ON Semiconductor DATA SHEET

Monolithic Digital IC For Fan Motor Driver for Refrigerator **3-Phase Sensorless Motor Driver**

Overview

The LB11983 is a 3-phase full-wave current linear sensorless motor driver. It is optimal for refrigerator fan motor drive.

Features

- Current linear driving technique.
- Current limiter circuit.
- Over saturation prevention circuit for output stage.
- Provides coil back EMF FG output.
- Thermal shoutdown circuit.
- Beat lock pervention circuit.

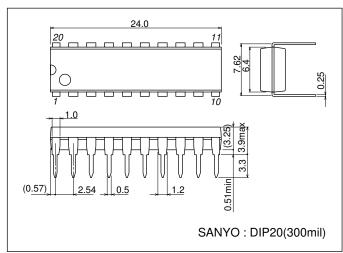
Specifications

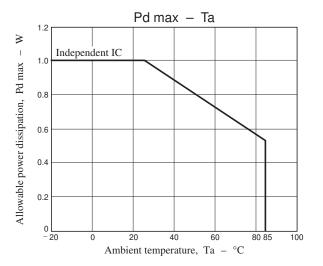
Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		14.5	V
Output application voltage	V _O max		14.5	V
Input application voltage	V _I max		-0.3 to V _{CC} +0.3	V
Output current	I _O max		1.0	А
Allowable power dissipation	Pd max	Independent IC	1.0	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

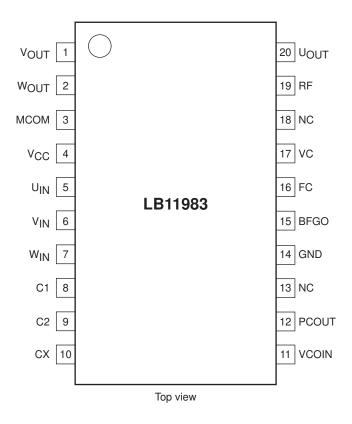
Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		7 to 13.8	V

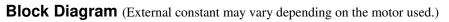

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 12V$

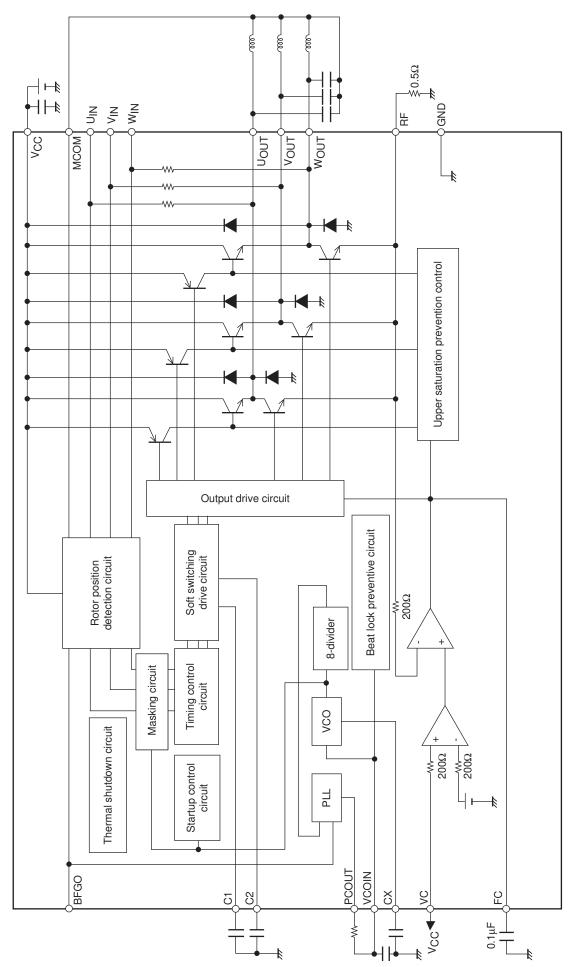

D	Symbol		Ratings			
Parameter		Conditions	min	typ	max	Unit
Supply current	ICC	VC = V _{CC}		20	30	mA
Output saturation voltage 1	V _O sat1	I _O = 0.4A, Source + Sink		1.4	2.0	V
Output saturation voltage 2	V _O sat2	I_{O} = 0.8A, Source + Sink, RF = 0 Ω		1.8	2.6	V
MCOM pin common-mode input voltage range	VIC		0		V _{CC} -2	V
PCOUT output current 1	IPCOU	Source side		-90		μA
PCOUT output current 2	IPCOD	Sink side		90		μA
VCOIN input current	IVCOIN	VCOIN = 5V		0.1	0.2	μA
VCO minimum frequency	fVCOMIN	VCOIN = open		400		Hz
VCO maximum frequency	fVCOMAX	VCOIN = 5V		18.5		kHz
C1, C2 source current ratio	RSOURCE	IC1SOURCE/IC2SOURCE	-12		+12	%
C1, C2 sink current ratio	RSINK	IC1SINK/IC2SINK	-12		+12	%
C1 source and sink current ratio	RC1	IC1SOURCE/IC1SINK	-35		+15	%
C2 source and sink current ratio	RC2	IC2SOURCE/IC2SINK	-35		+15	%
Counter FG output ON volt	V _{OL}				0.4	V
Counter FG output OFF vol	V _{OH}		4			V
Thermal shutdown operating temperature	TTSD	Design target value *	150	180	210	°C
Thermal shutdown hysteresis	∆TTSD	Design target value *		15		°C

Note : * These items are design target values and are not tested.


Package Dimensions

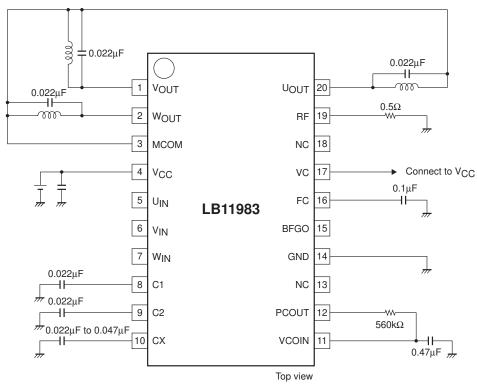
unit : mm (typ) 3021C





Pin Assignment

LB11983



Pin Fur	nctions					
Pin No.	Pin name	Function	Equivalent circuit			
20	U _{OUT}	Drum motor driver output pin.	V _{CC}			
1	VOUT					
2	WOUT					
19	RF	Minimum potential of the drum motor driver output transistor. This voltage is detected for constantcurrent control. The current limiter is also activated upon detection of this potential.	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$			
4	V _{CC}	Power supply pin. (8 to 13.8V)				
3	МСОМ	Middle point input pin of motor coil. The coil waveform is detected with reference to this voltage.				
5	U _{IN}	Input pin of the coil waveform detection comparator. Connected to each phase output with a built-in resistor of $10k\Omega$	$ \begin{array}{c} 5 \\ 6 \\ 7 \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
6	V _{IN}					
7	W _{IN}					
8	C1	Triangular wave generating capacitor connection pin. This triangsular wave causes soft switching of coil output waveform.	VCC VREG 15μA 15μA 9 5μA 9 15μA 15μA 15μA 15μA 15μA 15μA 15μA 15μA			
9	C2		2S 1/2VREG-VF 1/2VREG-VF			
10	СХ	The operating frequency range and minimum operating frequency are determined from the value of capacitor connected to this pin and GND in the VCO circuit.	VCC VREG 100μA 300Ω 100μA			
11	VCOIN	VCO circuit voltage input pin. Inputs the PCOUT pin voltage through CR filtering.	Vcc 10kΩ 1.75V 11 1.75V 11 1.75V 10kΩ 50kΩ 50kΩ 50μA 50μA			

Continued on next page.

Continued fr	rom preceding	page.	
Pin No.	Pin name	Function	Equivalent circuit
12	PCOUT	VCO circuit PLL output pin.	VREG VCC
14	GND	GND for others than the output transistor.	
15	BFGO	FG output to detect motor reverse feeder voltage. (Composition of three phases)	VREG + VF
16	FC	Frequency characteristics compensation pin. Insertion of a capacitor between this pin and GND stops oscillation of the current control closed loop.	VREG VCC 16 10kΩ 55kΩ
17	VC	Speed control pin. The control is a constant-current control under current feedback from RF. Normally, this pin is connected to V _{CC} for use.	V _{CC} 50μA (†) 50μA 200Ω 40kΩ 40kΩ 224kΩ

Sample Application Circuit (Reference)

Notes 1. Be sure to connect the VC pin to V_{CC} directly before use.

- 2. For the constant of capacitor, etc., our value established through examination is given for reference. Adjust the value according to the motor to be used when considering this IC.
- 3. If the output is not oscillated with the motor used, a capacitor inserted between output coil ends is not necessary.
- 4. Pins 5 through 7 (UIN, VIN, and WIN) are not to be used by a user. These are connected inside IC and should always be kept independent and open.
- 5. NC pins (14 and 18) are not connected inside IC and can be used as relay pins.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. SCILLC strives to supply high-reliability products and recommends adopting safety measures when designing equipment to avoid accidents or malfunctions. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals," must be validated for each customer application for susta with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or suthorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and is officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of persona

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderli@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com

USA/Canada Europe, Middle East and Africa Technical Support: Order Liter

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative