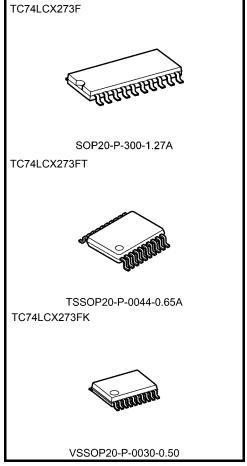
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX273F, TC74LCX273FT, TC74LCX273FK

Low-Voltage Octal D-Type Flip-Flop with Clear with 5-V Tolerant Inputs and Outputs

The TC74LCX273 is a high-performance CMOS octal D-type flip-flop. Designed for use in 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low-power dissipation.

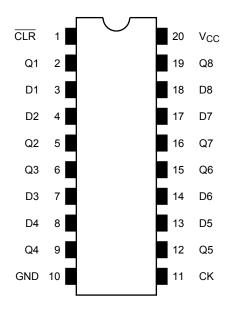

The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to 5-V supply environment for both inputs and outputs.

This 8 bit D-type flip-flop is controlled by a clock input (CK) and a clear input (\overline{CLR}). When the \overline{CLR} input is low, the eight outputs are at a low logic level.

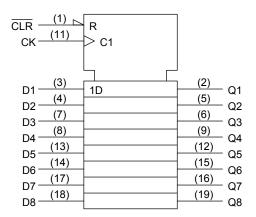
All inputs are equipped with protection circuits against static discharge.

Features

- Low-voltage operation: VCC = 1.65 to 3.6 V
- High-speed operation: $t_{pd} = 8.5 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V)}$
- Output current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: $> \pm 500 \text{ mA}$
- Available in JEITA SOP, TSSOP and VSSOP (US)
- Power-down protection is provided on all inputs and outputs
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 273 type



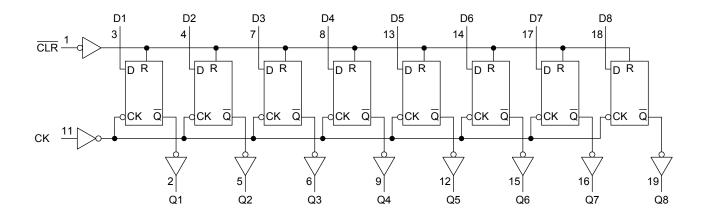
Weight


SOP20-P-300-1.27A : 0.22 g (typ.) TSSOP20-P-0044-0.65A : 0.08 g (typ.) VSSOP20-P-0030-0.50 : 0.03 g (typ.)

Note: The Electrical Characteristics of $V_{\rm CC}$ =1.8±0.15V is only applicable for products which manufactured from January 2009 onward.

Pin Assignment (top view)

IEC Logic Symbol



Truth Table

	Inputs		Outputs	Function
CLR	D	CK	Q	Turiction
L	Х	Х	L	Clear
Н	L		L	_
Н	Н		Н	_
Н	Х	ightharpoons	Qn	No change

X: Don't care

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 7.0	V
DC input voltage	V _{IN}	-0.5 to 7.0	V
		-0.5 to 7.0 (Note 2)	
DC output voltage	V _{OUT}	-0.5 to V_{CC} + 0.5 (Note 3)	V
Input diode current	l _{IK}	-50	mA
Output diode current	I _{OK}	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	P_{D}	180	mW
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: $V_{CC} = 0 V$

Note 3: High or low state. I_{OUT} absolute maximum rating must be observed.

Note 4: Vout < GND, Vout > Vcc

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.65 to 3.6	V	
Tower supply voltage	VCC	1.5 to 3.6 (Note 2)	V	
Input voltage	V _{IN}	0 to 5.5	٧	
Output voltage	Vout	0 to 5.5 (Note 3)	V	
Output voltage	VOU1	0 to V _{CC} (Note 4)	v	
Output current	10H/loL ±24 (Not		mA	
Output current	IOH/IOL	±12 (Note 6)	ША	
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 7)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Note 2: Data retention only

Note 3: $V_{CC} = 0 V$

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.7 \text{ to } 3.0 \text{ V}$

Note 7: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C)

Charac	teristics	Symbol	Test Co	Test Condition V _{CC} (V)		Min	Max	Unit	
					1.65 to 2.3	V _{CC} ×0.9	_		
	H-level					1.7	_		
lanut valtana					2.7 to 3.6	2.0	_	V	
Input voltage					1.65 to 2.3		V _{CC} × 0.1	V	
	L-level	V _{IL}			2.3 to 2.7		0.7		
					2.7 to 3.6	_	0.8		
				I _{OH} = -100 μA	1.65 to 3.6	V _{CC} -0.2	_		
			V _{OH} $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -8 \text{ mA}$ 2.3 1.7 $I_{OH} = -12 \text{ mA}$ 2.7 2.2 $I_{OH} = -18 \text{ mA}$ 3.0 2.4	I _{OH} = -4 mA	1.65	1.05	_		
	H-level	V		I _{OH} = -8 mA	2.3	1.7	_		
	n-ievei	evei VOH		I _{OH} = -12 mA	2.7	2.2	_		
				I _{OH} = -18 mA	3.0	2.4	_		
Output voltage				2.2	_	٧			
Output voltage		I _{OL} = 100 μA 1.0	1.65 to 3.6	_	0.2				
				I _{OL} = 4 mA	1.65	_	0.45		
	L-level	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 8 mA	2.3	_	0.7		
	L-level	VOL VIN = VIH OI V	AIM = AIH OI AIF	I _{OL} = 12 mA	2.7	_	0.4		
					I _{OL} = 16 mA	3.0	_	0.4	
				I _{OL} = 24 mA	3.0	_	0.55		
Input leakage cur	rent	I _{IN}	V _{IN} = 0 to 5.5 V		1.65 to 3.6	_	±5.0	μΑ	
Power-off leakage	e current	I _{OFF} V _{IN} /V _{OUT} = 5.5 V		/	0	_	10.0	μА	
Quiescent supply	current	los	$V_{IN} = V_{CC}$ or GN	V _{IN} = V _{CC} or GND		_	10.0		
Quiescent suppry	current	I _{CC}	V _{IN} = 3.6 to 5.5 \	_N = 3.6 to 5.5 V		_	±10.0	μΑ	
Increase in I _{CC} pe	er input	Δl _{CC}	V _{IN} = V _{CC} - 0.6 V		2.7 to 3.6	_	500		

AC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Maximum clock frequency Maximum clock frequency Max Maximum clock frequency Maximum clo	Characteristics	Symbol	Test Condition		Min Max		Unit
Maximum clock frequency Max Figure 1, Figure 2)	Onaracteristics	5,5.		V _{CC} (V)	IVIIII		
Minimum pulse width (CLR -Q) **Temark**				1.8±0.15	50	_	MHz
Propagation delay time (CK-Q) Propagation delay time (CK-Q) text (Figure 1, Figure 2) text (Figure 1, Figure 3) text (Figure 1, Figure 3) text (Figure 1, Figure 3) text (Figure 1, Figure 2) text (Figure 1, Figure 2) text (Figure 1, Figure 3) text (Figure 1, Figure 2) text (Figure	Maximum clock frequency	fnax	(Figure 1 Figure 2)	2.5±0.2	100	_	
Propagation delay time (CK-Q) t t t t t t t t t t t t t t t t t t t	Maximum clock frequency	IVIAA	(Figure 1, Figure 2)	2.7	150	_	
Propagation delay time (CK-Q)				3.3 ± 0.3	150		
Propagation delay time (CK-Q) t_{PHL} (Figure 1, Figure 2) 2.7 - 9.5 3.3 ± 0.3 1.5 8.5				1.8±0.15	_	30.0	
The continue of the continue	Propagation dolay time (CK O)	t _{PLH}	(Figure 1 Figure 2)	2.5±0.2	_	10.5	
Propagation delay time (CLR -Q) the phase of the phase o	Propagation delay time (CK-Q)	t _{PHL}	(rigure 1, rigure 2)	2.7	_	9.5	115
Propagation delay time (\overline{CLR - Q} \) tend to (Figure 1, Figure 3) tend (Figure 1, Figure 2) tend (Figure 1, Figure 2				3.3 ± 0.3	1.5	8.5	
Propagation delay time (CLR -Q) the Hamiltonian pulse width (CK) tw (H) tw (L) (Figure 1, Figure 2) The Hamiltonian pulse width (CK) the				1.8±0.15	_	30.0	
Minimum pulse width (CK) tw (H) tw (L) (Figure 1, Figure 2) (Fi	Draw a ration dalay time (CLD O)		(Figure 4, Figure 2)	2.5±0.2	_	10.5	
Minimum pulse width (CK) tw (H) tw (L) (Figure 1, Figure 2) (Figure 3) (Figure 3) (Figure 3) 1.8±0.15	Propagation delay time (CLR -Q)	ЧРНL	(Figure 1, Figure 3)	2.7	_	9.5	ns
$ \begin{array}{c} \text{Minimum pulse width (CK)} & \begin{array}{c} t_{w \; (H)} \\ t_{w \; (L)} \end{array} & \begin{array}{c} t_{\text{Gigure 1, Figure 2)}} \end{array} & \begin{array}{c} 2.5 \pm 0.2 & 5.0 & - \\ 2.7 & 3.3 & - \\ 3.3 \pm 0.3 & 3.3 & - \\ \end{array} \\ \text{Minimum pulse width ($\overline{\text{CLR}}$)} & \begin{array}{c} t_{w \; (L)} \end{array} & \begin{array}{c} \text{(Figure 1, Figure 2)} \end{array} & \begin{array}{c} 1.8 \pm 0.15 & 10.0 & - \\ 2.5 \pm 0.2 & 5.0 & - \\ 3.3 \pm 0.3 & 3.3 & - \\ \end{array} & \\ \text{Minimum setup time} & \begin{array}{c} t_{s} \end{array} & \begin{array}{c} \text{(Figure 1, Figure 2)} \end{array} & \begin{array}{c} 1.8 \pm 0.15 & 10.0 & - \\ 2.5 \pm 0.2 & 5.0 & - \\ 3.3 \pm 0.3 & 3.3 & - \\ \end{array} & \\ \text{Minimum hold time} & \begin{array}{c} t_{s} \end{array} & \begin{array}{c} \text{(Figure 1, Figure 2)} \end{array} & \begin{array}{c} 1.8 \pm 0.15 & 10.0 & - \\ 2.5 \pm 0.2 & 5.0 & - \\ 3.3 \pm 0.3 & 2.5 & - \\ \end{array} & \\ \text{Minimum hold time} & \begin{array}{c} t_{s} \end{array} & \begin{array}{c} t_$				3.3 ± 0.3	1.5	8.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.8±0.15	10.0	_	ns
	Minimovino invita a visidata (CIC)	t _{w (H)}		2.5±0.2	5.0	_	
Minimum pulse width ($\overline{\text{CLR}}$) $t_{\text{W (L)}}$ (Figure 3)	Minimum puise width (CK)	t _{w (L)}		2.7	3.3	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.3 ± 0.3	3.3	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.8±0.15	10.0	_	ns
	Minimum mula a middle (OLD)			2.5±0.2	5.0	_	
Minimum setup time $t_{s} = \begin{bmatrix} 1.8\pm0.15 & 10.0 & - \\ 2.5\pm0.2 & 5.0 & - \\ \hline 2.7 & 2.5 & - \\ \hline 3.3\pm0.3 & 2.5 & - \\ \hline 2.5\pm0.2 & 1.5 & - \\ \hline 2.5\pm0.2 & 1.5 & - \\ \hline 2.7 & 1.5 & - \\ \hline 2.7 & 1.5 & - \\ \hline 2.7 & 1.5 & - \\ \hline 3.3\pm0.3 & 1.5 & - \\ \hline 2.7 & 1.5 & - \\ \hline 3.3\pm0.3 & 1.5 & - \\ \hline 2.5\pm0.2 & 4.0 & - \\ \hline 2.7 & 2.5 & - \\ \hline 3.3\pm0.3 & 2.0 & - \\ \hline \end{bmatrix}$ Minimum removal time $t_{rem} = \begin{bmatrix} t_{rem} & t_$	Minimum pulse width (CLR)	t _w (L)	(Figure 3)	2.7	3.3	_	
Minimum setup time $t_{S} = (Figure \ 1, Figure \ 2) = \begin{bmatrix} 2.5 \pm 0.2 & 5.0 & - \\ 2.7 & 2.5 & - \\ 3.3 \pm 0.3 & 2.5 & - \end{bmatrix} \text{ns}$ $\frac{1.8 \pm 0.15}{2.5 \pm 0.2} \frac{1.5}{1.5} - \\ 2.7 & 1.5 & - \\ 3.3 \pm 0.3 & 1.5 & - \\ 3.3 \pm 0.3 & 1.5 & - \\ \end{bmatrix} \text{ns}$ $\frac{1.8 \pm 0.15}{3.3 \pm 0.3} \frac{1.5}{1.5} - \\ \frac{1.8 \pm 0.15}{2.7} \frac{1.5}{2.5} - \\ \frac{1.8 \pm 0.15}{2.5} - \\ 1.8 \pm 0$				3.3 ± 0.3	3.3	_	
Minimum setup time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.8±0.15	10.0	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l.e.		(5: 4.5: 2)	2.5±0.2	5.0	_	1
Minimum hold time $ t_{h} \text{(Figure 1, Figure 2)} \begin{array}{c} 1.8 \pm 0.15 & 1.5 & - \\ \hline 2.5 \pm 0.2 & 1.5 & - \\ \hline 2.7 & 1.5 & - \\ \hline 3.3 \pm 0.3 & 1.5 & - \\ \hline \end{array} $ ns $ \frac{1.8 \pm 0.15 & 8.0 & - \\ \hline 2.5 \pm 0.2 & 4.0 & - \\ \hline 2.7 & 2.5 & - \\ \hline 3.3 \pm 0.3 & 2.0 & - \\ \hline \end{array} $ Output to output skew $ \begin{array}{c} t_{osl.H} \\ \hline \end{array} $	Minimum setup time	t _s	(Figure 1, Figure 2)	2.7	2.5	_	ns
Minimum hold time $t_{h} = \begin{bmatrix} 1.5 \pm 0.2 & 1.5 & - & \\ 2.5 \pm 0.2 & 1.5 & - & \\ 3.3 \pm 0.3 & 1.5 & - & \\ \hline 1.8 \pm 0.15 & 8.0 & - & \\ \hline 2.5 \pm 0.2 & 4.0 & - & \\ \hline 2.5 \pm 0.2 & 4.0 & - & \\ \hline 2.5 \pm 0.2 & 4.0 & - & \\ \hline 2.7 & 2.5 & - & \\ \hline 3.3 \pm 0.3 & 2.0 & - & \\ \hline 0 & & & & \\ 0 & & & & \\ \hline 0 & & & & \\ 0 & & & & \\ \hline 0 &$				3.3 ± 0.3	2.5	_	
Minimum hold time $ t_{h} $				1.8±0.15	1.5	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(5: 4.5: 2)	2.5±0.2	1.5	_	ns
Minimum removal time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minimum hold time	th	(Figure 1, Figure 2)	2.7	1.5	_	
Minimum removal time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3.3 ± 0.3	1.5	_	
Minimum removal time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.8±0.15	8.0	_	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minimum removal time		(5: 4)	2.5±0.2	4.0	_	
Output to output skew tosLH (Note) 2.7 — ns		^t rem	(Figure 4)	2.7	2.5	_	
Output to output skew (Note) ns				3.3 ± 0.3	2.0	_	
Output to output skew (Note) ns		t _{osLH}		2.7	_	_	- ns
	Output to output skew		(Note)	3.3 ± 0.3	_	1.0	

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, \ t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|)$

Dynamic Switching Characteristics

(Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH}=3.3\;V,\;V_{IL}=0\;V$	3.3	0.8	V

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}		3.3	7	pF
Output capacitance	C _{OUT}	_	0	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (Note	3.3	25	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.

Average operating current can be obtained by the equation:

 $I_{CC \text{ (opr)}} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$

AC Test Circuit

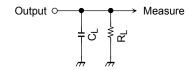


Figure 1

AC Waveform

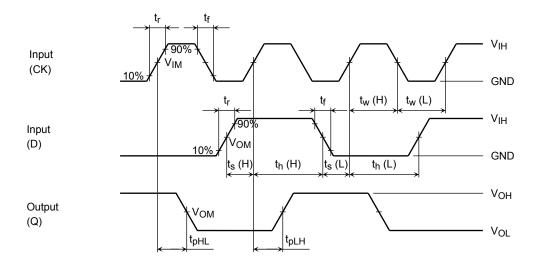


Figure 2 t_{pLH}, t_{pHL}, t_w, t_s, t_h

6

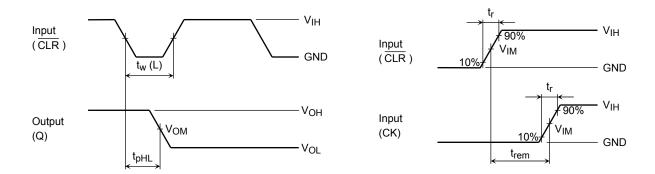
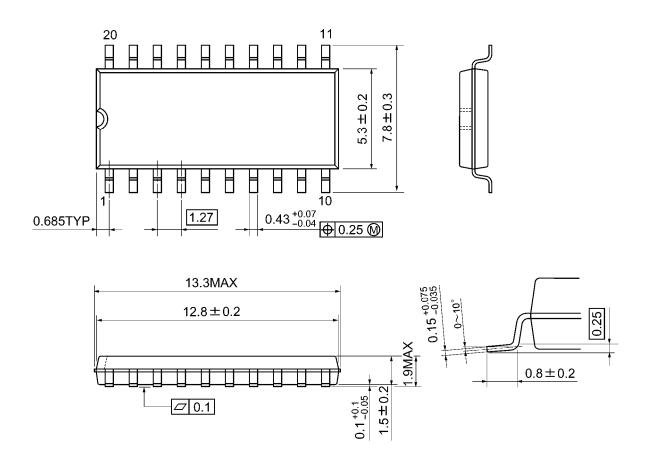


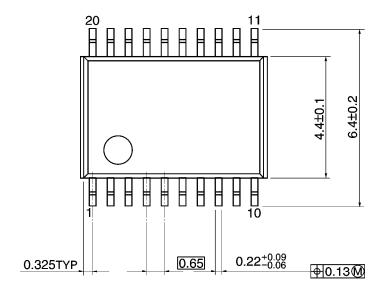
Figure 3 t_{pHL}

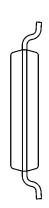

Figure 4 t_{rem}

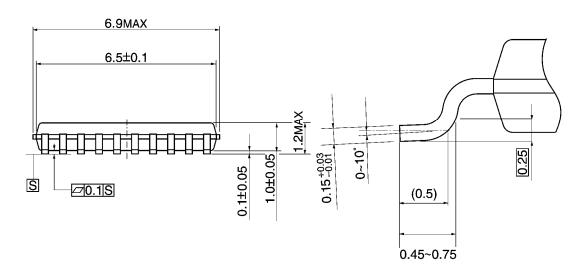
			V _{CC}	
	Symbol	$3.3 \pm 0.3 \text{ V}$ 2.7V	$2.5\pm0.2~\textrm{V}$	1.8 ± 0.15 V
Input	V_{IH}	2.7V	V _{CC}	V _{CC}
	V_{IM}	1.5V	V _{CC} /2	V _{CC} /2
	t _r , t _f	2.5ns	2.0ns	2.0ns
Output	V_{OM}	1.5V	V _{OH} /2	V _{OH} /2
Load	C _L	50pF	30pF	30pF
	R_{L}	500Ω	500Ω	1kΩ

Package Dimensions

SOP20-P-300-1.27A Unit: mm

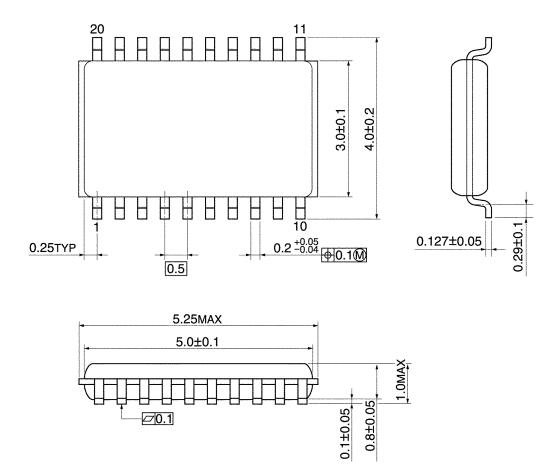

Weight: 0.22 g (typ.)




Package Dimensions

TSSOP20-P-0044-0.65A

Unit: mm



Weight: 0.08 g (typ.)

Package Dimensions

VSSOP20-P-0030-0.50 Unit: mm

Weight: 0.03 g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.