onsemi

DATA SHEET www.onsemi.com

MOSFET - Power, N-Channel 100 V, 4.2 mΩ, 201 A NTB004N10G

Features

- Low R_{DS(on)}
- High Current Capability
- Wide SOA
- These Devices are Pb-Free and are RoHS Compliant

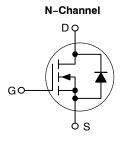
Applications

• Hot Swap in 48 V Systems

MAXIMUM RATINGS (T_J = 25° C Unless otherwise specified)

Para	Symbol	Value	Unit		
Drain-to-Source Volta	Drain-to-Source Voltage				V
Gate-to-Source Voltag	ge – Conti	nuous	V _{GS}	±20	V
Continuous Drain	Steady State	$T_{C} = 25^{\circ}C$	I _D	201	А
Current R _{θJC}	Slale	$T_{C} = 100^{\circ}C$		142	
Power Dissipation $R_{\theta JC}$	Steady State	T _C = 25°C	P _D	340	W
Pulsed Drain Current	tp	= 10 μs	I _{DM}	3002	А
Operating Junction and Range	T _J , T _{stg}	–55 to +175	°C		
Source Current (Body	۱ _S	283	А		
Single Pulse Drain-to- Energy (V_{DD} = 50 Vdc $I_{L(pk)}$ = 102 A, L = 0.1 r	E _{AS}	520	mJ		
Lead Temperature for S Purposes, 1/8" from C		Seconds	ΤL	260	°C

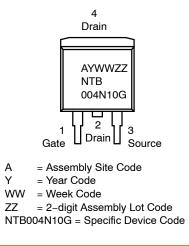
THERMAL RESISTANCE RATINGS


Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) Steady State	$R_{\theta JC}$	0.44	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	62.5	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted on FR4 board using 1 sq in pad size,

(Cu Area 1.127 sq in [2 oz] including traces).


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX (Note 1)
100 V	$4.2~\mathrm{m}\Omega$ @ 10 V	201 A

CASE 418AJ STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENT

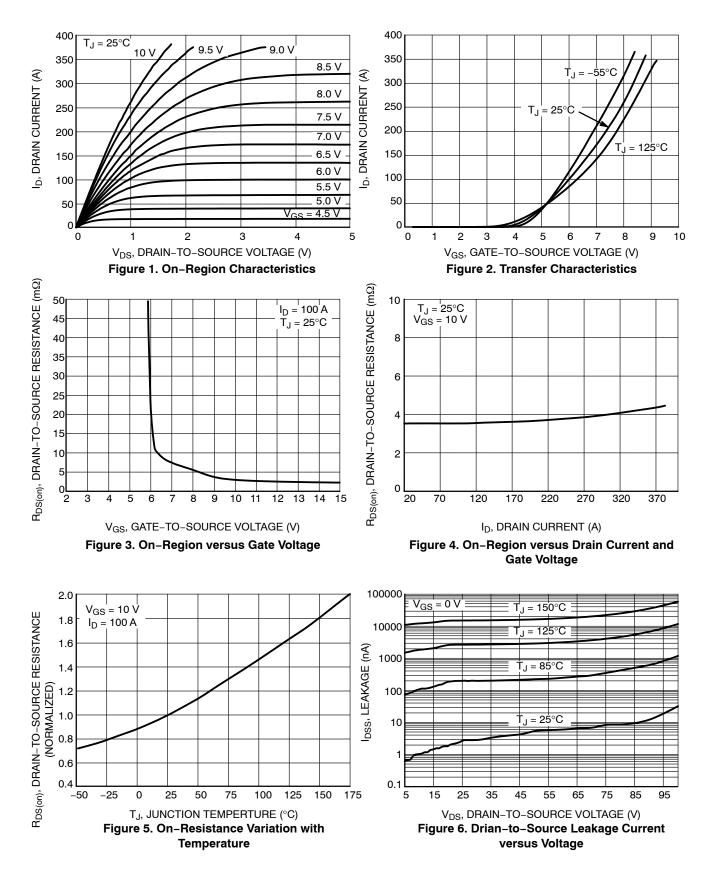
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

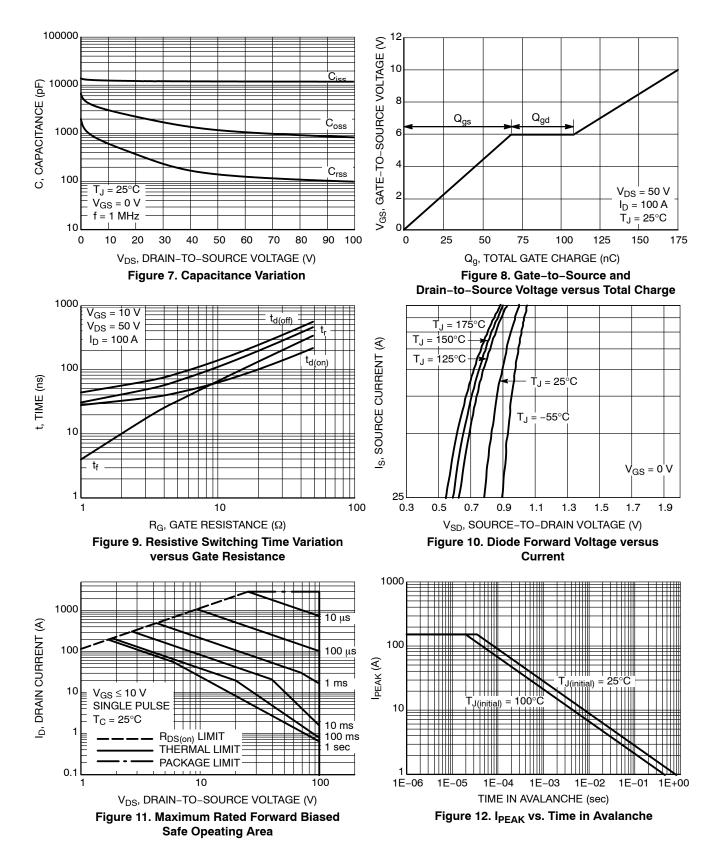
ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless otherwise specified)

Characteristics	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS		•		•		•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V,	l _D = 250 μA	100			V
Drain-to-Source Breakdown Voltage Temper- ature Coefficient	V _{(BR)DSS} /T _J				83.2		mV/°C
Zero Gate Voltage Drain Current		$T_J = 25^{\circ}C$			1.0	μA	
		V _{DS} = 80 V	T _J = 150°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 2)				-			-
Gate Threshold Voltage	V _{GS(th)}	V_{GS} = V_{DS} , I_D = 500 μ A		2.0	2.8	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(th)} /T _J				-10.5		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, \text{ I}_{D}$	$T_J = 25^{\circ}C$		3.4	4.2	mΩ
		= 100 A	T _J = 175°C		6.82		mΩ
Forward Transconductance	9fs	V _{DS} = 10 V, I _D = 100 A			70		S
CHARGES, CAPACITANCES & GATE RESIST	ANCE	•		•	•	•	•
Input Capacitance	C _{iss}	$V_{DS} = 50 V, V_{GS} = 0 V,$			11900		pF
Output Capacitance	C _{oss}				1170		

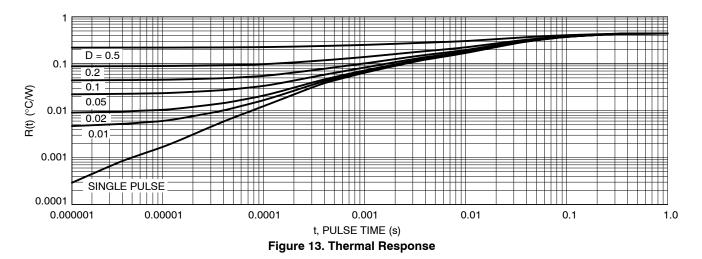
Output Capacitance	C _{oss}	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	1170	
Reverse Transfer Capacitance	C _{rss}	1	147	
Total Gate Charge	Q _{G(TOT)}		175	nC
Threshold Gate Charge	Q _{G(TH)}	1	78.4	
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 50 \text{ V},$ $I_{D} = 100 \text{ A}$	67.3	
Gate-to-Drain Charge	Q _{GD}		40.8	
Plateau Voltage	V _{GP}	1	6.0	V
Gate Resistance	R _G	$\label{eq:VOSC} \begin{array}{l} V_{OSC} = 100 \text{ mV}, V_{GS} = 0 \text{ V}, \\ f = 1 \text{ MHz} \end{array}$	0.445	Ω


SWITCHING CHARACTERISTICS, V_{GS} = 10 V (Note 3)

Turn-On Delay Time	t _{d(on)}		43	ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} = 50 V,	64.5	
Turn-Off Delay Time	t _{d(off)}	I_D = 100 A, R_G = 4.7 Ω	84.7	
Fall Time	t _f		30	

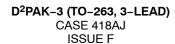

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V_{SD}	1 100 4	$T_J = 25^{\circ}C$	0.9	1.2	V
		l _S = 100 A	$T_J = 125^{\circ}C$	0.77		
Reverse Recovery Time	t _{rr}	V _{GS} = 0 V, I _S = 100 A, dI _{SD} /dt = 100 A/µs		76.6		ns
Charge Time	ta			46.4		
Discharge Time	t _b			30.2		
Reverse Recovery Charge	Q _{RR}			157		nC

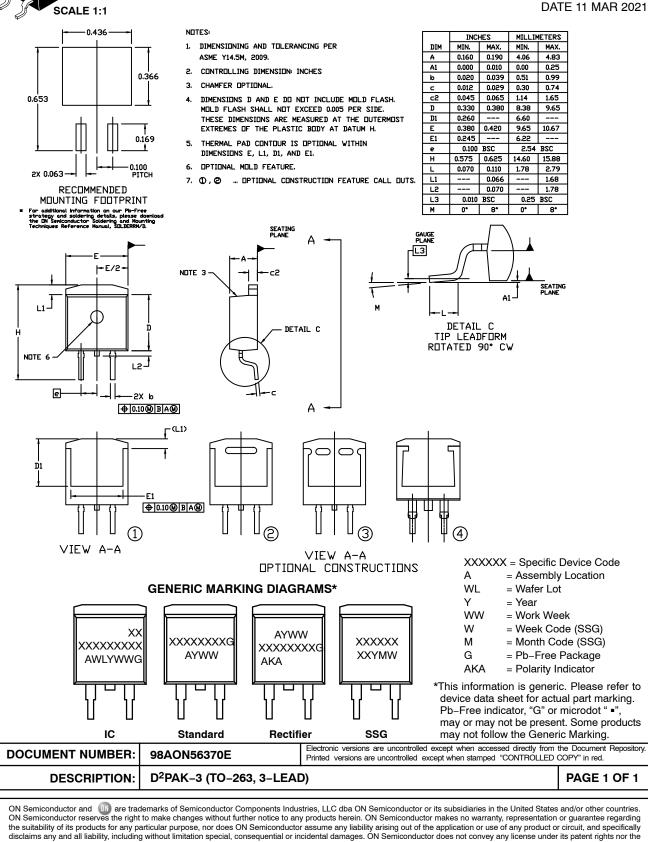

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


ORDERING INFORMATION

Device	Package	Shipping [†]
NTB004N10G	D ² PAK (Pb-Free)	800 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

© Semiconductor Components Industries, LLC, 2018

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales