Purpose Registers (GPRs)

The General Purpose Registers (GPRs) are the working registers of the C166S V2 CPU.

All GPRs are bit addressable.

Table 9-1 Addressing Modes to Access Word–GPRs

Name Physical

Address
1)

1) Addressing mode only usable if the GPR bank is memory mapped.

8-Bit

Address

4-Bit

Address

Description Reset

Value

R0 (CP)+0 F0H 0h General Purpose Word Register R0 UUUUH

R1 (CP)+2 F1H 1h General Purpose Word Register R1 UUUUH

R2 (CP)+4 F2H 2h General Purpose Word Register R2 UUUUH

R3 (CP)+6 F3H 3h General Purpose Word Register R3 UUUUH

R4 (CP)+8 F4H 4h General Purpose Word Register R4 UUUUH

R5 (CP)+10 F5H 5h General Purpose Word Register R5 UUUUH

R6 (CP)+12 F6H 6h General Purpose Word Register R6 UUUUH

R7 (CP)+14 F7H 7h General Purpose Word Register R7 UUUUH

R8 (CP)+16 F8H 8h General Purpose Word Register R8 UUUUH

R9 (CP)+18 F9H 9h General Purpose Word Register R9 UUUUH

R10 (CP)+20 FAH Ah General Purpose Word Register R10 UUUUH

R11 (CP)+22 FBH Bh General Purpose Word Register R11 UUUUH

R12 (CP)+24 FCH Ch General Purpose Word Register R12 UUUUH

R13 (CP)+26 FDH Dh General Purpose Word Register R13 UUUUH

R14 (CP)+28 FEH Eh General Purpose Word Register R14 UUUUH

R15 (CP)+30 FFH Fh General Purpose Word Register R15 UUUUH

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-422 V 1.7, 2001-01

The first 8 GPRs (R7...R0) may be also accessed bytewise. Unlike SFRs, writing to a

GPR byte does not affect another byte of the GPR.

The following byte-accessible registers have special names.

Table 9-2 Addressing Modes to Access Byte–GPRs

Name Physical

Address
1)

1) Addressing mode only usable if the GPR bank is memory mapped.

The 8-bit short addresses F0H...FEH within the ESFR area are reserved and provide
access to the current register bank via short register addressing modes. The

GPRs are mirrored to the ESFR area which allows access to the current register

bank even after switching register spaces (see example below).

MOV R5, DP3 ;GPR access via SFR area

EXTR #1

MOV R5, ODP3 ;GPR access via ESFR area

8-Bit

Address

4-Bit

Address

Description Reset

Value

RL0 (CP)+0 F0H 0h General Purpose Byte Register RL0 UUH

RH0 (CP)+1 F1H 1h General Purpose Byte Register RL1 UUH

RL1 (CP)+2 F2H 2h General Purpose Byte Register RL2 UUH

RH1 (CP)+3 F3H 3h General Purpose Byte Register RL3 UUH

RL2 (CP)+4 F4H 4h General Purpose Byte Register RL4 UUH

RH2 (CP)+5 F5H 5h General Purpose Byte Register RL5 UUH

RL3 (CP)+6 F6H 6h General Purpose Byte Register RL6 UUH

RH3 (CP)+7 F7H 7h General Purpose Byte Register RL7 UUH

RL4 (CP)+8 F8H 8h General Purpose Byte Register RL8 UUH

RH4 (CP)+9 F9H 9h General Purpose Byte Register RL9 UUH

RL5 (CP)+10 FAH Ah General Purpose Byte Register RL10 UUH

RH5 (CP)+11 FBH Bh General Purpose Byte Register RL11 UUH

RL6 (CP)+12 FCH Ch General Purpose Byte Register RL12 UUH

RH6 (CP)+13 FDH Dh General Purpose Byte Register RL13 UUH

RL7 (CP)+14 FEH Eh General Purpose Byte Register RL14 UUH

RH7 (CP)+15 FFH Fh General Purpose Byte Register RL15 UUH

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-423 V 1.7, 2001-01

9.2 Core Special Function Registers

9.2.1 Ordered by Name

Table 9-3 lists all CSFRs implemented in the C166S V2 CPU, in alphabetical order.

Bit addressable CSFRs are marked with the letter “b” in the “Name” column.

CSFRs within the Extended CSFR-Space (ECSFRs) are marked with the letter “E” in

the “8-Bit Address” column.

Table 9-3 Addressing Modes to Access Core-SFRs: Ordered by Name

Name Physical

Address

8-Bit

Address

Description Reset

Value

CP FE10H 08H Context Pointer FC00H

CPUCON1 FE18H 0CH Core Control Register 0000H

CPUCON2 FE1AH 0DH Core Control Register 0000H

CPUID F00CH E-06H CPU Identification Register 03??H
1)

CSP FE08H 04H Code Segment Pointer

(8 bits, not directly writable)

0000H

DPP0 FE00H 00H Data Page Pointer 0 (10 bits) 0000H

DPP1 FE02H 01H Data Page Pointer 1 (10 bits) 0001H

DPP2 FE04H 02H Data Page Pointer 2 (10 bits) 0002H

DPP3 FE06H 03H Data Page Pointer 3 (10 bits) 0003H

IDX0 b FF08H 84H MAC Address Pointer 0 0000H

IDX1 b FF0AH 85H MAC Address Pointer 1 0000H

MAL FE5CH 2EH MAC Accumulator – Low Word 0000H

MAH FE5EH 2FH MAC Accumulator – High Word 0000H

MCW b FFDCH EEH MAC Control Word 0000H

MDC b FF0EH 87H Multiply Divide Control Register 0000H

MDH FE0CH 06H Multiply Divide Register – High Word 0000H

MDL FE0EH 07H Multiply Divide Register – Low Word 0000H

MRW b FFDAH EDH MAC Repeat Word 0000H

MSW b FFDEH EFH MAC Status Word 0200H

ONES b FF1EH 8FH Constant Value 1’s Register (read only) FFFFH

PSW b FF10H 88H Program Status Word 0000H

QX0 F000H E-00H MAC Offset Register X0 0000H

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-424 V 1.7, 2001-01

9.2.2 Ordered by Address

Table 9-4 lists all CSFRs implemented in the C166S V2 ordered by physical address.

Bit addressable CSFRs are marked with the letter “b” in the “Name” column.

CSFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in the

“8-Bit Address” column.

QX1 F002H E-01H MAC Offset Register X1 0000H

QR0 F004H E-02H MAC Offset Register R0 0000H

QR1 F006H E-03H MAC Offset Register R1 0000H

SP FE12H 09H Stack Pointer FC00H

SPSEG b FF0CH 86H Stack Pointer Segment Register 0000H

STKOV FE14H 0AH Stack Overflow Register FA00H

STKUN FE16H 0BH Stack Underflow Register FC00H

TFR b FFACH D6H Trap Flag Register 0000H

VECSEG b FF12H 89H Vector Table Segment Register ????H
2)

ZEROS b FF1CH 8EH Constant Value 0’s Register (read only) 0000H
1)

‘??’: defined by reset configuration
2)

‘????’: defined by reset configuration

Table 9-4 Addressing Modes to Access Core-SFRs: Ordered by Address

Name Physical

Address

8-Bit

Address

Description Reset

Value

QX0 F000H E-00H MAC Offset Register X0 0000H

QX1 F002H E-01H MAC Offset Register X1 0000H

QR0 F004H E-02H MAC Offset Register R0 0000H

QR1 F006H E-03H MAC Offset Register R1 0000H

CPUID F00CH E-06H CPU Identification Register 03??H
1)

DPP0 FE00H 00H Data Page Pointer 0 (10 bits) 0000H

DPP1 FE02H 01H Data Page Pointer 1 (10 bits) 0001H

DPP2 FE04H 02H Data Page Pointer 2 (10 bits) 0002H

DPP3 FE06H 03H Data Page Pointer 3 (10 bits) 0003H

Table 9-3 Addressing Modes to Access Core-SFRs: Ordered by Name (cont’d)

Name Physical

Address

8-Bit

Address

Description Reset

Value

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-425 V 1.7, 2001-01

CSP FE08H 04H Code Segment Pointer

(8 bits, not directly writable)

0000H

MDH FE0CH 06H Multiply Divide Register – High Word 0000H

MDL FE0EH 07H Multiply Divide Register – Low Word 0000H

CP FE10H 08H Context Pointer FC00H

SP FE12H 09H Stack Pointer FC00H

STKOV FE14H 0AH Stack Overflow Register FA00H

STKUN FE16H 0BH Stack Underflow Register FC00H

CPUCON1 FE18H 0CH Core Control Register 0000H

CPUCON2 FE1AH 0DH Core Control Register 0000H

MAL FE5CH 2EH MAC Accumulator – Low Word 0000H

MAH FE5EH 2FH MAC Accumulator – High Word 0000H

IDX0 b FF08H 84H MAC Address Pointer 0 0000H

IDX1 b FF0AH 85H MAC Address Pointer 1 0000H

SPSEG b FF0CH 86H Stack Pointer Segment Register 0000H

MDC b FF0EH 87H Multiply Divide Control Register 0000H

PSW b FF10H 88H Program Status Word 0000H

VECSEG b FF12H 89H Vector Table Segment Register ????H
2)

ZEROS b FF1CH 8EH Constant Value 0s Register (read only) 0000H

ONES b FF1EH 8FH Constant Value 1s Register (read only) FFFFH

TFR b FFACH D6H Trap Flag Register 0000H

MRW b FFDAH EDH MAC Repeat Word 0000H

MCW b FFDCH EEH MAC Control Word 0000H

MSW b FFDEH EFH MAC Status Word 0200H

1)
‘??’: defined by reset configuration

2)
‘????’: defined by reset configuration

Table 9-4 Addressing Modes to Access Core-SFRs: Ordered by Address

Name Physical

Address

8-Bit

Address

Description Reset

Value

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-426 V 1.7, 2001-01

9.3 Register Overview Interrupt and Peripheral Event Controller

9.3.1 Ordered by Name

Table 9-5 lists all xSFRs that are implemented in the C166S V2 Interrupt and Peripheral

Event Controller, ordered by name.

Bit addressable SFRs are marked with the letter “b” in the “Name” column.

SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in the

“8-Bit Address” column.

Table 9-5 Register Overview Interrupt and PEC: Ordered by Name

Name Physical

Address

8-bit

Address

Description Reset

Value

BNKSEL0 EC20H -- Bank Selection Register 0 0000H

BNKSEL1 EC22H -- Bank Selection Register 1 0000H

BNKSEL2 EC24H -- Bank Selection Register 2 0000H

BNKSEL3 EC26H -- Bank Selection Register 3 0000H

DSTP0 EC42H -- PEC Channel 0 Destination Pointer 0000H

DSTP1 EC46H -- PEC Channel 1 Destination Pointer 0000H

DSTP2 EC4AH -- PEC Channel 2 Destination Pointer 0000H

DSTP3 EC4EH -- PEC Channel 3 Destination Pointer 0000H

DSTP4 EC52H -- PEC Channel 4 Destination Pointer 0000H

DSTP5 EC56H -- PEC Channel 5 Destination Pointer 0000H

DSTP6 EC5AH -- PEC Channel 6 Destination Pointer 0000H

DSTP7 EC5EH -- PEC Channel 7 Destination Pointer 0000H

EOPIC1) b F180H E-C0H End of PEC Interrupt Control Reg. 0000H

FINT0ADDR EC02H -- Fast Interrupt 0 Address Register 0000H

FINT0CSP EC00H -- Fast Interrupt 0 CSP Register 0000H

FINT1ADDR EC06H -- Fast Interrupt 1 Address Register 0000H

FINT1CSP EC04H -- Fast Interrupt 1 CSP Register 0000H

IRQxIC1) xxxxH xxH Interrupt x Control Register 0000H

PECC0 FEC0H 60H PEC Channel 0 Control Register 0000H

PECC1 FEC2H 61H PEC Channel 1 Control Register 0000H

PECC2 FEC4H 62H PEC Channel 2 Control Register 0000H

PECC3 FEC6H 63H PEC Channel 3 Control Register 0000H

PECC4 FEC8H 64H PEC Channel 4 Control Register 0000H

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-427 V 1.7, 2001-01

9.3.2 Ordered by Address

Table 9-6 lists all xSFRs that are implemented in the C166S V2 Interrupt and Peripheral

Event Controller ordered by address.

Bit addressable SFRs are marked with the letter “b” in the “Name” column.

SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in the

“8-Bit Address” column.

PECC5 FECAH 65H PEC Channel 5 Control Register 0000H

PECC6 FECCH 66H PEC Channel 6 Control Register 0000H

PECC7 FECEH 67H PEC Channel 7 Control Register 0000H

PECISNC b FFA8H D4H PEC Interrupt Subnode Control Reg. 0000H

PECSEG0 EC80H -- PEC Pointer 0 Segment Address Reg. 0000H

PECSEG1 EC82H -- PEC Pointer 1 Segment Address Reg. 0000H

PECSEG2 EC84H -- PEC Pointer 2 Segment Address Reg. 0000H

PECSEG3 EC86H -- PEC Pointer 3 Segment Address Reg. 0000H

PECSEG4 EC88H -- PEC Pointer 4 Segment Address Reg. 0000H

PECSEG5 EC8AH -- PEC Pointer 5 Segment Address Reg. 0000H

PECSEG6 EC8C -- PEC Pointer 6 Segment Address Reg. 0000

PECSEG7 EC8E -- PEC Pointer 7 Segment Address Reg. 0000

SRCP0 EC40 -- PEC Channel 0 Source Pointer 0000

SRCP1 EC44 -- PEC Channel 1 Source Pointer 0000

SRCP2 EC48 -- PEC Channel 2 Source Pointer 0000

SRCP3 EC4C -- PEC Channel 3 Source Pointer 0000

SRCP4 EC50 -- PEC Channel 4 Source Pointer 0000

SRCP5 EC54 -- PEC Channel 5 Source Pointer 0000

SRCP6 EC58 -- PEC Channel 6 Source Pointer 0000

SRCP7 EC5C -- PEC Channel 7 Source Pointer 0000

1) The implementation and assignment of these Interrupt Control Registers are product specific.

Table 9-5 Register Overview Interrupt and PEC: Ordered by Name (cont’d)

Name Physical

Address

8-bit

Address

Description Reset

Value

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-428 V 1.7, 2001-01

Table 9-6 Register Overview Interrupt and PEC: Ordered by Address

Name Physical

Address

8-bit

Address

Description Reset

Value

FINT0CSP EC00H -- Fast Interrupt 0 CSP Register 0000H

FINT0ADDR EC02H -- Fast Interrupt 0 Address Register 0000H

FINT1CSP EC04H -- Fast Interrupt 1 CSP Register 0000H

FINT1ADDR EC06H -- Fast Interrupt 1 Address Register 0000H

BNKSEL0 EC20H -- Bank Selection Register 0 0000H

BNKSEL1 EC22H -- Bank Selection Register 1 0000H

BNKSEL2 EC24H -- Bank Selection Register 2 0000H

BNKSEL3 EC26H -- Bank Selection Register 3 0000H

SRCP0 EC40H -- PEC Channel 0 Source Pointer 0000H

DSTP0 EC42H -- PEC Channel 0 Destination Pointer 0000H

SRCP1 EC44H -- PEC Channel 1 Source Pointer 0000H

DSTP1 EC46H -- PEC Channel 1 Destination Pointer 0000H

SRCP2 EC48H -- PEC Channel 2 Source Pointer 0000H

DSTP2 EC4AH -- PEC Channel 2 Destination Pointer 0000H

SRCP3 EC4CH -- PEC Channel 3 Source Pointer 0000H

DSTP3 EC4EH -- PEC Channel 3 Destination Pointer 0000H

SRCP4 EC50H -- PEC Channel 4 Source Pointer 0000H

DSTP4 EC52H -- PEC Channel 4 Destination Pointer 0000H

SRCP5 EC54H -- PEC Channel 5 Source Pointer 0000H

DSTP5 EC56H -- PEC Channel 5 Destination Pointer 0000H

SRCP6 EC58H -- PEC Channel 6 Source Pointer 0000H

DSTP6 EC5AH -- PEC Channel 6 Destination Pointer 0000H

SRCP7 EC5CH -- PEC Channel 7 Source Pointer 0000H

DSTP7 EC5EH -- PEC Channel 7 Destination Pointer 0000H

PECSEG0 EC80H -- PEC Pointer 0 Segment Address Reg. 0000H

PECSEG1 EC82H -- PEC Pointer 1 Segment Address Reg. 0000H

PECSEG2 EC84H -- PEC Pointer 2 Segment Address Reg. 0000H

PECSEG3 EC86H -- PEC Pointer 3 Segment Address Reg. 0000H

PECSEG4 EC88H -- PEC Pointer 4 Segment Address Reg. 0000H

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-429 V 1.7, 2001-01

PECSEG5 EC8AH -- PEC Pointer 5 Segment Address Reg. 0000H

PECSEG6 EC8CH -- PEC Pointer 6 Segment Address Reg. 0000H

PECSEG7 EC8EH -- PEC Pointer 7 Segment Address Reg. 0000H

EOPIC1) b F180H E-C0H End of PEC Interrupt Control Reg. 0000H

PECC0 FEC0H 60H PEC Channel 0 Control Register 0000H

PECC1 FEC2H 61H PEC Channel 1 Control Register 0000H

PECC2 FEC4H 62H PEC Channel 2 Control Register 0000H

PECC3 FEC6H 63H PEC Channel 3 Control Register 0000H

PECC4 FEC8H 64H PEC Channel 4 Control Register 0000H

PECC5 FECAH 65H PEC Channel 5 Control Register 0000H

PECC6 FECCH 66H PEC Channel 6 Control Register 0000H

PECC7 FECEH 67H PEC Channel 7 Control Register 0000H

IRQxIC1) xxxxH xxH Interrupt x Control Register 0000H

PECISNC b FFA8H D0H PEC Interrupt Subnode Control Reg. 0000H

1) The implementation and assignment of theses Interrupt Control Registers are product specific.

Table 9-6 Register Overview Interrupt and PEC: Ordered by Address (cont’d)

Name Physical

Address

8-bit

Address

Description Reset

Value

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-430 V 1.7, 2001-01

9.4 Register Overview External Bus Controller

9.4.1 Ordered by Name

Table 9-7 Register Overview EBC: Ordered by Name

Name Physical

Address

8-Bit

Address

Description Reset

Value

ADDRSEL1 EE1EH -- Address Window Selection for CS1 0000H

ADDRSEL2 EE26H -- Address Window Selection for CS2 0000H

ADDRSEL3 EE 2EH -- Address Window Selection for CS3 0000H

ADDRSEL4 EE36H -- Address Window Selection for CS4 0000H

ADDRSEL5 EE 3EH -- Address Window Selection for CS5 0000H

ADDRSEL6 EE46H -- Address Window Selection for CS6 0000H

ADDRSEL7 EE 4EH -- Address Window Selection for CS7 0000H

EBCMOD0 EE00H -- Alternate Function of EBC Pins 00F0H

EBCMOD1 EE02H -- Global Behavior of EBC 0000H

FCONCS0 EE12H -- Function Control for CS0 0021H

FCONCS1 EE1AH -- Function Control for CS1 0000H

FCONCS2 EE22H -- Function Control for CS2 0000H

FCONCS3 EE2AH -- Function Control for CS3 0000H

FCONCS4 EE32H -- Function Control for CS4 0000H

FCONCS5 EE 3AH -- Function Control for CS5 0000H

FCONCS6 EE 42H -- Function Control for CS6 0000H

FCONCS7 EE4AH -- Function Control for CS7 0000H

TCONCS0 EE10H -- Timing Control for CS0 6243H

TCONCS1 EE18H -- Timing Control for CS1 0000H

TCONCS2 EE20H -- Timing Control for CS2 0000H

TCONCS3 EE28H -- Timing Control for CS3 0000H

TCONCS4 EE 30H -- Timing Control for CS4 0000H

TCONCS5 EE38H -- Timing Control for CS5 0000H

TCONCS6 EE40H -- Timing Control for CS6 0000H

TCONCS7 EE48H -- Timing Control for CS7 0000H

TCONCSMM EE0CH -- Timing Control for Monitor Memory 6243H

TCONCSSM EE0EH -- Timing Control for Startup Memory 6243H

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-431 V 1.7, 2001-01

9.4.2 Ordered by Address

Table 9-8 Register Overview EBC: Ordered by Name

Name Physical

Address

8-Bit

Address

Description Reset

Value

EBCMOD0 EE00H -- Alternate Function of EBC Pins 00F0H

EBCMOD1 EE02H -- Global Behavior of EBC 0000H

TCONCSMM EE0CH -- Timing Control for Monitor Memory 6243H

TCONCSSM EE0EH -- Timing Control for Startup Memory 6243H

TCONCS0 EE10H -- Timing Control for CS0 6243H

FCONCS0 EE12H -- Function Control for CS0 0021H

TCONCS1 EE18H -- Timing Control for CS1 0000H

FCONCS1 EE1AH -- Function Control for CS1 0000H

ADDRSEL1 EE1EH -- Address Window Selection for CS1 0000H

TCONCS2 EE20H -- Timing Control for CS2 0000H

FCONCS2 EE22H -- Function Control for CS2 0000H

ADDRSEL2 EE26H -- Address Window Selection for CS2 0000H

TCONCS3 EE28H -- Timing Control for CS3 0000H

FCONCS3 EE2AH -- Function Control for CS3 0000H

ADDRSEL3 EE2EH -- Address Window Selection for CS3 0000H

TCONCS4 EE30H -- Timing Control for CS4 0000H

FCONCS4 EE32H -- Function Control for CS4 0000H

ADDRSEL4 EE36H -- address window selection for CS4 0000H

TCONCS5 EE38H -- Timing Control for CS5 0000H

FCONCS5 EE3AH -- Function Control for CS5 0000H

ADDRSEL5 EE3EH -- Address Window Selection for CS5 0000H

TCONCS6 EE40H -- Timing Control for CS6 0000H

FCONCS6 EE42H -- Function Control for CS6 0000H

ADDRSEL6 EE46H -- Address Window Selection for CS6 0000H

TCONCS7 EE48H -- Timing Control for CS7 0000H

FCONCS7 EE4AH -- Function Control for CS7 0000H

ADDRSEL7 EE 4EH -- Address Window Selection for CS7 0000H

User Manual

C166S V2

Summary of CPU/Subsystem Registers

User Manual 9-432 V 1.7, 2001-01

User Manual

C166S V2

Keyword Index

User Manual 10-433 V 1.7, 2001-01

A
Address Boundaries 99

Addressing Modes

CoREG Addressing Mode 63

IDX Indirect Addressing Mode 56

Indirect Addressing Mode 53

Long Adressing Mode 52

Short Addressing Modes 46

B
Bit Protection 71

Block Diagram ITC / PEC 119

BWT Bit 140

C
Central System Control 14

CGU 14

Clock Generation Unit 14

Context Pointer

Updating 43

Context Switch 40

Continuous PEC Transfers 140

COUNT Bit 140

CP Register 423, 425

CPUCON1 Register 423, 425

CPUCON2 Register 423, 425

CPUID Register 423, 424

CSP Register 423, 425

Cycle counts 194

D
Data Page Boundaries 99

Data Page Pointer 49

Data Types 68

DMU 12

E
EBC 13

End of PEC Interrupt Sub Node 143

External Bus Controller 13

External Bus Idle State 169

External Interrupt 14

F
Fast Bank Switching 131

G
General Purpose Register 100

GPR 100

I
ID Control 14

IDX0 Register 423, 425

IDX1 Register 423, 425

INC Bit 144

Instructions

ADD 212

ADDB 213

ADDC 214

ADDCB 215

AND 216

ANDB 217

ASHR 218

ATOMIC 220

BAND 221

BCLR 222

BCMP 223

BFLDH 224

BFLDL 225

BMOV 226

BMOVN 227

10 Keyword Index

This section lists a number of keywords which refer to specific details of the C166S V2

in terms of its architecture, its functional units or functions. This helps to quickly find the

answer to specific questions about the C166S V2.

User Manual

C166S V2

Keyword Index

User Manual 10-434 V 1.7, 2001-01

BOR 228

BSET 229

BXOR 230

CALLA 231

CALLI 233

CALLR 234

CALLS 235

CMP 236

CMPB 237

CMPD1 238

CMPD2 239

CMPI1 240

CMPI2 241

CoABS 316, 317

CoADD 318

CoADD2 319

CoASHR 320, 322

CoCMP 324

CoLOAD 325

CoLOAD- 326

CoLOAD2 327

CoLOAD2- 327, 328

CoMAC 329, 331

CoMAC- 333

CoMACM 335, 337

CoMACM- 339

CoMACMR 341, 343

CoMACMRsu 345, 347

CoMACMRu 348, 350

CoMACMRus 351, 353

CoMACMsu 354, 356

CoMACMsu- 357

CoMACMu 358, 360

CoMACMu- 361

CoMACMus 362, 364

CoMACMus- 365

CoMACR 366, 368

CoMACRsu 370, 372

CoMACRu 373, 374

CoMACRus 375, 377

CoMACsu 378, 379

CoMACsu- 380

CoMACu 381, 382

CoMACu- 383

CoMACus 384, 385

CoMACus- 386

CoMAX 387

CoMIN 388

CoMOV 389

CoMUL 390, 392

CoMUL- 394

CoMULsu 395, 396

CoMULsu- 397

CoMULu 398, 399

CoMULu- 400

CoMULus 401, 402

CoMULus- 403

CoNEG 404, 405

CoNOP 406

CoRND 407

CoSHL 408

CoSHR 410

CoSTORE 412

CoSUB 413

CoSUB2 414

CoSUB2R 415

CoSUBR 416

CPL 242

CPLB 243

DISWDT 244

DIV 245

DIVL 246

DIVLU 247

DIVU 248

EINIT 249

ENWDT 250

EXTP 251

EXTPR 253

EXTR 255

EXTS 256

EXTSR 258

IDLE 260

JB 261

JBC 262

JMPA 264

JMPI 266

User Manual

C166S V2

Keyword Index

User Manual 10-435 V 1.7, 2001-01

JMPR 267

JMPS 268

JNB 269

JNBS 270

MOV 272

MOVB 274

MOVBS 276

MOVBZ 277

MUL 278

MULU 279

NEG 280

NEGB 281

NOP 282

OR 283

ORB 284

PCALL 285

POP 287

PRIOR 288

PUSH 289

PWRDN 290

RET 291

RETI 292

RETP 293

RETS 294

ROL 295

ROR 297

SBRK 299

SCXT 300

SHL 301

SHR 303

SRST 305

SRVWDT 306

SUB 307

SUBB 308

SUBC 309

SUBCB 310

TRAP 311

XOR 313

XORB 314

Interrrupt Control Register 140

Interrupt Jump Table Cache 125

Interrupt System 118

J
JTAG 13

M
MAH Register 423, 425

MAL Register 423, 425

MCW Register 423, 425

MDC Register 423, 425

MDH Register 423, 425

MDL Register 423, 425

Memory

External 98

ROM 93

MRW Register 423, 425

MSW Register 423, 425

N
NMI 117

O
OCDS 13

ONES Register 423, 425

P
PEC 138

Channel Actions 144

Control Register 139

Pointer Address Handling 146

Transfer Count 140

Peripheral Event Controller 138

PMU 12

Power Saving Control 14

Program Memory Unit 12

Protected Bits 71

PSW Register 423, 425

Q
QR0 Register 424

QR1 Register 424

QX0 Register 423, 424

QX1 Register 424

User Manual

C166S V2

Keyword Index

User Manual 10-436 V 1.7, 2001-01

R
Register

CP 423, 425

CPUCON1 423, 425

CPUCON2 423, 425

CPUID 423, 424

CSP 423, 425

DPP0 423, 424

DPP1 423, 424

DPP2 423, 424

DPP3 423, 424

IDX0 423, 425

IDX1 423, 425

MAH 423, 425

MAL 423, 425

MCW 423, 425

MDC 423, 425

MDH 423, 425

MDL 423, 425

MRW 423, 425

MSW 423, 425

ONES 423, 425

PSW 423, 425

QR0 424

QR1 424

QX0 423, 424

QX1 424

SP 424, 425

SPSEG 424, 425

STKOV 424, 425

STKUN 424, 425

TFR 424, 425

VECSEG 424, 425

xxIC 140

ZEROS 424, 425

Reset Control 13

S
SCU 13

Segment Boundaries 99

SFR 96

Sleep mode 14

SP Register 424, 425

SPSEG Register 424, 425

STKOV Register 424, 425

STKUN Register 424, 425

System Control Unit 13

T
TFR Register 424, 425

Traps 135

V
VECSEG Register 424, 425

W
Watchdog Timer 14

WDT 14

Z
ZEROS Register 424, 425

437

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly

defined processes, which are both constantly under review and

ultimately lead to good operating results.

Better operating results and business excellence mean less

idleness and wastefulness for all of us, more professional

success, more accurate information, a better overview and,

thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher

	1 Introduction
	1.1 Technical Overview
	1.2 System Description
	1.2.1 CPU
	Multiply Accumulate Unit (MAC)
	1.2.2 On-Chip Memory Modules
	1.2.3 Data Management Unit (DMU)
	1.2.4 Program Memory Unit (PMU)
	1.2.5 Interrupt and PEC Controller
	1.2.6 OCDS and JTAG
	1.2.7 External Bus Controller (EBC)
	1.2.8 System Control Unit (SCU)
	Reset Control
	Power Saving Control
	ID Control
	External Interrupt Control
	Central System Control
	Watchdog Timer (WDT)
	1.2.9 Clock Generation Unit (CGU)
	1.2.10 On-Chip Bootstrap Loader

	2 Central Processing Unit
	2.1 Register Description Format
	2.2 CPU Special Function Registers
	2.3 Instruction Fetch and Program Flow Control
	2.3.1 Branch Target Addressing Modes
	2.3.2 Branch Detection and Branch Prediction
	2.3.3 Sequential and Mispredicted Instruction Flow
	2.3.3.1 Correctly Predicted Instruction Flow
	2.3.3.2 Incorrectly Predicted Instruction Flow
	2.3.4 Atomic and Extend Instructions
	2.3.5 Code Addressing via Code Segment and Instruction Pointer
	The Instruction Pointer IP
	The Code Segment Pointer CSP
	Segmented Mode
	Non-Segmented Mode
	2.3.6 IFU Control Registers
	2.3.6.1 The CPU Configuration Register CPUCON1
	2.3.6.2 The CPU Configuration Register CPUCON2

	2.4 Use of General Purpose Registers
	2.4.1 Memory Mapped GPR Banks and the Global Register Bank
	2.4.2 Local Register Bank
	2.4.3 Context Switch
	2.4.3.1 Changing the selected Physical Register Bank
	2.4.3.2 Context Switching of the Global Register Bank
	The Context Pointer (CP)
	Context Pointer Updating

	2.5 Data Addressing
	2.5.1 Short Addressing Modes
	2.5.2 Long and Indirect Addressing Modes
	2.5.2.1 Addressing via Data Page Pointer DPP
	2.5.2.2 DPP Override Mechanism in the C166S�V2 CPU
	2.5.2.3 Long Addressing Mode
	2.5.2.4 Indirect Addressing Modes
	The Offset Register QR0 and QR1
	2.5.3 DSP Addressing
	The Pointer Register IDX0 and IDX1
	The Offset Register QX0 and QX1
	2.5.4 The CoREG Addressing Mode
	2.5.5 The System Stack
	The Stack Pointer Register SP
	The Stack Pointer Segment Register SPSEG
	The Stack Overflow Pointer STKOV
	The Stack Underflow Pointer STKUN
	Scope of Stack Limit Control

	2.6 Data Processing
	2.6.1 Data Types
	2.6.2 Constants
	2.6.3 16-bit Adder/Subtracter, Barrel Shifter, and 16-bit Logic Unit
	2.6.4 Bit Manipulation Unit
	2.6.5 Multiply and Divide Unit
	The Multiply/Divide High Register MDH
	The Multiply/Divide Low Register MDL
	The Divide Control Register MDC
	2.6.6 The Processor Status Word PSW
	ALU Status (N, C, V, Z, E, MULIP)
	CPU Interrupt Status (IEN, ILVL)

	2.7 Parallel Data Processing
	2.7.1 Representation of Numbers and Rounding
	2.7.2 The 16-bit by 16-bit signed/unsigned Multiplier and Scaler
	2.7.3 Concatenation Unit
	2.7.4 One-bit Scaler
	2.7.5 The 40-bit Adder/Subtracter
	2.7.6 The Data Limiter
	2.7.7 The Accumulator Shifter
	2.7.8 The 40-bit Signed Accumulator Register
	The MAC Unit Accumulator Extension Byte MAE
	The MAC Unit Accumulator High Word MAH
	The MAC Unit Accumulator Low Word MAL
	2.7.9 The Repeat Counter MRW
	2.7.10 The MAC Unit Status Word MSW
	MAC Unit Status (MV, MN, MZ, MC, MSV, ME, MSL)
	2.7.11 The MAC Unit Control Word MCW

	2.8 Dedicated CSFRs
	The Constant Zeros Register ZEROS
	The Constant Ones Register ONES
	CPU Identification Register CPUID

	3 C166S�V2 Memory Organization
	3.1 Data Organization in Memory
	3.2 Internal Program Memory
	3.3 DPRAM, Internal SRAM, and SFR Areas
	3.3.1 Data Memories
	3.3.2 Special Function Register Areas
	3.3.3 IO Area
	3.3.4 PEC Source and Destination Pointers

	3.4 External Memory Space
	3.4.1 Boot and Debug/Monitor Program Memories

	3.5 Crossing Memory Boundaries
	3.6 System Stack
	3.6.1 Data Organization in Global General Purpose Registers

	4 Instruction Pipeline
	4.1 Instruction Dependencies in Different Pipeline Stages
	4.1.1 The General Purpose Registers
	4.1.2 Indirect Addressing Modes
	4.1.3 Memory Bandwidth Conflicts
	4.1.4 CPU-SFRs and the Pipeline

	5 Interrupt and Exception Handling
	Normal Interrupt Processing
	Software and Hardware Traps
	Interrupt Processing via the Peripheral Event Controller (PEC)
	5.1 Interrupt System and Control
	5.1.1 General Interrupt System Structure
	5.1.2 Interrupt Arbitration
	5.1.3 Interrupt Control
	5.1.4 Interrupt Vector Table
	5.1.5 Interrupt Jump Table Cache

	5.2 Status and Switch Context Control
	5.2.1 Interrupt Control Functions in the PSW
	5.2.2 Saving the Status during Interrupt Service
	5.2.3 Context Switching
	5.2.4 Fast Bank Switching

	5.3 Traps
	5.3.1 Software Traps
	5.3.2 Hardware Traps
	The Trap Flag Register TFR
	Class A Trap
	Class B Trap

	5.4 Peripheral Event Controller
	5.4.1 PEC Control Registers
	Channel Link Mode (CL bit)
	5.4.2 The PEC Source and Destination Pointer
	5.4.3 PEC Handler Interrupt Actions Summary
	5.4.4 PEC Channel Assignment and Arbitration

	5.5 CPU Action Control Unit

	6 External Bus Controller
	6.1 Introduction
	6.2 Timing Principles
	Naming Conventions
	6.2.1 A Phase
	6.2.2 B Phase
	6.2.3 C Phase
	6.2.4 D Phase
	6.2.5 E Phase
	6.2.6 F Phase

	6.3 Functional Description
	6.3.1 Configuration Register Overview
	6.3.2 The EBC MODE Registers EBCMODx
	6.3.3 The Timing Configuration registers TCONCSx
	6.3.4 The Function Configuration Registers FCONCSx
	6.3.5 The Address Window Selection Registers ADDRSELx
	6.3.5.1 Definition of Address Areas
	6.3.5.2 Address Window Arbitration
	6.3.6 Ready Controlled Bus Cycles
	6.3.6.1 General
	6.3.6.2 The Synchronous/Asynchronous READY
	6.3.6.3 Combining the READY function with predefined wait states
	6.3.7 EBC Idle State

	6.4 Multi Master Systems
	6.4.1 External Bus Arbitration
	6.4.1.1 Initialization of Arbitration
	6.4.1.2 Arbitration Master Scheme
	6.4.1.3 Arbitration Slave Scheme
	6.4.1.4 Locking the Bus
	6.4.2 Connecting Multimaster Systems

	6.5 Fastest possible external access

	7 Instruction Set
	7.1 Short Instruction Summary
	Description Levels

	7.2 Instruction Set Summary
	Data Addressing Modes
	Multiply and Divide Operations
	Branch Target Addressing Modes
	Extension Operations
	Branch Condition Codes

	7.3 Instruction Opcodes
	Notes for Opcode Lists
	Notes on the JMPR Instructions
	Notes on the JMPA and CALLA Instructions
	Notes on the BCLR and BSET Instructions
	Notes on CoXXX instructions
	Notes on CoXXX instructions using indirect addressing modes
	Notes on the Undefined Opcodes
	In the following table used symbols for instruction cycle times:

	8 Detailed Instruction Description
	8.1 Normal Instruction Set
	8.2 DSP Instruction Set
	8.3 Instructions for OCDS/ITC injection and System Control

	9 Summary of CPU/Subsystem Registers
	9.1 General Purpose Registers (GPRs)
	9.2 Core Special Function Registers
	9.2.1 Ordered by Name
	9.2.2 Ordered by Address

	9.3 Register Overview Interrupt and Peripheral Event Controller
	9.3.1 Ordered by Name
	9.3.2 Ordered by Address

	9.4 Register Overview External Bus Controller
	9.4.1 Ordered by Name
	9.4.2 Ordered by Address

	10 Keyword Index

