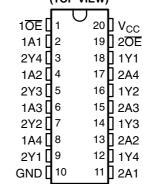
SCBS030E - SEPTEMBER 1988 - REVISED MARCH 2003

- Operating Voltage Range of 4.5 V to 5.5 V
- State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ}
- Output Ports Have Equivalent 33- Ω Series Resistors, So No External Resistors Are Required
- 3-State Outputs Drive Bus Lines or Buffer **Memory Address Registers**

description/ordering information

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers. and bus-oriented receivers transmitters. Together with the SN74BCT2241 and the 'BCT2244 devices, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (OE) inputs, and complementary OE and OE inputs. These devices feature high fan-out and improved fan-in.


The 'BCT2240 devices are organized as two 4-bit line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC}

through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The outputs, which are designed to source or sink up to 12 mA, include 33-Ω series resistors to reduce overshoot and undershoot.

SN54BCT2240 . . . J OR W PACKAGE SN74BCT2240 . . . DB. DW. N.OR NS PACKAGE (TOP VIEW)

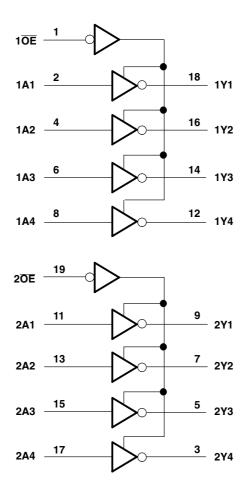
SN54BCT2240 . . . FK PACKAGE (TOP VIEW)

ORDERING INFORMATION

TA	PACKA	.GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	PDIP – N	Tube	SN74BCT2240N	SN74BCT2240N	
0°C to 70°C	COIC DW	Tube	SN74BCT2240DW	DOTOO 40	
	SOIC – DW	Tape and reel	SN74BCT2240DWR	BCT2240	
	SOP – NS Tape and re		SN74BCT2240NSR	BCT2240	
	SSOP – DB	Tape and reel	SN74BCT2240DBR	BA240	
	CDIP – J Tube		SNJ54BCT2240J	SNJ54BCT2240J	
–55°C to 125°C	CFP – W Tube		SNJ54BCT2240W	SNJ54BCT2240W	
	LCCC - FK	Tube	SNJ54BCT2240FK	SNJ54BCT2240FK	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

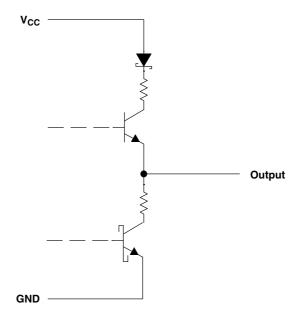
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SCBS030E - SEPTEMBER 1988 - REVISED MARCH 2003

FUNCTION TABLE (each buffer)

INPL	JTS	OUTPUT
OE	Α	Υ
L	Н	L
L	L	Н
Н	Χ	Z


logic diagram (positive logic)

SCBS030E - SEPTEMBER 1988 - REVISED MARCH 2003

schematic of Y outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 7 V
Input voltage range, V _I (see Note 1)		
Voltage range applied to any output in the disal	bled or power-off state, V _O	–0.5 V to 5.5 V
Voltage range applied to any output in the high	state, V _O	
Input clamp current, I _{IK}		–30 mA
Current into any output in the low state		24 mA
Package thermal impedance, θ_{JA} (see Note 2):	DB package	70°C/W
	DW package	58°C/W
	N package	69°C/W
	NS package	60°C/W
Storage temperature range, Total		-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN54BCT2240, SN74BCT2240 OCTAL BUFFERS AND LINE/MOS DRIVERS WITH 3-STATE OUTPUTS

SCBS030E - SEPTEMBER 1988 - REVISED MARCH 2003

recommended operating conditions (see Note 3)

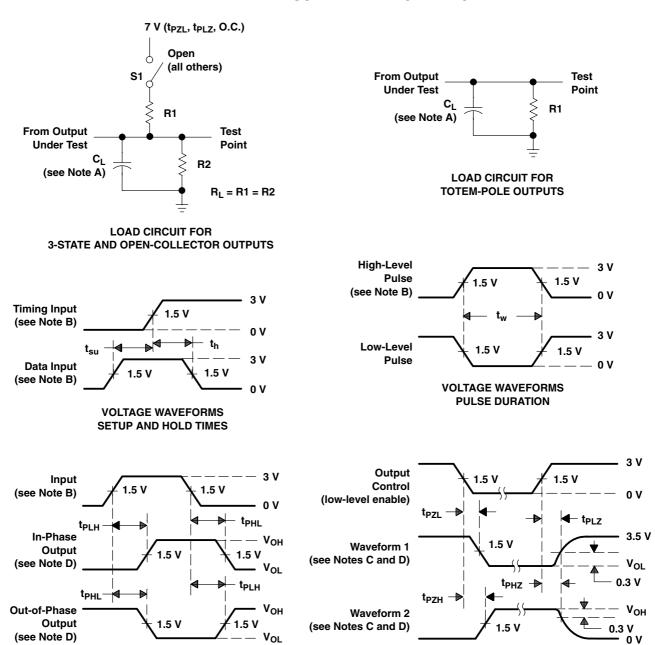
		SN54BCT2240			SN74BCT2240			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			8.0			8.0	V
I _{IK}	Input clamp current			-18			-18	mA
I _{OH}	High-level output current			-12			-12	mA
I _{OL}	Low-level output current			12			12	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS			54BCT22	240	SN74BCT2240			
PARAMETER	I E	MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
V_{IK}	$V_{CC} = 4.5 \text{ V},$	$I_I = -18 \text{ mA}$			-1.2			-1.2	٧
V	V 45V	$I_{OH} = -1 \text{ mA}$	2.4	3.3		2.4	3.3		٧
V _{OH}	$V_{CC} = 4.5 \text{ V}$	$I_{OH} = -12 \text{ mA}$	2	3.2		2	3.2		V
V	V 45V	I _{OL} = 1 mA		0.15	0.5		0.15	0.5	^
V _{OL}	V _{CC} = 4.5 V	$I_{OL} = 12 \text{ mA}$		0.35	0.8		0.35	8.0	V
lį	$V_{CC} = 5.5 V$,	$V_I = 7 V$			0.1			0.1	mA
I _{IH}	$V_{CC} = 5.5 V$,	$V_1 = 2.7 \text{ V}$			20			20	μΑ
I _{IL}	$V_{CC} = 5.5 \text{ V},$	$V_{I} = 0.5 V$			-1			-1	mA
l _{OZH}	$V_{CC} = 5.5 \text{ V},$	V _O = 2.7 V			50			50	μΑ
l _{OZL}	$V_{CC} = 5.5 \text{ V},$	V _O = 0.5 V			-50			-50	μΑ
los [‡]	$V_{CC} = 5.5 \text{ V},$	V _O = 0	-100		-225	-100		-225	mA
Іссн	V _{CC} = 5.5 V,	Outputs open		19	32		19	32	mA
I _{CCL}	$V_{CC} = 5.5 \text{ V},$	Outputs open		46	76		46	76	mA
I _{CCZ}	$V_{CC} = 5.5 \text{ V},$	Outputs open		6	8		6	8	mA

 $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L =50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	V _{CC} = 5 V, T _A = 25°C			SN54B0	T2240	SN74B0	UNIT			
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX			
t _{PLH}		V	0.5	3.4	4.8	0.5	6.3	0.5	5.7			
t _{PHL}	A	Y	0.5	2.8	4	0.5	4.6	0.5	4.4	ns		
t _{PZH}	<u> </u>	Y	2.6	6.2	8.2	2.6	10.1	2.6	9.3			
t _{PZL}	ŌĒ		4.3	8.8	10.9	4.3	12.9	4.3	12.4	ns		
t _{PHZ}	OF.	V	2	5.3	7.1	2	9.2	2	8.7			
t _{PLZ}		Y	Y	OE Y	2.2	6.7	8.5	2.2	12.2	2.2	10.6	ns

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES (see Note D)

(see Note D)

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $t_f = t_f \leq$ 2.5 ns, duty cycle = 50%.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.
- E. When measuring propagation delay times of 3-state outputs, switch S1 is open.
- F. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

0 V

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9093901M2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9093901M2A SNJ54BCT 2240FK	Samples
5962-9093901MRA	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9093901MR A SNJ54BCT2240J	Samples
SNJ54BCT2240FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9093901M2A SNJ54BCT 2240FK	Samples
SNJ54BCT2240J	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9093901MR A SNJ54BCT2240J	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

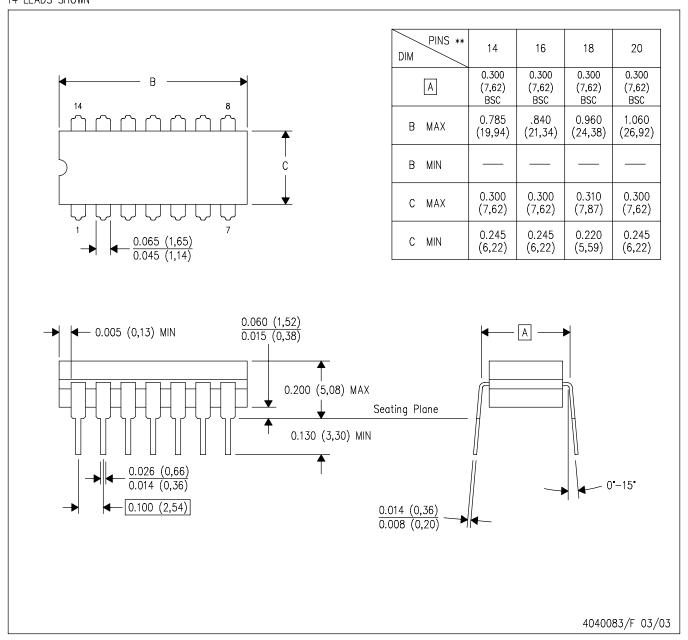
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

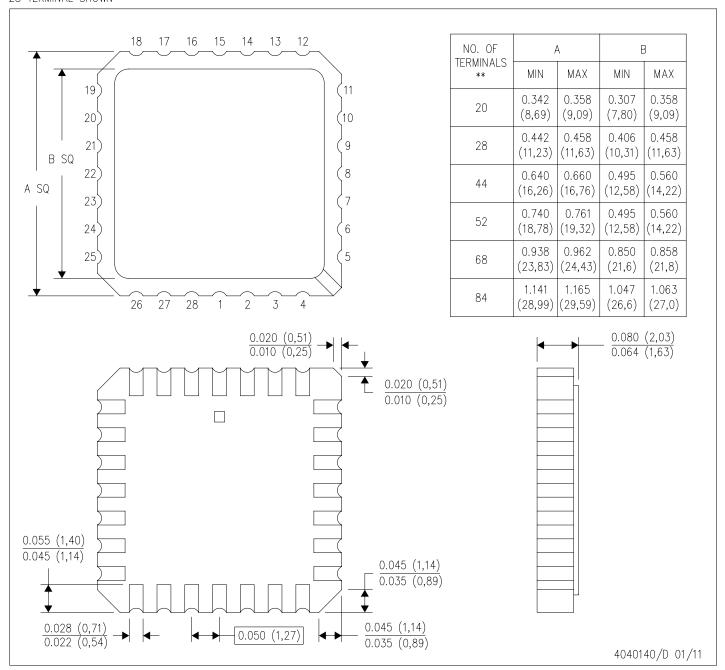

6-Feb-2020

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

14 LEADS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated