# **FAN1117A** # 1A Adjustable/Fixed Low Dropout Linear Regulator #### **Features** - Low dropout voltage - Load regulation: 0.05% typical - Trimmed current limit - On-chip thermal limiting - Standard SOT-223, TO-220, and TO-252 packages - Three-terminal adjustable or fixed 1.8V, 2.5V, 2.85V, 3.3V, 5V #### **Applications** - · Active SCSI terminators - · High efficiency linear regulators - · Post regulators for switching supplies - · Battery chargers - 12V to 5V linear regulators - Motherboard clock supplies #### **Description** The FAN1117A and FAN1117A-1.8, -2.5, -2.85, -3.3 and -5 are low dropout three-terminal regulators with 1A output current capability. These devices have been optimized for low voltage where transient response and minimum input voltage are critical. The 2.85V version is designed specifically to be used in Active Terminators for SCSI bus. Current limit is trimmed to ensure specified output current and controlled short-circuit current. On-chip thermal limiting provides protection against any combination of overload and ambient temperatures that would create excessive junction temperatures. Unlike PNP type regulators where up to 10% of the output current is wasted as quiescent current, the quiescent current of the FAN1117A flows into the load, increasing efficiency. The FAN1117A series regulators are available in the industry-standard SOT-223, TO-220, and TO-252 (DPAK) power packages. # **Typical Applications** ### **Pin Assignments** \*With package soldered to 0.5 square inch copper area over backside ground plane or internal power plane, $\Theta_{JA}$ can vary from 30°C/W to more than 50°C/W. Other mounting techniques may provide better thermal resistance than 30°C/W. # **Absolute Maximum Ratings** | Parameter | Min. | Max. | Unit | |----------------------------------------------------------|------|--------------|------| | V <sub>IN</sub> | | 18 | V | | (V <sub>IN</sub> – V <sub>OUT</sub> ) * I <sub>OUT</sub> | | See Figure 1 | | | Operating Junction Temperature Range | 0 | 125 | °C | | Storage Temperature Range | -65 | 150 | °C | | Lead Temperature (Soldering, 10 sec.) | | 300 | °C | Figure 1. Absolute Maximum Safe Operating Area FAN1117A PRODUCT SPECIFICATION #### **Electrical Characteristics** Operating Conditions: $V_{IN} \le 7V$ , $T_J = 25$ °C unless otherwise specified. The • denotes specifications which apply over the specified operating temperature range. | Parameter Conditions | | Min. | Тур. | Max. | Units | | |----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------|----------------------------------|-------------------------------------------|------| | Reference Voltage <sup>3</sup> | $1.5V \le (V_{IN} - V_{OUT}) \le 7V$ ,<br>$10\text{mA} \le I_{OUT} \le 1A$ | • | 1.225<br>(-2%) | 1.250 | 1.275<br>(+2%) | V | | Output Voltage <sup>4</sup> | $\begin{array}{l} 10\text{mA} \leq I_{OUT} \leq 1\text{A} \\ \text{FAN1117A-1.8, } 3.3\text{V} \leq \text{V}_{IN} \leq 8.8\text{V} \\ \text{FAN1117A-2.5, } 4\text{V} \leq \text{V}_{IN} \leq 9.5\text{V} \\ \text{FAN1117A-2.85, } 4.35\text{V} \leq \text{V}_{IN} \leq 9.85\text{V} \\ \text{FAN1117A-3.3, } 4.8\text{V} \leq \text{V}_{IN} \leq 10.3\text{V} \\ \text{FAN1117A-5, } 6.5\text{V} \leq \text{V}_{IN} \leq 12\text{V} \end{array}$ | • | 1.764<br>2.450<br>2.793<br>3.234<br>4.900 | 1.8<br>2.5<br>2.85<br>3.3<br>5.0 | 1.836<br>2.550<br>2.907<br>3.366<br>5.100 | > | | Line Regulation <sup>1,2</sup> | $(V_{OUT} + 1.5V) \le V_{IN} \le 12V$ , $I_{OUT} = 10$ mA | • | | 0.005 | 0.2 | % | | Load Regulation <sup>1,2</sup> | $(V_{IN} - V_{OUT}) = 2V$ , $10mA \le I_{OUT} \le 1A$ | • | | 0.05 | 0.5 | % | | Dropout Voltage | $\Delta V_{REF} = 1\%$ , $I_{OUT} = 1A$ | • | | 1.100 | 1.200 | V | | Current Limit | $(V_{IN} - V_{OUT}) = 2V$ | • | 1.1 | 1.5 | | Α | | Adjust Pin Current <sup>3</sup> | | • | | 35 | 120 | μΑ | | Adjust Pin Current Change <sup>3,4</sup> | $1.5V \le (V_{IN} - V_{OUT}) \le 7V$ ,<br>$10mA \le I_{OUT} \le 1A$ | • | | 0.2 | 5 | μА | | Minimum Load Current | $1.5V \le (V_{IN} - V_{OUT}) \le 15V$ | • | 10 | | | mA | | Quiescent Current | $V_{IN} = V_{OUT} + 1.25V$ | • | | 4 | 13 | mA | | Ripple Rejection | $f$ = 120Hz, $C_{OUT}$ = 22 $\mu$ F Tantalum,<br>( $V_{IN} - V_{OUT}$ ) = 3V, $I_{OUT}$ = 1A | | 60 | 72 | | dB | | Thermal Regulation | T <sub>A</sub> = 25°C, 30ms pulse | | | 0.004 | 0.02 | %/W | | Temperature Stability | | • | | 0.5 | | % | | Long-Term Stability | $T_A = 125$ °C, 1000hrs. | | | 0.03 | 1.0 | % | | RMS Output Noise<br>(% of V <sub>OUT</sub> ) | $T_A = 25^{\circ}C$ , $10Hz \le f \le 10kHz$ | | | 0.003 | | % | | Thermal Resistance, Junction | SOT-223 | | | 15 | | °C/W | | to Case | TO-252, TO-220 | | | 3 | | °C/W | | Thermal Shutdown | Junction Temperature | | | 155 | | °C | | Thermal Shutdown<br>Hysteresis | | | | 10 | | °C | #### Notes: - 1. See thermal regulation specifications for changes in output voltage due to heating effects. Load and line regulation are measured at a constant junction temperature by low duty cycle pulse testing. - 2. Line and load regulation are guaranteed up to the maximum power dissipation (18W). Power dissipation is determined by input/output differential and the output current. Guaranteed maximum output power will not be available over the full input/output voltage range. - 3. FAN1117A only. - 4. Output current must be limited to meet the absolute maximum ratings of the part. ### **Typical Performance Characteristics** Figure 6. Minimum Load Current vs. Temperature Figure 7. Adjust Pin Current vs. Temperature FAN1117A PRODUCT SPECIFICATION ## **Typical Performance Characteristics** (continued) Figure 10. Maximum Power Dissipation Figure 11. Stability Region (SOA) vs. ESR of the C<sub>OUT</sub> ## **Mechanical Dimensions** ### 4-Lead SOT-223 Package FAN1117A PRODUCT SPECIFICATION ### **Mechanical Dimensions** (continued) #### 3-Lead TO-220 Package ## **Mechanical Dimensions** (continued) ### 3-Lead TO-252 Package #### **Ordering Information** | Product Number | Package | | | |----------------|--------------------------|--|--| | FAN1117ADX | TO-252 in tape and reel | | | | FAN1117ASX | SOT-223 in tape and reel | | | | FAN1117AD18X | TO-252 in tape and reel | | | | FAN1117AS18X | SOT-223 in tape and reel | | | | FAN1117AD25X | TO-252 in tape and reel | | | | FAN1117AS25X | SOT-223 in tape and reel | | | | FAN1117AD285 | TO-252 | | | | FAN1117AS285 | SOT-223 | | | | FAN1117AD33X | TO-252 in tape and reel | | | | FAN1117AS33X | SOT-223 in tape and reel | | | | FAN1117AT | TO-220 | | | | FAN1117AT18 | TO-220 | | | | FAN1117AT25 | TO-220 | | | | FAN1117AT33 | TO-220 | | | | FAN1117AD5X | TO-252 in tape and reel | | | | FAN1117AS5X | SOT-223 in tape and reel | | | #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com