Dual J-K Flip-Flop The MC14027B dual J–K flip–flop has independent J, K, Clock (C), Set (S) and Reset (R) inputs for each flip–flop. These devices may be used in control, register, or toggle functions. #### **Features** - Diode Protection on All Inputs - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Logic Swing Independent of Fanout - Logic Edge-Clocked Flip-Flop Design - Logic State is Retained Indefinitely with Clock Level Either High or Low; Information is Transferred to the Output Only on the Positive—Going Edge of the Clock Pulse - Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range - Pin-for-Pin Replacement for CD4027B - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - This Device is Pb-Free and is RoHS Compliant #### **MAXIMUM RATINGS** (Voltages Referenced to V_{SS}) | Symbol | Parameter | Value | Unit | |------------------------------------|---|-------------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to V _{DD} + 0.5 | V | | I _{in} , I _{out} | Input or Output Current (DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature
(8–Second Soldering) | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. #### ON Semiconductor® http://onsemi.com SOIC-16 D SUFFIX CASE 751B #### **PIN ASSIGNMENT** | Q _A [| 1 ● | | VDC | |--------------------|-----|----|-----------------| | \overline{Q}_A [| 2 | 15 | Q _B | | C _A | 3 | 14 | D QB | | R _A | 4 | 13 | р св | | K _A [| 5 | 12 | R _B | | J _A [| 6 | 11 | jκ _B | | S _A [| 7 | 10 | J _B | | V _{SS} [| 8 | 9 | s _B | | | | | - | #### MARKING DIAGRAM A = Assembly Location WL = Wafer Lot YY, Y = Year WW = Work Week G = Pb-Free Indicator #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. #### **TRUTH TABLE** | | | Outp | uts* | | | | | |---------------|---|------|------|---|------------------|------------------|------------------| | C† | J | K | S | R | Q _n ‡ | Q _{n+1} | Q _{n+1} | | | 1 | Х | 0 | 0 | 0 | 1 | 0 | | \mathcal{L} | Х | 0 | 0 | 0 | 1 | 1 | 0 | | | 0 | Х | 0 | 0 | 0 | 0 | 1 | | | Х | 1 | 0 | 0 | 1 | 0 | 1 | | | 1 | 1 | 0 | 0 | Qo | Qo | Qo | | $\overline{}$ | Х | Χ | 0 | 0 | Х | Q _n | $\overline{Q_n}$ | | Х | Х | Х | 1 | 0 | Х | 1 | 0 | | Х | Х | Х | 0 | 1 | Х | 0 | 1 | | Х | Х | Х | 1 | 1 | Х | 1 | 1 | No Change #### **BLOCK DIAGRAM** ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|--------------------------| | MC14027BDG | SOIC-16
(Pb-Free) | 48 Units / Rail | | NLV14027BDG* | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC14027BDR2G | SOIC-16
(Pb-Free) | 2500 Units / Tape & Reel | | NLV14027BDR2G* | SOIC-16
(Pb-Free) | 2500 Units / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP X = Don't Care [‡] = Present State ^{† =} Level Change ^{* =} Next State Capable. #### **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | | | -55 | 5°C | | 25°C | | 125 | 5°C | | |---|------------------|-----------------|------------------------|-------------------------------|----------------------|-------------------------------|---|--|-------------------------------|----------------------|------| | Characteristic | | Symbol | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | -
-
- | 0.05
0.05
0.05 | -
-
- | 0
0
0 | 0.05
0.05
0.05 | -
-
- | 0.05
0.05
0.05 | Vdc | | V _{in} = 0 or V _{DD} | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | -
-
- | 4.95
9.95
14.95 | 5.0
10
15 | -
-
- | 4.95
9.95
14.95 | -
-
- | Vdc | | Input Voltage
($V_O = 4.5 \text{ or } 0.5 \text{ Vdc}$)
($V_O = 9.0 \text{ or } 1.0 \text{ Vdc}$)
($V_O = 13.5 \text{ or } 1.5 \text{ Vdc}$) | "0" Level | V _{IL} | 5.0
10
15 | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | Vdc | | $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | "1" Level | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | | 3.5
7.0
11 | | Vdc | | Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $ | Source | ГОН | 5.0
5.0
10
15 | -3.0
-0.64
-1.6
-4.2 | -
-
- | -2.4
-0.51
-1.3
-3.4 | -4.2
-0.88
-2.25
-8.8 | | -1.7
-0.36
-0.9
-2.4 | | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | -
-
- | 0.51
1.3
3.4 | 0.88
2.25
8.8 | -
-
- | 0.36
0.9
2.4 | -
-
- | mAdc | | Input Current | | I _{in} | 15 | - | ±0.1 | - | ±0.00001 | ±0.1 | _ | ±1.0 | μAdc | | Input Capacitance (V _{in} = 0) | | C _{in} | _ | - | - | _ | 5.0 | 7.5 | - | - | pF | | Quiescent Current
(Per Package) | | I _{DD} | 5.0
10
15 | -
-
- | 1.0
2.0
4.0 | -
-
- | 0.002
0.004
0.006 | 1.0
2.0
4.0 | -
-
- | 30
60
120 | μAdc | | Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outp buffers switching) | ent,
uts, all | Ι _Τ | 5.0
10
15 | | | I _T = (2 | D.8 μA/kHz) f
1.6 μA/kHz) f
2.4 μA/kHz) f | + I _{DD}
+ I _{DD} | | | μAdc | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. 3. The formulas given are for the typical characteristics only at 25°C. $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002. ^{4.} To calculate total supply current at loads other than 50 pF: ## **SWITCHING CHARACTERISTICS** (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$) | Characteristic | Symbol | V _{DD} | Min | Typ
(Note 6) | Max | Unit | |--|--|-----------------|------------|-----------------|------------|------| | Output Rise and Fall Time | t _{TLH} , | | | | | ns | | t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ | t _{THL} | 5.0 | _ | 100 | 200 | | | t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ | 2 | 10 | _ | 50 | 100 | | | t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ | | 15 | - | 40 | 80 | | | Propagation Delay Times**
Clock to Q, Q | t _{PLH} ,
t _{PHL} | | | | | ns | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 90 \text{ ns}$ | | 5.0 | _ | 175 | 350 | | | t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 42 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 25 ns | | 10
15 | | 75
50 | 150
100 | | | Set to Q, Q
t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 90 \text{ ns}$ | | 5.0 | _ | 175 | 350 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 42 \text{ ns}$ | | 10 | _ | 75 | 150 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ | | 15 | - | 50 | 100 | | | Reset to Q, Q | | | | | | | | t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 265 \text{ ns}$ | | 5.0 | _ | 350 | 450 | | | t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 67 \text{ ns}$ | | 10 | _ | 100 | 200 | | | t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 50 \text{ ns}$ | | 15 | - | 75 | 150 | | | Setup Times | t _{su} | 5.0 | 140 | 70 | - | ns | | | | 10 | 50 | 25 | _ | | | | | 15 | 35 | 17 | _ | | | Hold Times | t _h | 5.0 | 140 | 70 | _ | ns | | | | 10 | 50 | 25 | _ | | | | | 15 | 35 | 17 | _ | | | Clock Pulse Width | t_{WH} , t_{WL} | 5.0 | 330 | 165 | _ | ns | | | | 10 | 110 | 55 | _ | | | | | 15 | 75 | 38 | - | | | Clock Pulse Frequency | f _{cl} | 5.0 | - | 3.0 | 1.5 | MHz | | | | 10 | _ | 9.0 | 4.5 | | | | | 15 | - | 13 | 6.5 | | | Clock Pulse Rise and Fall Time | t _{TLH} , t _{THL} | 5.0 | - | _ | 15 | μS | | | | 10 | _ | _ | 5.0 | | | | | 15 | - | - | 4.0 | | | Removal Times | t _{rem} | _ | | 40 | | ns | | 0-4 | | 5 | 90 | 10 | - | | | Set | | 10 | 45 | 5 | _ | | | | | 15 | 35 | 3 | _ | | | Deset | | 5 | 50 | - 30 | _ | | | Reset | | 10
15 | 25
20 | - 15
- 10 | _ | | | Set and Reset Pulse Width | | | | | | | | Set and Reset Pulse WIGIT | t _{WH} | 5.0
10 | 250
100 | 125
50 | _ | ns | | | | 15 | 70 | 35 | _ | | | | | 10 | 10 | აა | _ | | ^{5.} The formulas given are for the typical characteristics only at 25°C. 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. Inputs R and S low. For the measurement of t_{WH} , l/f_{cl} , and P_D the Inputs J and K are kept high. Figure 1. Dynamic Signal Waveforms (J, K, Clock, and Output) Figure 2. Dynamic Signal Waveforms (Set, Reset, Clock, and Output) #### LOGIC DIAGRAM (1/2 of Device Shown) # **MECHANICAL CASE OUTLINE** **DATE 29 DEC 2006** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - PHOI HUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | | |-----|--------|-----------------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 0.40 1.25 0.016 | | 0.049 | | | G | 1.27 | BSC | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | | STYLE 1: | | STYLE 2: | | STYLE 3: | | STYLE 4: | | | | |----------|---------------|----------|---------------|----------|----------------------|----------|----------------|-------------|-------------------------| | PIN 1. | | PIN 1. | | PIN 1. | COLLECTOR, DYE #1 | PIN 1. | COLLECTOR, DYE | #1 | | | 2. | | | ANODE | 2. | BASE, #1 | 2. | COLLECTOR, #1 | | | | 3. | EMITTER | 3. | NO CONNECTION | 3. | EMITTER, #1 | 3. | COLLECTOR, #2 | | | | 4. | NO CONNECTION | 4. | CATHODE | 4. | COLLECTOR, #1 | 4. | COLLECTOR, #2 | | | | 5. | EMITTER | 5. | CATHODE | 5. | COLLECTOR, #2 | 5. | COLLECTOR, #3 | | | | 6. | BASE | 6. | NO CONNECTION | 6. | BASE, #2 | 6. | COLLECTOR, #3 | | | | 7. | COLLECTOR | 7. | ANODE | 7. | EMITTER, #2 | 7. | COLLECTOR, #4 | | | | 8. | COLLECTOR | | | 8. | COLLECTOR, #2 | 8. | COLLECTOR, #4 | | | | 9. | BASE | | CATHODE | 9. | COLLECTOR, #3 | 9. | BASE, #4 | | | | 10. | EMITTER | 10. | ANODE | 10. | BASE, #3 | 10. | EMITTER, #4 | | | | 11. | NO CONNECTION | 11. | | 11. | EMITTER, #3 | 11. | BASE, #3 | | | | 12. | EMITTER | | CATHODE | 12. | | 12. | | | | | 13. | BASE | | CATHODE | 13. | COLLECTOR, #4 | 13. | BASE, #2 | SOI DEDING | FOOTPRINT | | 14. | | 14. | NO CONNECTION | 14. | BASE, #4 | 14. | EMITTER, #2 | SOLDENING | FOOTPHINT | | 15. | EMITTER | 15. | | 15. | EMITTER, #4 | 15. | BASE, #1 | 8 | ЗX | | 16. | COLLECTOR | 16. | CATHODE | 16. | COLLECTOR, #4 | 16. | EMITTER, #1 | - 6 | .40 ──── | | | | | | | | | | - | - | | STYLE 5: | | STYLE 6: | | STYLE 7: | | | | | 16X 1.12 < | | PIN 1. | DRAIN, DYE #1 | | CATHODE | PIN 1. | SOURCE N-CH | | | | , | | 2. | DRAIN, #1 | | CATHODE | 2. | COMMON DRAIN (OUTPUT |) | | . 🔲 1 | 16 | | 3. | DRAIN, #2 | | CATHODE | 3. | COMMON DRAIN (OUTPUT | | | , | ' | | 4. | DRAIN, #2 | 4. | CATHODE | 4. | GATE P-CH | , | | <u> </u> | | | 5. | DRAIN, #3 | 5. | CATHODE | 5. | COMMON DRAIN (OUTPUT |) | 16 | 5X T | | | 6. | DRAIN, #3 | 6. | CATHODE | 6. | COMMON DRAIN (OUTPUT | | 0.5 | | ' <u> </u> | | 7. | DRAIN, #4 | 7. | CATHODE | 7. | COMMON DRAIN (OUTPUT | | 0.0 | | | | 8. | DRAIN, #4 | 8. | CATHODE | 8. | SOURCE P-CH | , | | | | | 9. | GATE, #4 | 9. | ANODE | 9. | SOURCE P-CH | | | | | | 10. | SOURCE, #4 | 10. | ANODE | 10. | COMMON DRAIN (OUTPUT |) | | | | | 11. | GATE, #3 | 11. | ANODE | 11. | COMMON DRAIN (OUTPUT | | | | | | 12. | SOURCE, #3 | 12. | ANODE | 12. | COMMON DRAIN (OUTPUT | | | | | | 13. | GATE, #2 | 13. | ANODE | 13. | GATE N-CH | , | | | | | 14. | SOURCE, #2 | 14. | ANODE | 14. | COMMON DRAIN (OUTPUT |) | | | ↓ PITCH | | 15. | GATE, #1 | 15. | ANODE | 15. | COMMON DRAIN (OUTPUT | | | | <u>+-+-</u> | | 16. | SOURCE, #1 | 16. | ANODE | 16. | SOURCE N-CH | | | | | | | • | | | | | | | <u> </u> | 9 + - + - | | | | | | | | | | | ı · · — ↑ | | | | | | | | | | | DIMENSIONS MILLIMETERS | | | | | | | | | | | DIMENSIONS: MILLIMETERS | | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED" | | |------------------|-------------|--|-------------| | DESCRIPTION: | SOIC-16 | | PAGE 1 OF 1 | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales