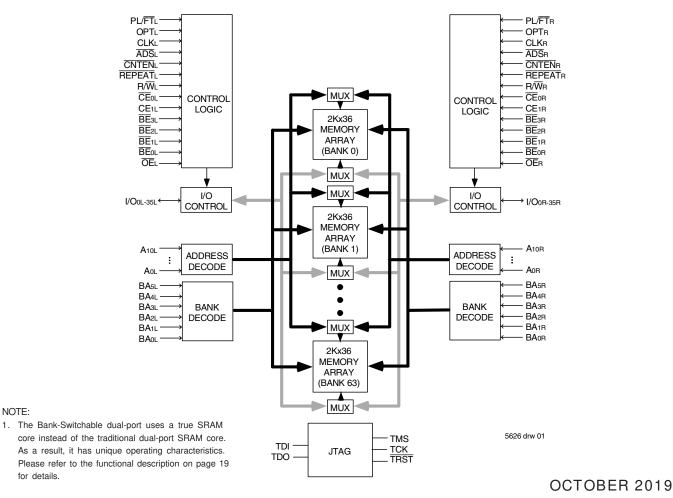
RENESAS HIGH-SPEED 3.3V 128K x 36 **SYNCHRONOUS BANK-SWITCHABLE DUAL-PORT STATIC RAM** WITH 3.3V OR 2.5V INTERFACE


70V7599S

Features:

- 128K x 36 Synchronous Bank-Switchable Dual-ported **SRAM** Architecture
 - 64 independent 2K x 36 banks
 - 4 megabits of memory on chip
- Bank access controlled via bank address pins
- High-speed data access
 - Commercial: 3.4ns (200MHz)/3.6ns (166MHz)/ 4.2ns (133MHz) (max.)
- Selectable Pipelined or Flow-Through output mode
- Counter enable and repeat features
- Dual chip enables allow for depth expansion without additional logic
- Supports JTAG features compliant with IEEE 1149.1

- Full synchronous operation on both ports
 - 5ns cycle time, 200MHz operation (14Gbps bandwidth)
 - Fast 3.4ns clock to data out
 - 1.5ns setup to clock and 0.5ns hold on all control, data, and address inputs @ 200MHz
 - _ Data input, address, byte enable and control registers
 - _ Self-timed write allows fast cycle time
- Separate byte controls for multiplexed bus and bus matching compatibility
- ٠ LVTTL- compatible, 3.3V (±150mV) power supply for core
- LVTTL compatible, selectable 3.3V (±150mV) or 2.5V (±100mV) power supply for I/Os and control signals on each port
- Available in a 208-pin fine pitch Ball Grid Array (fpBGA), and 256-pin Ball Grid Array (BGA)

© 2019 Renesas Electronics Corporation

NOTE:

5626 drw 02c

Description:

The IDT70V7599 is a high-speed 128Kx36 (4Mbit) synchronous Bank-Switchable Dual-Ported SRAM organized into 64 independent 2Kx36 banks. The device has two independent ports with separate control, address, and I/O pins for each port, allowing each port to access any 2Kx36 memory block not already accessed by the other port. Accesses by the ports into specific banks are controlled via the bank address pins under the user's direct control.

Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data

register, the IDT70V7599 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by CE0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. The dual chip enables also facilitate depth expansion.

The 70V7599 can support an operating voltage of either 3.3V or 2.5V on one or both ports, controllable by the OPT pins. The power supply for the core of the device(VDD) remains at 3.3V. Please refer also to the functional description on page 19.

A2 A13 A17 A3 A6 A8 A10 A11 A12 414 A15 A16 Α4 A5 49 IO19L Vss IO18L BE1L CLKL CNTEN TDO NC BA5L BA1L A8L AOL ΟΡΤι I/O171 Vss VDD A4L B1 B2 310 B11 B12 B13 B14 B15 B16 B17 B3 R4 B5 B6 R7 B8 39 BE_{2L} CEOL ADSL I/O20R Vss I/O18R TDI NC BA_{2L} A9L Vss A5L A1L I/O16L I/O15R Vss Vddqf C2 C12 C13 C8 C9 210 C11 214 C15 C16 217 Vddql PL/FTI NC ВАзь **BE**3L I/O19F Vddqr A10L CE1L Vss R/WL I/O16R I/O15L Vss A6L A2L VDD D2 D5 D6 D7 D8 D9 D10 D12 D13 D14 D15 D16 D17 I/O22L Vss BAOL REPEATL I/O21L BA4L BEOL Vdd OEL I/O20L A7L I/O17F I/O14L I/O14R Азь VDD Vddqi E1 E2 F3 E4 E14 E15 E16 E17 I/O23L I/O22R VDDQR I/O21R I/O12L I/O13L I/O13R Vss -14 F15 =16 =17 F2 F1 =1 VDDQL I/O23F I/O24L Vss Vss I/O12R I/O11L VDDQR G1 G2 G14 G15 G3 G4 G16 G17 I/O26L Vss I/O24R I/O25L Vddql I/O10L I/O9L I/O11R ΗЗ Η4 H17 41 Н2 H14 -115 116 70V7599 I/O26F VDDQF I/O25R I/O10R VDD Vdd IO9R Vss BF208⁽⁵⁾ J1 J14 J17 115 J16 Vddql Vss VDD Vss Vss VDD Vss VDDQF 208-Pin fpBGA **<**15 K1 **K**2 ĸд K14 <16 K17 ٢3 Top View⁽⁶⁾ I/O28R Vss I/O27F Vss I/O7R Vddqi I/O8R Vss L15 _16 17 L1 L3 L4 12 L14 I/O28L I/O29R VDDOF I/O27L I/O6r I/071 Vss I/O8L M1 M2 ΜЗ **M**4 M14 M15 M16 M17 VDDQL I/O29L I/O30F Vss I/O5R VDDQR I/Ogl Vss V15 V16 N17 N14 N1 V2 N4 V3 I/O31L Vss I/O31R I/O30L I/O3r Vddqi I/O4R I/O51 P1 P14 P15 P17 P2 23 28 P10 P11 P12 P13 P16 I/O32L I/O35R TRST BA5R **BE**1R CLKR CNTENR I/O32R Vddqr BA1R A8R Vdd I/O2L I/O3L Vss I/O4L A₄R R1 R10 R11 R12 R13 R14 R16 R17 32 33 78 **R**9 R4 R6 R15 NC BA_{2R} BE_{2R} CEOR ADSR Vss I/O33L I/O34R TCK A9R Vss I/O1R Vddqr A5R A1R Vss Vddqi T2 Τ1 ΤЗ Т4 Т6 Τ7 Г8 Т9 T10 T11 T12 T13 Г14 T15 T16 T17 T5 I/O341 **BE**3R I/O33R VDDQL TMS NC CE1R I/O2R BАзв A10R Vss R/WF A2R Vss I/O_{0B} Vss A6R U17 U1 J2 J3 U4 U5 U6 U7 18 U9 J10 011 J12 J13 114 U15 U16 Vss I/O35L PL/FT_F NC BA₄R BAOR A7R BEOR Vdd **OE**R REPEAT Азв OPTR I/Ool I/O1L A0R VDD

Pin Configuration^(1,2,3,4)

NOTES

1. All VDD pins must be connected to 3.3V power supply.

All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is 2 set to VIL (0V).

All Vss pins must be connected to ground supply. 3.

Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch. 4

5. This package code is used to reference the package diagram. 6.

This text does not indicate orientation of the actual part-marking

High-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAM

Pin Configuration^(1,2,3,4) (con't.)

70V7599 BC256⁽⁵⁾

256-Pin BGA Top View⁽⁶⁾

A1	^{A2}	A3	A4	a5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16
NC	TDI	NC	NC	B A 3l	BA0L	A8L	BE2L	CE1L	OEL	CNTENL	A 5L	A2L	A 0L	NC	NC
B1 I/O18L	^{B2} NC	^{вз} TDO	^{B4} NC	B5 BA4L	B6 BA1L	B7 A9L	B8 BE3L		B10 R∕WL	B11 REPEATL	B12 A 4L	B13 A1L	B14 Vdd	в15 I/O17L	^{B16} NC
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	С13	C14	C15	C16
I/O18R	I/O19L	Vss	BA5L	BA2L	A10L	A7L	BE1L	BE _{0L}	CLKL	ADS∟	A6L	А з∟	OPTL	I/O17R	I/O16L
D1	D2	d3	D4	d5	d6	d7	d8	d9	d10	d11	d12	D13	D14	D15	D16
I/O20R	I/O19R	I/O20L	PL/FT∟	Vddql	Vddql	Vddqr	Vddqr	Vddql	Vddql	Vddqr	Vddqr	Vdd	I/O15R	I/O15L	I/O16R
e1	e2	e3	e4	e5	e6	e7	E8	E9	E10	E11	e12	e13	Е14	E15	E16
I/O21r	I/O21L	I/O22L	Vddql	Vdd	Vdd	Vss	Vss	Vss	Vss	VDD	Vdd	Vddqr	I/O13L	I/O14L	I/O14R
F1	f2	F3	f4	^{F5}	F6	F7	F8	^{F9}	F10	F11	F12	f13	F14	F15	F16
I/O23L	I/O22R	I/O23R	Vddql	Vdd	Vss	Vss	Vss	Vss	Vss	Vss	Vdd	Vddqr	I/O12R	I/O13R	I/O12L
G1	G2	G3	g4	_{G5}	G6	G7	G8	G9	G10	G11	G12	g13	G14	G15	G16
I/O24R	I/O24L	I/O25L	Vddqr	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vddql	I/O10L	I/O11L	I/O11R
h1	h2	нз	h4	H5	H6	^{H7}	н ₈	н9	H10	H11	H12	h13	h14	H15	h16
I/O26L	I/O25R	I/O26R	Vddqr	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vddql	I/O9r	IO9∟	I/O10r
J1	j2	j3	j4	J5	J6	J7	_{J8}	^{J9}	J10	J11	J12	j13	J14	j15	J16
I/O27L	I/O28R	I/O27R	Vddql	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vddqr	I/O8r	I/O7r	I/O8∟
K1	к2	кз	k4	к5	K6	к7	ка	кэ	K10	K11	K12	k13	k14	к15	к16
I/O29R	I/O29L	I/O28L	Vddql	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vddqr	I/O6r	I/O6l	І/О7∟
l1	l2	l3	l4	l5	L6	L7	L8	L9	L10	L11	L12	l13	l14	l15	l/O5r
I/O30l	I/O31R	I/O30R	Vddqr	Vdd	Vss	Vss	Vss	Vss	Vss	Vss	Vdd	Vddql	I/O5l	I/O4r	
M1	m2	мз	^{M4}	M5	M6	M7	M8	M9	M10	M11	M12	m13	m14	^{M15}	M16
I/O32R	I/O32L	I/Oз1L	Vddqr	Vdd	Vdd	Vss	Vss	Vss	Vss	Vdd	Vdd	Vddql	I/O3r	I∕O3∟	I/O4L
n1	n2	n3	№	n5	ⁿ⁶	n7	n8	^{N9}	n10	N11		N13	n14	N15	n16
I/O33l	I/O34R	I/O33R	PL/FTR	Vddqr	Vddqr	Vddql	Vddql	Vddqr	Vddqr	Vddql		Vdd	I/O2l	I/O1R	I/O2r
P1	p2	^{РЗ}	P4	p5	P6	P7	P8	P9	P10	^{P11}	P12	Р13	P14	p15	Р16
I/O35R	I/O34L	TMS	BA 5R	BA2r	A10R	A7R	BE1R	BE0R	CLKR	ADSr	A 6R	А зк	I/Ool	I/Oor	I/O1L
R1	^{R2}	^{R3}	^{R4}	r5	R6	R7	r8	R9	R10	ri1	R12	R13	^{R14}	^{R15}	R16
I/O35L	NC	TRST	NC	BA4r	BA1R	A 9R	BE3r	CE0R	R∕W R	Repeatr	A 4R	A1R	OPTr	NC	NC
T1	T2	^{тз}	T4	^{т5}	t6	T7	t8	^{T9}	T10	t11	T12	T13	T14	T15	T16
NC	TCK	NC	NC	ВАзг	BAor	A 8R	BE2R	CE1R	OEr	CNTENR	A 5R	A 2R	A 0R	NC	NC

NOTES:

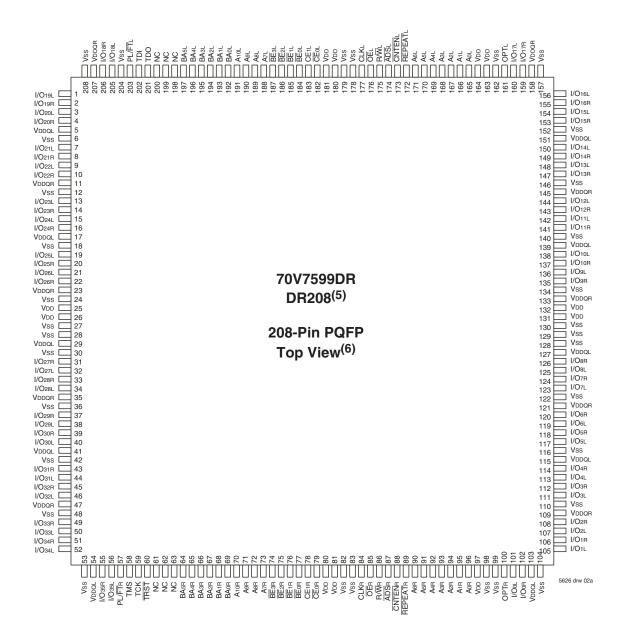
1. All VDD pins must be connected to 3.3V power supply.

2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V).

3. All Vss pins must be connected to ground supply.

4. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.

5. This package code is used to reference the package diagram.


6. This text does not indicate orientation of the actual part-marking.

5626 drw 02d

ligh-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAM

Pin Configuration^(1,2,3,4) (con't.)

NOTES:

- 1. All VDD pins must be connected to 3.3V power supply.
- 2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V).
- 3. All Vss pins must be connected to ground supply.
- 4. Package body is approximately 28mm x 28mm x 3.5mm.
- 5. This package code is used to reference the package diagram.
- 6. This text does not indicate orientation of the actual part-marking.

High-Speed 128K x 36 Synchronous Bank-Swi

Commercial Temperature Rang

Pin Names

Left Port	Right Port	Names					
CEOL, CE1L	CEOR, CE1R	Chip Enables					
R/WL	R/WR	Read/Write Enable					
ŌĒL	ŌĒr	Output Enable					
BAOL - BA5L	BAOR - BASR	Bank Address ⁽⁴⁾					
Aol - A10L	A0R - A10R	Address					
1/Ool - 1/O35l	I/O0r - I/O35r	Data Input/Output					
CLK∟	CLKR	Clock					
PL/FTL	PL/FTr	Pipeline/Flow-Through					
ADS L	AD S _R	Address Strobe Enable					
CNTEN L		Counter Enable					
REPEATL	REPEATR	Counter Repeat ⁽³⁾					
BEOL - BE3L	BEOR - BE3R	Byte Enables (9-bit bytes)					
VDDQL	Vddqr	Power (I/O Bus) (3.3V or 2.5V) ⁽¹⁾					
OPT∟	OPTR	Option for selecting VDDQx ^(1,2)					
V	DD	Power (3.3V) ⁽¹⁾					
V	SS	Ground (0V)					
Т	DI	Test Data Input					
Т	00	Test Data Output					
Ţ	СК	Test Logic Clock (10MHz)					
Т	MS	Test Mode Select					
TF	RST	Reset (Initialize TAP Controller)					

5626 tbl 01

NOTES:

- 1. VDD, OPTx, and VDDox must be set to appropriate operating levels prior to applying inputs on the I/Os and controls for that port.
- 2. OPTx selects the operating voltage levels for the I/Os and controls on that port. If OPTx is set to VIH (3.3V), then that port's I/Os and controls will operate at 3.3V levels and VDDox must be supplied at 3.3V. If OPTx is set to VIL (0V), then that port's I/Os and address controls will operate at 2.5V levels and VDDox must be supplied at 2.5V. The OPT pins are independent of one another—both ports can operate at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V with the other at 2.5V.
- When REPEATx is asserted, the counter will reset to the last valid address loaded via ADSx.
- 4. Accesses by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory with the shared array that is not currently being accessed by the opposite port (i.e., BA0L BA5L ≠ BA0R BA5R). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the ports within that bank may be corrupted (in the case that either or both ports are writing) or may result in invalid output (in the case that both ports are trying to read).

70V7599S

d 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAM

Truth Table I—Read/Write and Enable Control^(1,2,3,4)

OE ³	CLK	CE ₀	CE1	ΒĒ₃	BE 2	BE 1	BE 0	R∕ ₩	Byte 3 I/O27-35	Byte 2 I/O18-26	Byte 1 I/O9-17	Byte 0 I/Oo-8	MODE
х	Ŷ	Н	х	х	х	х	х	х	High-Z	High-Z	High-Z	High-Z	Deselected–Power Down
х	\uparrow	х	L	х	х	х	х	х	High-Z	High-Z	High-Z	High-Z	Deselected–Power Down
х	Ŷ	L	н	Н	Н	н	н	х	High-Z	High-Z	High-Z	High-Z	All Bytes Deselected
х	Ŷ	L	н	Н	Н	н	L	L	High-Z	High-Z	High-Z	Din	Write to Byte 0 Only
х	\uparrow	L	Н	Н	Н	L	н	L	High-Z	High-Z	DIN	High-Z	Write to Byte 1 Only
х	Ŷ	L	н	Н	L	н	н	L	High-Z	DIN	High-Z	High-Z	Write to Byte 2 Only
х	\uparrow	L	н	L	н	н	н	L	DIN	High-Z	High-Z	High-Z	Write to Byte 3 Only
х	Ŷ	L	н	Н	Н	L	L	L	High-Z	High-Z	DIN	Din	Write to Lower 2 Bytes Only
х	\uparrow	L	н	L	L	н	Н	L	DIN	DIN	High-Z	High-Z	Write to Upper 2 bytes Only
х	\uparrow	L	н	L	L	L	L	L	Din	Din	Din	Din	Write to All Bytes
L	\uparrow	L	н	Н	н	н	L	Н	High-Z	High-Z	High-Z	Dout	Read Byte 0 Only
L	\uparrow	L	н	Н	Н	L	н	Н	High-Z	High-Z	Dout	High-Z	Read Byte 1 Only
L	\uparrow	L	Н	Н	L	н	н	Н	High-Z	Dout	High-Z	High-Z	Read Byte 2 Only
L	\uparrow	L	н	L	Н	н	Н	Н	Dout	High-Z	High-Z	High-Z	Read Byte 3 Only
L	\uparrow	L	Н	Н	Н	L	L	Н	High-Z	High-Z	Dout	Dout	Read Lower 2 Bytes Only
L	\uparrow	L	Н	L	L	Н	Н	Н	Dout	Dout	High-Z	High-Z	Read Upper 2 Bytes Only
L	\uparrow	L	Н	L	L	L	L	Н	Dout	Dout	Dout	Dout	Read All Bytes
Н	х	Х	Х	х	Х	х	х	х	High-Z	High-Z	High-Z	High-Z	Outputs Disabled

NOTES:

1. "H" = VIH, "L" = VIL, "X" = Don't Care.

2. ADS, CNTEN, REPEAT are set as appropriate for address access. Refers to Truth Table II for details.

3. \overline{OE} is an asynchronous input signal.

4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.

Truth Table II—Address and Address Counter Control^(1,2,7)

Address	Previous Address	Addr Used	CLK	ADS	CNTEN	REPEAT ⁽⁶⁾	I/O ⁽³⁾	MODE
An	х	An	\uparrow	L ⁽⁴⁾	Х	н	Dvo (n)	External Address Used
х	An	An + 1	\uparrow	Н	L ⁽⁵⁾	Н	Dvo(n+1)	Counter Enabled—Internal Address generation
х	An + 1	An + 1	\uparrow	Н	Н	Н	Dvo(n+1)	External Address Blocked—Counter disabled (An + 1 reused)
х	х	An	\uparrow	х	Х	L ⁽⁴⁾	Dvo(0)	Counter Set to last valid ADS load

NOTES:

 $1\,.\quad "H"\,=\,V{\rm IH},\, "L"\,=\,V{\rm IL},\, "X"\,=\,Don't\,\,Care.$

2. Read and write operations are controlled by the appropriate setting of R/ \overline{W} , \overline{CE}_0 , CE1, \overline{BE}_n and \overline{OE} .

3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the data out will be delayed by one cycle.

4. ADS and REPEAT are independent of all other memory control signals including CE0, CE1 and BEn

5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, BEn.

6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location.

The counter includes bank address and internal address. The counter will advance across bank boundaries. For example, if the counter is in Bank 0, at address FFFh, and is advanced one location, it will move to address 0h in Bank 1. By the same token, the counter at FFFh in Bank 63 will advance to 0h in Bank 0. Refer to Timing Waveform of Counter Repeat, page 18. Care should be taken during operation to avoid having both counters point to the same bank (i.e., ensure BAoL - BAsL ≠ BAOR - BAsR), as this condition will invalidate the access for both ports. Please refer to the functional description on page 19 for details.

5626 tbl 02

5626 tbl 03

igh-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAN

5626 tbl 05a

Recommended Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	GND	Vdd
Commercial	0°C to +70°C	0V	3.3V <u>+</u> 150mV
Industrial	-40°C to +85°C	0V	3.3V <u>+</u> 150mV

NOTE:

1. This is the parameter TA. This is the "instant on" case temperature.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	50	mA
NOTES			5626 tbl 06

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time or 4ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VDD + 150mV.

Recommended DC Operating Conditions with VDDQ at 2.5V

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Core Supply Voltage	3.15	3.3	3.45	v
VDDQ	I/O Supply Voltage ⁽³⁾	2.4	2.5	2.6	۷
Vss	Ground	0	0	0	۷
Vн	Input High Voltage (Address & Control Inputs)	1.7		V DDQ + 100m $V^{(2)}$	V
Vн	Input High Voltage - I/O ⁽³⁾	1.7		$V_{DDQ} + 100 mV^{(2)}$	۷
VIL	Input Low Voltage	-0.3(1)		0.7	V

NOTES:

5626 tbl 04

1. Undershoot of VIL $_{\geq}$ -1.5V for pulse width less than 10ns is allowed.

2. VTERM must not exceed VDDQ + 100mV.

 To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to VIL (0V), and VDDox for that port must be supplied as indicated above.

Recommended DC Operating Conditions with VDDQ at 3.3V

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Core Supply Voltage	3.15	3.3	3.45	V
VDDQ	I/O Supply Voltage ⁽³⁾	3.15	3.3	3.45	V
Vss	Ground	0	0	0	V
V⊪	Input High Voltage (Address & Control Inputs) ⁽³⁾	2.0	_	VDDQ + 150mV ⁽²⁾	V
V⊪	Input High Voltage - I/O ⁽³⁾	2.0	_	$V_{DDQ} + 150 mV^{(2)}$	V
VIL	Input Low Voltage	-0.3 ⁽¹⁾	_	0.8	V

NOTES:

1. Undershoot of VIL $_{\geq}$ -1.5V for pulse width less than 10ns is allowed.

2. VTERM must not exceed VDDQ + 150mV.

 To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to VIH (3.3V), and VDDOX for that port must be supplied as indicated above.

70V7599

h-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAM

Capacitance⁽¹⁾

$(TA = +25 \degree C, F = 1.0 MHz) PQFP ONLY$

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
C⊪	Input Capacitance	VIN = 3dV	8	рF
Cout ⁽³⁾	Output Capacitance	Vout = 3dV	10.5	pF
				5626 tbl 07

NOTES:

1. These parameters are determined by device characterization, but are not production tested.

2. 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.

3. COUT also references CI/O.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ($V_{DD} = 3.3V \pm 150 \text{ mV}$)

			70V7	70V7599S		
Symbol	Parameter	Test Conditions	Min.	Max.	Unit	
lu	Input Leakage Current ⁽¹⁾	VDDQ = Max., VIN = 0V to VDDQ		10	μA	
llo	Output Leakage Current ⁽¹⁾	$\overline{C}\overline{E}_0$ = ViH or CE1 = ViL, Vout = 0V to VDDQ		10	μA	
Vol (3.3V)	Output Low Voltage ⁽²⁾	IOL = +4mA, VDDQ = Min.		0.4	v	
Voн (3.3V)	Output High Voltage ⁽²⁾	IOH = -4mA, VDDQ = Min.	2.4		v	
Vol (2.5V)	Output Low Voltage ⁽²⁾	IOL = +2mA, VDDQ = Min.		0.4	v	
Vон (2.5V)	Output High Voltage ⁽²⁾	IOH = -2mA, VDDQ = Min.	2.0		v	

NOTES:

1. At VDD \leq 2.0V leakages are undefined.

2. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.5 for details.

Commercial Temperature Range

5626 tbl 08

High-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RA

5626 tbl 09

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁵⁾ (VDD = 3.3V ± 150mV)

					70V7599S200 ⁽⁷⁾ Com'l Only		70V7599S166 ⁽⁶⁾ Com'l & Ind		70V7599S133 Com'l & Ind		
Symbol	Parameter	Test Condition	Versio	n	Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Unit
IDD	Dynamic Operating	\overline{CE}_{L} and $\overline{CE}_{R=}$ VIL,	COM'L	S	815	950	675	790	550	645	mA
	Current (Both Ports Active)	Outputs Disabled, $f = fMAX^{(1)}$	IND	S			675	830	550	675	
ISB1	Standby Current	$\overline{CE}_{L} = \overline{CE}_{R} = V_{H}$	COM'L	S	340	410	275	340	250	295	mA
	(Both Ports - TTL Level Inputs)	$f = fMAX^{(1)}$	IND	S			275	355	250	310	
ISB2	Standby Current	$\overline{CE}^{"}A^{"} = VIL \text{ and } \overline{CE}^{"}B^{"} = VIH^{(3)}$	COM'L	S	690	770	515	640	460	520	mA
	(One Port - TTL Level Inputs)	Active Port Outputs Disabled, f=fMAX ⁽¹⁾	IND	S			515	660	460	545	
ISB3	Full Standby Current	Both Ports $\overline{CE}L$ and $\overline{CE}R \ge VDDQ - 0.2V$,	COM'L	S	10	30	10	30	10	30	mA
	(Both Ports - CMOS Level Inputs)	$ \begin{array}{l} \text{VIN} \geq \text{VDDQ} \ \text{-} \ 0.2 \text{V} \ \text{or} \ \text{VIN} \leq 0.2 \text{V}, \\ \text{f} = 0^{(2)} \end{array} $		S		_	10	40	10	40	
ISB4	Full Standby Current (One Port - CMOS	t $\overline{CE}^*A^* \leq 0.2V$ and $\overline{CE}^*B^* \geq VDDQ - 0.2V^{(5)}$ $VIN \geq VDDQ - 0.2V$ or $VIN \leq 0.2V$,		S	690	770	515	640	460	520	mA
Level Inputs)		Active Port, Outputs Disabled, f = fMAX ⁽¹⁾		S			515	660	460	545	

NOTES:

1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcyc, using "AC TEST CONDITIONS" at input levels of GND to 3V.

2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.

- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 4. \underline{VDD} = 3.3V, TA = $\underline{25^{\circ}C}$ for Typ, and are not production tested. IDD DC(f=0) = 120mA (Typ).
- 5. $\overline{CE}x = VIL$ means $\overline{CE}_{0X} = VIL$ and $CE_{1X} = VIH$
- $\overline{CE}x = VIH$ means $\overline{CE}_{0X} = VIH$ or $CE_{1X} = VIL$
- $\overline{CE}x \leq$ 0.2V means $\overline{CE}\textsc{ox} \leq \underline{0.2}\textsc{V}$ and CE1x \geq VDDQ 0.2V
- $\overline{CE}x \ge V$ DDQ 0.2V means \overline{CE} ox $\ge V$ DDQ 0.2V or CE1x $\le 0.2V$
- "X" represents "L" for left port or "R" for right port.
- 6. 166MHz Industrial Temperature not available in BF208 package.
- 7. This speed grade available when VDDQ = 3.3.V for a specific port (i.e., OPTx = VIH). This speed grade available in BC256 package only.

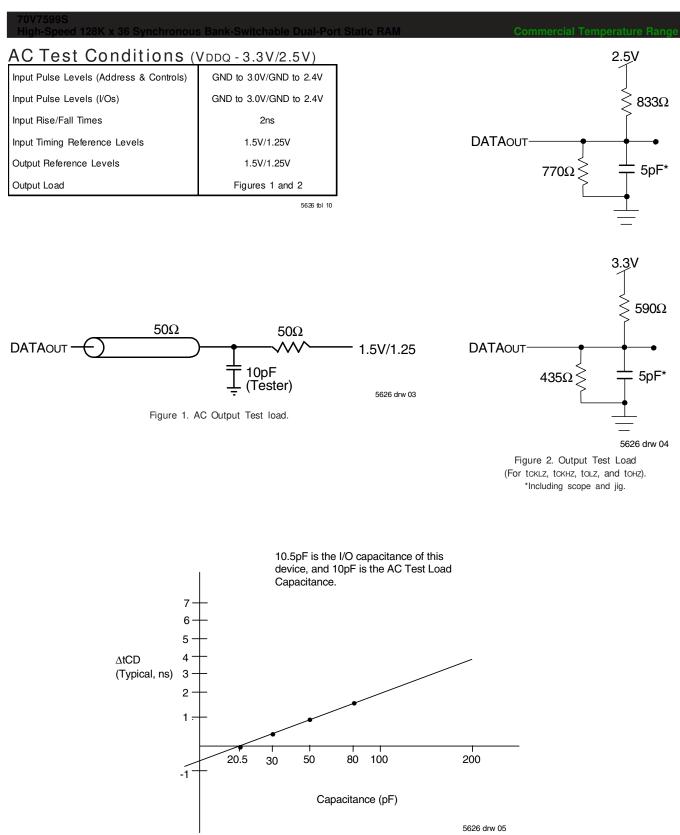


Figure 3. Typical Output Derating (Lumped Capacitive Load).

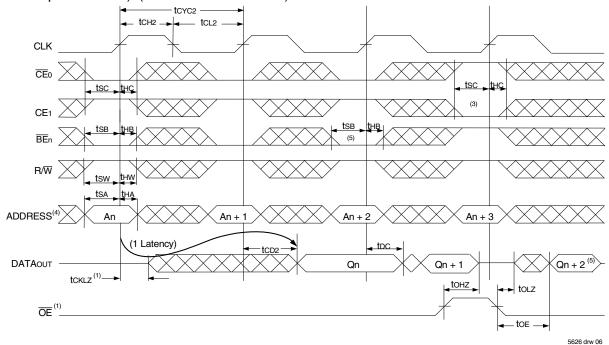
AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing)⁽²⁾ (VDD = $3.3V \pm 150$ mV, TA = 0°C to +70°C)

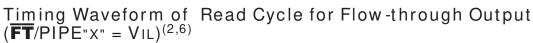
		70V759 Com	99S200 ⁽⁵⁾ I Only	Co	9S166 ^(3,4) om'l Ind	Co	9S133 ⁽³⁾ om'l Ind	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tCYC1	Clock Cycle Time (Flow-Through) ⁽¹⁾	15	_	20		25		ns
tCYC2	Clock Cycle Time (Pipelined) ⁽¹⁾	5	_	6		7.5		ns
tCH1	Clock High Time (Flow-Through) ⁽¹⁾	5	_	6		7		ns
tCL1	Clock Low Time (Flow-Through) ⁽¹⁾	5	_	6		7		ns
tCH2	Clock High Time (Pipelined) ⁽²⁾	2.0	_	2.1		2.6		ns
tCL2	Clock Low Time (Pipelined) ⁽¹⁾	2.0		2.1		2.6		ns
tR	Clock Rise Time		1.5		1.5		1.5	ns
tF	Clock Fall Time		1.5		1.5		1.5	ns
tsa	Address Setup Time	1.5	_	1.7		1.8		ns
tha	Address Hold Time	0.5	_	0.5		0.5		ns
tsc	Chip Enable Setup Time	1.5	_	1.7		1.8		ns
thC	Chip Enable Hold Time	0.5	_	0.5		0.5		ns
tsв	Byte Enable Setup Time	1.5	_	1.7		1.8	_	ns
tнв	Byte Enable Hold Time	0.5	_	0.5		0.5	_	ns
tsw	R/W Setup Time	1.5	_	1.7		1.8	_	ns
tHW	R/W Hold Time	0.5	_	0.5		0.5	_	ns
tSD	Input Data Setup Time	1.5	-	1.7		1.8	_	ns
thD	Input Data Hold Time	0.5	-	0.5		0.5	_	ns
tSAD	ADS Setup Time	1.5	_	1.7		1.8	_	ns
thad	ADS Hold Time	0.5		0.5		0.5		ns
tSCN	CNTEN Setup Time	1.5		1.7		1.8		ns
thon	CNTEN Hold Time	0.5		0.5		0.5		ns
t SRPT	REPEAT Setup Time	1.5		1.7		1.8		ns
thrpt	REPEAT Hold Time	0.5		0.5		0.5		ns
tOE	Output Enable to Data Valid		4.0		4.0		4.2	ns
tolz	Output Enable to Output Low-Z	0.5		0.5		0.5		ns
toнz	Output Enable to Output High-Z	1	3.4	1	3.6	1	4.2	ns
tCD1	Clock to Data Valid (Flow-Through) ⁽¹⁾		10		12		15	ns
tCD2	Clock to Data Valid (Pipelined) ⁽¹⁾		3.4		3.6		4.2	ns
tDC	Data Output Hold After Clock High	1		1		1		ns
tскнz	Clock High to Output High-Z	1	3.4	1	3.6	1	4.2	ns
tCKLZ	Clock High to Output Low-Z	0.5		0.5		0.5		ns
Port-to-Port D	lelay		-	-	-	-	-	-
tco	Clock-to-Clock Offset	5.0		6.0		7.5		ns

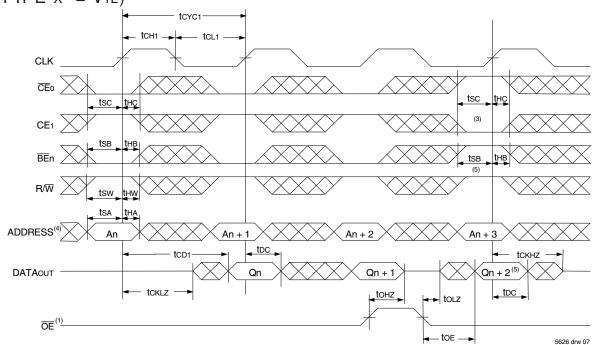
1. The Pipelined output parameters (tcvc2, tcb2) apply to either or both left and right ports when FT/PIPEx = ViH. Flow-through parameters (tcvc1, tcb1) apply when $\overline{FT}/PIPEx = VIL$ for that port.

2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPE. FT/PIPE should be treated as a DC signal, i.e. steady state during operation.

3. These values are valid for either level of VDDQ (3.3V/2.5V). See page 5 for details on selecting the desired operating voltage levels for each port.

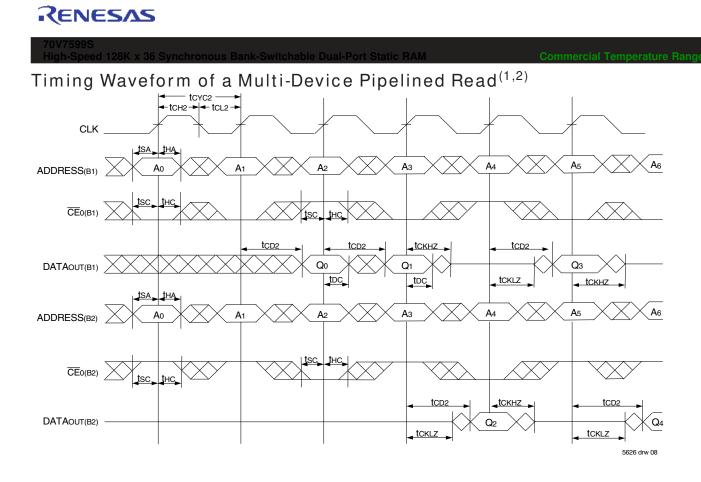

4. 166MHz Industrial Temperature not available in BF-208 package.

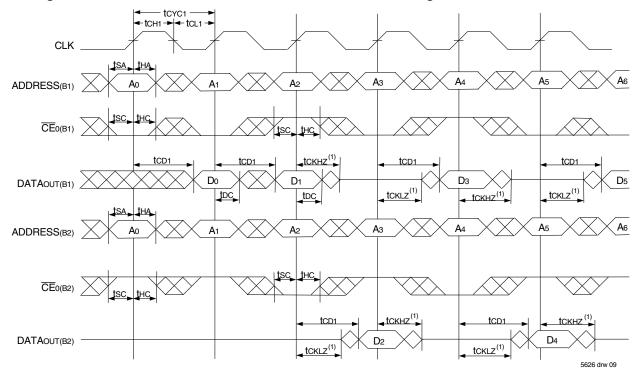

5. This speed grade available when VDDQ = 3.3.V for a specific port (i.e., OPTx = VIH). This speed grade available in BC256 package only.


High-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static BAM

Commercial Temperature Rand

Timing Waveform of Read Cycle for Pipelined Operation (**ADS** Operation) (**FT**/PIPE'x' = VIH)⁽²⁾

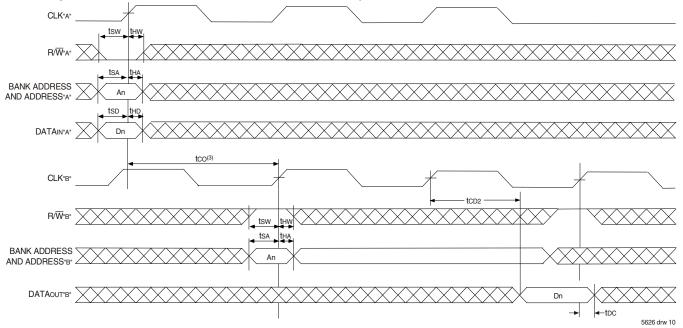




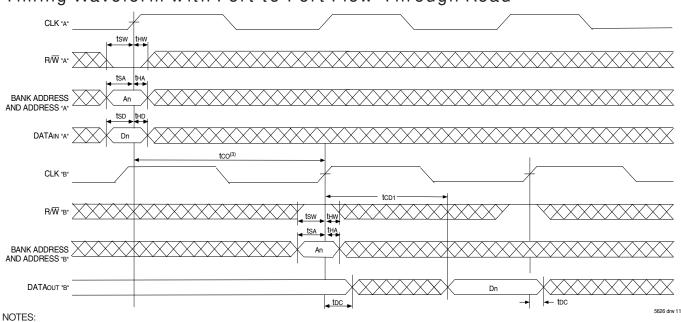
NOTES:

- 1. $\overline{\text{OE}}$ is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
- 2. $\overline{ADS} = VIL$, \overline{CNTEN} and $\overline{REPEAT} = VIH$.
- The output is disabled (High-Impedance state) by CE₀ = VIH, CE₁ = VIL, BE_n = VIH following the next rising edge of the clock. Refer to Truth Table 1.
- Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. If BEn was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state).
- 6. "x" denotes Left or Right port. The diagram is with respect to that port.

Timing Waveform of a Multi-Device Flow -Through Read^(1,2)


NOTES:

- 1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70V7599 for this waveform,
- and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.
- 2. $\overline{\text{BE}}_{n}$, $\overline{\text{OE}}$, and $\overline{\text{ADS}}$ = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and $\overline{\text{REPEAT}}$ = VIH.

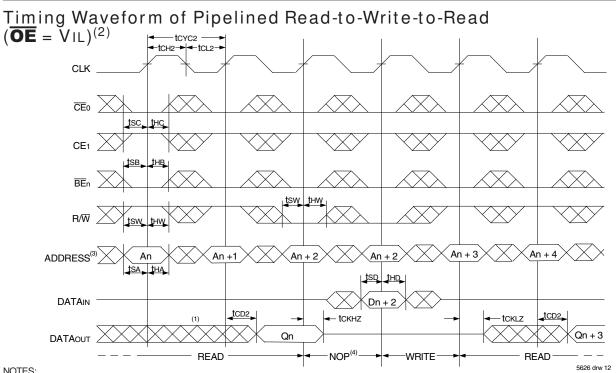


Timing Waveform of Port A Write to Pipelined Port B Read^(1,2,4)

NOTES:

- 1. \overline{CE}_{0} , \overline{BE}_{n} , and \overline{ADS} = VIL; CE1, \overline{CNTEN} , and \overline{REPEAT} = VIH.
- 2. $\overline{OE} = V_{IL}$ for Port "B", which is being read from. $\overline{OE} = V_{IH}$ for Port "A", which is being written to.
- If tco < minimum specified, then operations from both ports are INVALID. If tco ≥ minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port will be tco + tcyc2 + tcp2).
- 4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A"

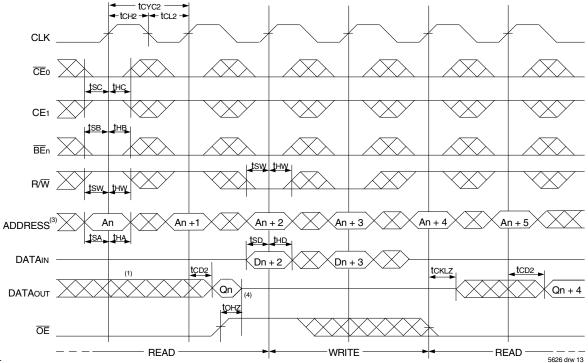
Timing Waveform with Port-to-Port Flow -Through Read^(1,2,4)


1. \overline{CE}_{0} , \overline{BE}_{n} , and $\overline{ADS} = VIL$; CE1, \overline{CNTEN} , and $\overline{REPEAT} = VIH$.

2. \overline{OE} = VIL for the Right Port, which is being read from. \overline{OE} = VIH for the Left Port, which is being written to.

3. If tco < minimum specified, then operations from both ports are INVALID. If tco ≥ minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will be tco + tcc1).

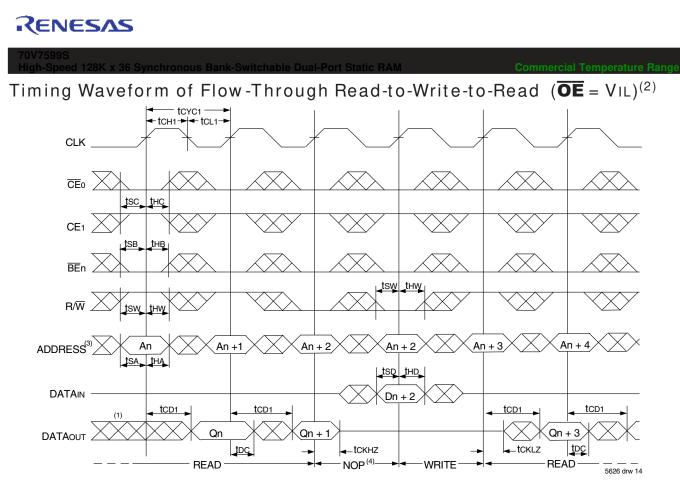
4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".



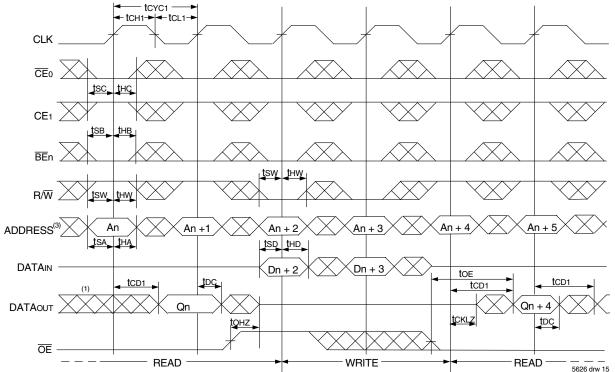
NOTES:

- 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 2. \overline{CE}_{0} , \overline{BE}_{n} , and $\overline{ADS} = V_{IL}$; CE1, \overline{CNTEN} , and $\overline{REPEAT} = V_{IH}$. "NOP" is "No Operation".
- 3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be rewritten to guarantee data integrity.

Timing Waveform of Pipelined Read-to-Write-to-Read (**OE** Controlled)⁽²⁾



NOTES:


1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.

- 2. \overline{CE}_0 , \overline{BE}_n , and $\overline{ADS} = VIL$; CE1, \overline{CNTEN} , and $\overline{REPEAT} = VIH$.
- 3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.

4 This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.

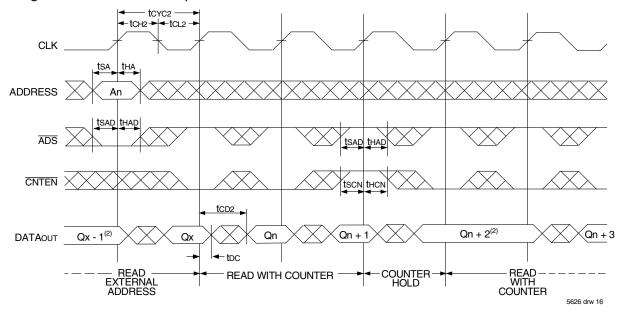
Timing Waveform of Flow -Through Read-to-Write-to-Read (**OE**Controlled)⁽²⁾

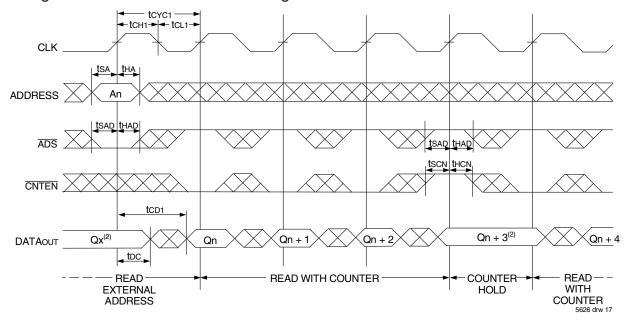
NOTES:

1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.

2. \overline{CE}_0 , \overline{BE}_n , and $\overline{ADS} = V_{IL}$; CE_1 , \overline{CNTEN} , and $\overline{REPEAT} = V_{IH}$.

3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.


4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be rewritten to guarantee data integrity.


h-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static BAM

Commercial Temperature Rar

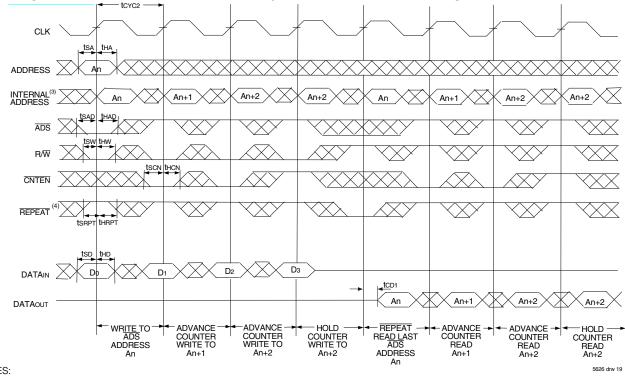
Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾

Timing Waveform of Flow -Through Read with Address Counter Advance⁽¹⁾

NOTES:

1. \overline{CE}_{0} , \overline{OE} , \overline{BE}_{n} = VIL; CE1, R/ \overline{W} , and \overline{REPEAT} = VIH.

2. If there is no address change via $\overline{ADS} = VIL$ (loading a new address) or $\overline{CNTEN} = VIL$ (advancing the address), i.e. $\overline{ADS} = VIH$ and $\overline{CNTEN} = VIH$, then the data output remains constant for subsequent clocks.



ah-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAM

Timing Waveform of Write with Address Counter Advance (Flow -through or Pipelined Inputs)^(1,6)

Timing Waveform of Counter Repeat for Flow Through $Mode^{(2,6,7)}$

NOTES:

1. \overline{CE}_0 , \overline{BE}_n , and R/\overline{W} = VIL; CE1 and \overline{REPEAT} = VIH.

- 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.
- 4. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid ADS load will be accessed. For more information on REPEAT function refer to Truth Table II.
- CNTEN = VIL advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1'Address is written to during this cycle.
- 6. The counter includes bank address and internal address. The counter will advance across bank boundaries. For example, if the counter is in Bank 0, at address FFFh, and is advanced one location, it will move to address 0h in Bank 1. By the same token, the counter at FFFh in Bank 63 will advance to 0h in Bank 0.
- 7. For Pipelined Mode user should add 1 cycle latency for outputs as per timing waveform of read cycle for pipelined operations.

^{2.} \overline{CE}_0 , $\overline{BE}_n = VIL$; $CE_1 = VIH$.

Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static BAN

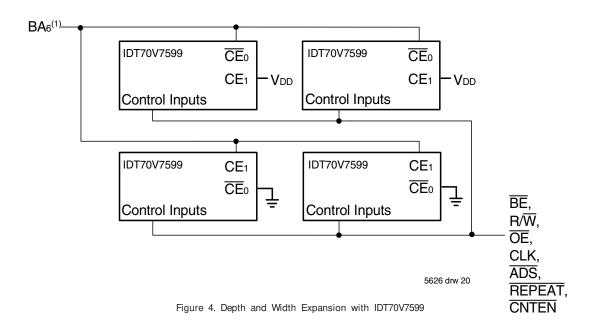
Functional Description

The IDT70V7599 is a high-speed 128Kx36 (4 Mbit) synchronous Bank-Switchable Dual-Ported SRAM organized into 64 independent 2Kx36 banks. Based on a standard SRAM core instead of a traditional true dual-port memory core, this bank-switchable device offers the benefits of increased density and lower cost-per-bit while retaining many of the features of true dual-ports. These features include simultaneous, random access to the shared array, separate clocks per port, 166 MHz operating speed, full-boundary counters, and pinouts compatible with the IDT70V3599 (128Kx36) dual-port family.

The two ports are permitted independent, simultaneous access into separate banks within the shared array. Access by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory with the shared array that is not currently being accessed by the opposite port (i.e., BAOL - BA5L \neq BAOR - BA5R). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the ports within that bank may be corrupted (in the case that either or both ports are writing) or may result in invalid output (in the case that both ports are trying to read).

The IDT70V7599 provides a true synchronous Dual-Port Static RAM

interface. Registered inputs provide minimal setup and hold times on address, data and all critical control inputs.

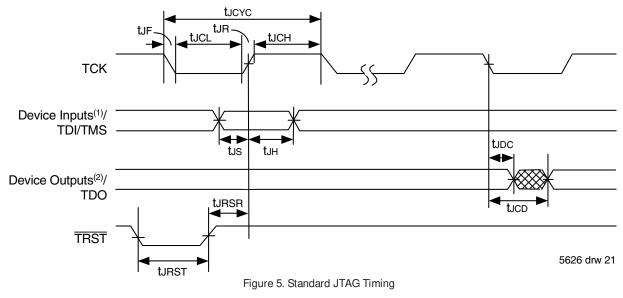

An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications.

A HIGH on CE₀ or a LOW on CE₁ for one clock cycle will power down the internal circuitry on each port (individually controlled) to reduce static power consumption. Dual chip enables allow easier banking of multiple IDT70V7599S for depth expansion configurations. Two cycles are required with \overline{CE}_0 LOW and CE₁ HIGH to read valid data on the outputs.

Depth and Width Expansion

The IDT70V7599 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.

The IDT70V7599 can also be used in applications requiring expanded width, as indicated in Figure 4. Through combining the control signals, the devices can be grouped as necessary to accommodate applications needing 72-bits or wider.



NOTE:

1. In the case of depth expansion, the additional address pin logically serves as an extension of the bank address. Accesses by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory within the shared array that is not currently being accessed by the opposite port (i.e., BAoL - BA6L ≠ BA0R - BA6R). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the parts within that bank may be corrupted (in the case that either or both parts are writing) or may result in invalid output (in the case that both ports are trying to read).

High-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static BAM

JTAG Timing Specifications

NOTES:

1. Device inputs = All device inputs except TDI, TMS, TRST, and TCK.

2. Device outputs = All device outputs except TDO.

		70V7599		
Symbol	Parameter	Min.	Max.	Units
tJCYC	JTAG Clock Input Period	100		ns
tлсн	JTAG Clock HIGH	40		ns
tJCL	JTAG Clock Low	40		ns
tJR	JTAG Clock Rise Time		3(1)	ns
tJF	JTAG Clock Fall Time		3 ⁽¹⁾	ns
IJRST	JTAG Reset	50		ns
turs r	JTAG Reset Recovery	50		ns
tuco	JTAG Data Output		25	ns
tudo	JTAG Data Output Hold	0		ns
tus	JTAG Setup	15		ns
tıн	JTAG Hold	15		ns

JTAG AC Electrical Characteristics^(1,2,3,4)

NOTES:

1. Guaranteed by design.

2. 30pF loading on external output signals.

3. Refer to AC Electrical Test Conditions stated earlier in this document.

4. JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet.

5626 tbl 12

70V7599S

gh-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static RAM

Commercial Temperature Rang

Identification Register Definitions

Instruction Field	Value	Description
Revision Number (31:28)	0x0	Reserved for version number
IDT Device ID (27:12)	0x308	Defines IDT part number
IDT JEDEC ID (11:1)	0x33	Allows unique identification of device vendor as IDT
ID Register Indicator Bit (Bit 0)	1	Indicates the presence of an ID register

5626 tbl 13

Scan Register Sizes

Register Name	Bit Size
Instruction (IR)	4
Bypass (BYR)	1
Identification (IDR)	32
Boundary Scan (BSR)	Note (3)

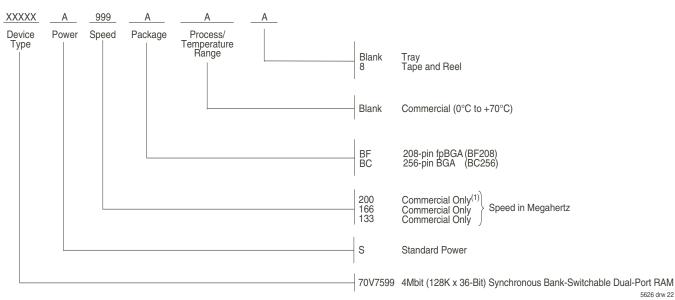
5626 tbl 14

System Interface Parameters

Instruction	Code	Description
EXTEST	0000	Forces contents of the boundary scan cells onto the device outputs ⁽¹⁾ . Places the boundary scan register (BSR) between TDI and TDO.
BYPASS	1111	Places the bypass register (BYR) between TDI and TDO.
IDCODE	0010	Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO.
HIGHZ	0100	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.
CLAMP	0011	Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO.
SAMPLE/PRELOAD	0001	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs ⁽²⁾ and outputs ⁽¹⁾ to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.
RESERVED	All other codes	Several combinations are reserved. Do not use codes other than those identified above.

NOTES:

1. Device outputs = All device outputs except TDO.


5626 tbl 15

Device outputs = All device outputs except TDO.
Device inputs = All device inputs except TDI, TMS, TRST, and TCK.

3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative.

5626 drw 22

Ordering Information

NOTES:

1. Available in BC256 package only.

LEAD FINISH (SnPb) parts are Obsolete excluding BGA & fpBGA. Product Discontinuation Notice - PDN# SP-17-02 Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Speed (MHz)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
133	70V7599S133BC	BC256	CABGA	С
	70V7599S133BC8	BC256	CABGA	С
	70V7599S133BF	BF208	CABGA	С
	70V7599S133BF8	BF208	CABGA	С
166	70V7599S166BC	BC256	CABGA	С
	70V7599S166BC8	BC256	CABGA	С
	70V7599S166BF	BF208	CABGA	С
	70V7599S166BF8	BF208	CABGA	С
200	70V7599S200BC	BC256	CABGA	С
	70V7599S200BC8	BC256	CABGA	С

Orderable Part Information

igh-Speed 128K x 36 Synchronous Bank-Switchable Dual-Port Static BAM

Commercial Temperature Rang

Datasheet Document History:

01/05/00:	Initial Public Offering
10/19/01:	Page 2, 3 & 4 Added date revision for pin configurations
	Page 9 Changed Ise3 values for commercial and industrial DC Electrical Characteristics
	Page 11 Changed to∈ value in AC Electrical Characteristics, please refer to Errata #SMEN-01-05
	Page 20 Increased tJCD from 20ns to 25ns, please refer to Errata #SMEN-01-04
	Page 1 & 22 Replaced ™ logo with ® logo
03/18/02:	Page 1, 9, 11 & 22 Added 200MHz specification
	Page 9 Tightened power numbers in DC Electrical Characteristics
	Page 14 Changed waveforms to show INVALID operation if tco < minimum specified
	Page 1 - 22 Removed "Preliminary" status
12/04/02:	Page 9, 11 & 22 Designated 200 Mhz speed grade available in BC-256 package only
01/16/04:	Page 11 Added byte enable setup time and byte enable hold time parameters and values to all speed grades in the AC Electrical
	Characteristics Table
07/25/08:	Page 9 Corrected a typo in the DC Chars table
01/29/09:	Page 22 Removed "IDT" from orderable part number
06/03/15:	Page 1 Added Green availability to Features
	Page 2 , 3, 4 & 22 The package codes for BF-208 changed to BF208, BC-256 changed to BC256, and DR-208
	changed to DR208 respectively to match the standard package codes
	Page 2 , 3 & 4 Removed the date from all of the pin configurations BF208, BC256 & DR208
	Page 22 Added Green and T&R indicators and the correlating footnotes to Ordering Information
06/22/18:	Product Discontinuation Notice - PDN# SP-17-02
	Last time buy expires June 15, 2018
10/15/19:	Page 1 & 22 Deleted obsolete 166/133MHz Industrial speed grades & DR208 PQFP package code
	Page 22 Added Orderable Part Information
10/31/19:	Page 22 Corrected "ns" to "MHz" in the header of the Orderable Part Information table

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>